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MOFs for mustard gas removal

Jing Ni,1 Jinfeng Li,1 Shuhua Li,1 He Zheng,2 Zhongyuan Ming,1 Li Li,2 Heguo Li,2 Shouxin Zhang,2 Yue Zhao,2,*

Hong Liang,1,* and Zhiwei Qiao1,3,4,*
SUMMARY

Chemical warfare agents (CWAs), epitomized by the notoriously usedmustard gas (HD), represent a class
of exceptionally toxic chemicals whose airborne removal is paramount for battlefield safety. This study
integrates high-throughput computational screening (HTCS) with advanced machine learning (ML) tech-
niques to investigate the efficacy of metal-organic frameworks (MOFs) in adsorbing and capturing trace
amounts of HD present in the air. Our approach commenced with a comprehensive univariate analysis,
scrutinizing the impact of six distinct descriptors on the adsorption efficiency of MOFs. This analysis eluci-
dated a pronounced correlation between MOF density and the Henry coefficient in the effective capture
of HD. Then, four ML algorithms were employed to train and predict the performance of MOFs. The
Random Forest (RF) algorithm demonstrates strong model learning and good generalization, achieving
the best prediction result of 98.3%. In a novel exploratory stride, we incorporated a 166-bit MACCS mo-
lecular fingerprinting (MF) to identify critical functional groupswithin adsorbents. From the top 100MOFs
analyzed, 22 optimal functional groups were identified. Leveraging these insights, we designed three
innovative substructures, grounded in these key functional groups, to enhance HD adsorption efficiency.
In this work, the combination of MF andML could provide a new direction for efficient screening of MOFs
for the capture of HD in the air. The outcomes of this study offer substantial potential to revolutionize the
domain of CWA capture. This represents a significant stride toward developing practical solutions that
enhance both environmental protection and battlefield security.

INTRODUCTION

Chemical warfare agents (CWAs) are highly toxic chemicals that were employed duringWorld Wars I and II, resulting in a substantial number

of casualties among both combatants and civilians. CWAs are utilized in warfare to inflict irreversible and fatal injuries upon the enemy,1 ex-

hibiting a considerably higher lethality rate compared to thermal weapons like firearms. The category of CWAs encompasses nerve agents,

blister agents, agents causing lung damage, and blood agents, all of which are relatively inexpensive to produce and transport, leading to

profound and incalculable damage.2 Among them,mustard gas (HD),3,4 as a blister agent within the realm of chemical warfare agents, stands

out as one of the earliest andmost widely used. HD can enter the human body through the skin, respiratory tract, and eyes, causing extensive

harm, and it induces erosion of the skin and various tissue cells, resulting in skin and cell necrosis, eye damage, severe blistering of the skin in

affected individuals, and in extreme cases, permanent blindness and death.5 During World War II, the Japanese army deployed HD in their

aggressive war against China, resulting in tens of thousands of casualties. Consequently, numerous researchers have extensively investigated

techniques for handling chemical warfare agents like HD, aiming to ensure effective protection for humans against these agents.6,7

The pursuit of a suitable adsorbent for HD currently stands as a focal point of investigation. Traditional adsorbents, such as zeolites and

activated carbon, display limited adsorption capacity, along with low productivity and high energy costs, thereby constraining their practical

applications.8 Graphene, a flexible conductor with a super-large specific surface area and a rich pore structure, is explored as an adsorbent

material and finds widespread use in various fields, including energy, biology, and medicine. However, graphene, being a two-dimensional

monolayer structure, is prone to causingp-p stacking during the adsorption process due to its inherent characteristics, leading to a reduction

in the adsorption efficiency of graphene.9 Given the potentially fatal damage caused by toxic agents, it is imperative to identify amaterial with

robust adsorption capacity and excellent chemical stability. From an energy perspective, the cost of the adsorbent must also be considered.
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Metal-organic frameworks (MOFs), a class of one, two, or three-dimensional crystalline hybridized porous materials with a designable

pore structure, are currently the focus of researchers’ attention.10,11 MOFs exhibit highly tunable pore sizes, larger porosities, and higher

selectivity than conventional porous materials,12 meanwhile, their excellent properties can also be utilized in gas storage, catalytic hydrolysis,

drug loading, etc. Lee et al.13 reported a MOF-fiber composite material; synthesized using a novel low-temperature hybrid solvent, and in

this material, an aluminum porphyrin-based metal-organic skeleton (Al-PMOF) was attached to the surface of polymerized knitted fabrics,

forming a solid membrane for the photocatalytic detoxification of HD simulants (CEES). This photocatalytic detoxification material provides

a novel approach to producing protective clothing, masks, and other protective equipment. Xiao et al. 14 introduced the design concept of

metal-organic framework filters (MOFilters) for the adsorption of toxic gases, CWAs, volatile organic compounds (VOCs), and other environ-

mental challenges. They also summarized the fundamental processes of filtering, adsorbing, and degrading pollutants to facilitate the better

design and optimization of MOF filters. Florencia et al. 15 examined the adsorption of CEES by 10 Zr-MOFs with different open metal sites,

secondary building unit connectivity, and surface area/pore volume (specific surface area) and found that each of these factors affected the

capture adsorption of CEES. Based on this study, researchers can choose the right topology and thus the right MOF based on the properties

of the target adsorbate. Martos et al.16 selected 2,932 MOFs for the adsorption study of chemical warfare agents and their simulants, and to

avoid the impact of competitive water adsorption, they chose 156 hydrophobic MOFs and identified optimal materials for adsorbing chem-

ical warfare agents such as sarin, HD, and soman. Emelianova et al.17 conducted Monte Carlo simulations on sarin and three simulants—

dimethyl methyl phosphonate (DIMP), diisopropyl fluorophosphate (DIFP), and dimethyl methyl phosphonate (DMMP), they selected

DMMP as the simulant most closely resembling the adsorption characteristics of sarin. Carmen Montoro et al.18 investigated the adsorption

of MOF-5 on HD, a class of hazardous volatile gases, and suggested that the pore size of the MOF and the hydrophobicity of its surface are

important factors affecting adsorption. Yajiao Hao et al. 19 selected MOFs and their derivatives as oxidants, employing visible or ultraviolet

light to oxidize organic sulfur compounds, including simulators of HD, into less toxic sulfoxide byproducts. Moghadam et al.20 performed

high throughput calculations on 3,385 MOFs and established structure-mechanical stability relationships for MOF materials. Pardakhti

et al.21 investigated the application of machine learning (ML) algorithms to forecast the methane adsorption capabilities of MOFs and

believed ML is a quicker and more precise alternative solution for screening adsorbents. Borboudakis et al.22 utilized ML as a more efficient

screeningmethod to predict high-performancematerials, through training on data obtained from high-throughput computational screening

(HTCS). Fanourgakis et al.23 conducted training in machine learning (ML) algorithms on MOFs and achieved successful prediction of the

adsorption properties across different material families, thus substantiating the method’s universality and transferability. Wang et al.24,25 em-

ployed interpretable ML methodologies to expedite the discovery of promising MOFs for the selective separation of ethane and ethylene.

They proposed an integrated ML framework that associates MOF structures with gas adsorption capabilities through structural decompo-

sition, feature integration, and predictive modeling. Zhang et al.26 introduced a two-step integrated process design methodology involving

MOF synthesis and pressure/vacuum swing adsorption (P/VSA) for gas separation purposes.

In this study, the adsorption and purification capabilities of 31,399 MOFs for HD were investigated utilizing HTCS and ML. Univariate an-

alyses were performed to characterize the relationships between the MOF’s feature descriptors and the adsorption, selectivity, and trade-off

variables. Three adsorption metrics of MOFs were also analyzed using machine learning training to select the 10 best MOFs. Finally, the

optimal functional group was determined using the molecular fingerprinting (MF) technique, and efforts were made to summarize the excel-

lent structures, providing directions for the design of high-performance MOFs.

RESULTS AND DISCUSSION

Univariate analysis

Univariate analysis serves as an initial inquiry into dataset properties, constituting a fundamental aspect of data examination. It primarily fo-

cuses on elucidating the attributes and behaviors of individual variables while delineating their optimal ranges. In this study, a total of 31,399

HMOFs were selected, and the structural descriptors (VSA, LCD, r, and 4) as well as energetic descriptors (K and Q0
st) of the MOFs were

calculated through molecular dynamics simulations. Subsequently, univariate analyses were performed on the adsorption properties of

MOF descriptors and HD within the MOFs. To comprehensively evaluate the performance of the MOFs, a variable, TSN (Trade-off between

SX/ (Y1 + Y2) and NX), was introduced, defined by the formula:

TSN = NX 3 In

�
S X

Y1+Y2

�
(Equation 1)

Here, X represents HD, while Y1 and Y2 respectively denote nitrogen (N2) and oxygen (O2). N represents adsorption capacity, and S rep-

resents selectivity.

TSN is employed to balance the relationship between selectivity and adsorption by applying a logarithmic operation to the selectivity,

thereby minimizing the difference between the two orders of magnitude. Selectivity and adsorption have become common criteria, and

the utilization of TSN allows for a better synthesis of the two variables. This approach was previously used to evaluate zeolite adsorption

by Shah et al.27

As depicted in Figures 1A and 1C, the adsorption capacity (N) and selectivity (S) of mustard gas exhibit an increasing and then decreasing

trend with the increase of LCD. This pattern arises because when the LCD is very small, gas molecules cannot penetrate the interior of the

MOF, resulting in nearly zero values for both N and S. As the LCD increases, gas molecules progressively enter the MOF’s interior, leading

to a gradual rise in both N and S. However, with further increases in LCD, the contact area between gas molecules and the MOF pore wall
2 iScience 27, 110042, June 21, 2024



Figure 1. Univariate analysis chart

(A) The relationship between N and LCD.

(B) The relationship between r and N.

(C) The relationship between LCD, S, and N.

(D) The relationship between 4, S, and LCD.

(E) The relationship between K and N.

(F) The relationship between Q0
st and N.

The colored of the dot in A–D represent the value of the TSN.
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decreases, weakening the force between them and diminishing the wrapping effect, ultimately causing a decrease in N. Concurrently, S de-

creases as the pore diameter becomes larger, which is unfavorable for differentiating the gasmixture.28 In the LCD range of (9, 13), bothN and

TSN reach their peaks, representing the optimal adsorption interval.
iScience 27, 110042, June 21, 2024 3
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As depicted in Figure 1B, when VSA approaches zero, it suggests a negligible surface area of theMOF. At this point, bothN and S are close

to zero. As VSA increases, the accessible area of gasmoleculeswith theMOFporewall expands, resulting in an increase in bothN and S for the

targetgas.However,with excessively largeVSA, theadsorption spaceand thenumberof adsorption sites for themain components (N2 andO2)

in the mixed gas increase. As VSA continues to grow, the relative contact area between mustard gas and the MOF pore walls decreases,

impeding mustard gas adsorption. Consequently, both N and S decrease. The optimal adsorption range for VSA is (1565, 2043), where

both the adsorption quantity and the equilibrium value TSN of theMOF reach their highest values. Moreover, in Figure 1B, r and LCD exhibit

a similar trend,with the adsorption amount increasingwith r.Whenrbecomesexcessively large, theadsorptionamountdecreases sharply and

the optimal adsorption interval for r is (568, 763). Compared to other descriptors, the optimal range of r contains the fewest MOFs and thus

represents the narrowest optimal range. Therefore, it appears that r and the performance metric TSN exhibit a strong correlation.

In addition to the four structural descriptors, two energy descriptors (K and Q₀
st) are considered. Figure 1E depicts the relationship be-

tween K and N. When K is zero, the weak interaction between the MOF framework and HD molecules leads to poor MOF performance,

with both N and S approaching zero. As K increases, it becomes evident that HD can be easily adsorbed, resulting in a rapid increase in

the adsorption amount (N). However, when K is too large, N starts to decrease gradually, and the optimal adsorption interval for K is deter-

mined to be (0.001, 0.04). Figure 1F illustrates the trend of the NHD-Q
₀
st relationship. WhenQ₀

st is zero, bothN and S are zero. This is because

mustard gas molecules need some energy to enter the interior of the MOF. The optimal adsorption range for Q₀
st is found to be (28, 49), a

conclusion utilized by Qiao et al.29 in the adsorption separation of CO2. Upon closer inspection, the optimal adsorption range of K is much

smaller than that of Q₀
st, implying that K is more relevant than Q₀

st for the performance index TSN.

Based on the univariate analysis, it is initially concluded that there exists a strong correlation between r and K about the adsorption per-

formance of the MOF. However, the univariate analysis can only identify the most important influencing factors and cannot fully elucidate the

combined effects among each descriptor and the adsorption performance of the material. Therefore, the ML method is adopted to further

analyze this complex adsorption system.
Machine learning

Machine learning encapsulates the interplay amongmultiple variables, enabling validation not only of univariate analyses but also of the intri-

cate weighting of multiple variables, which mutually scrutinize and harmonize one another, thereby collectively influencing performance

outcomes. In this study, the adsorption performance of 31,399 HMOFs concerning mustard gas was analyzed using four ML regression algo-

rithms: Random Forest (RF), Extreme Gradient Boosting (XGB), Decision Tree (DT), and Light Gradient Boosting Regression (LGBR). For each

ML algorithm, the entire dataset was divided into training and test sets, with 70% allocated for model training and the remainder for model

testing. To ensure the stability and homogeneity of the model, k-fold cross-validation (k = 5) was employed. The principle of k-fold cross-vali-

dation involves dividing the entire dataset into k groups, with one group chosen as the test set each time and the remaining k -1 groups used

as the prediction set. The average of the cross-validation results was chosen as the assessment of themodel’s accuracy. For more information,

please refer to Figure S3. Furthermore, the evaluation metrics for model prediction accuracy include the determination coefficient (R2), mean

absolute error (MAE), and root-mean-square error (RMSE).

As illustrated in Figure 2, the four MLmodels—RF, XGB, DT, and LGBR—are employed to predict the test set, resulting in an R2 exceeding

0.95, signifying the robust predictive performance of these algorithms. Traditionally, individuals tend to assess prediction accuracy based on

model complexity. However, this approach may not be universally correct since different algorithms are suitable for different systems.

Following ML algorithm judging criteria, higher R2 values and lower MAE or RMSE values indicate heightened prediction accuracy and

more reliable results. The predictive effectiveness of these four algorithms is ranked as RF > LGBR > XGB >DT, highlighting the RF algorithm

as the most suitable for this system. RF demonstrates robust model learning ability and good generalization, as evidenced by its selection as

the optimalMLmodel in previous research.21 In Figure 2C, we use theDT algorithm as the relevantMLmodel involvesDT regressor (which can

fit multiple MOFs into the same leaf node based on their feature values). This is an expected result, similar to previous work by Demir et al.30

Moreover, DT is not the optimal algorithm in this system we study. Furthermore, TSN is reintroduced as a performance metric in this study.

This decision is motivated by the fact that choosing S as a performance metric results in lower prediction accuracy due to the uneven distri-

bution of S data. Using TSN as a trade-off variable provides a more rationalized representation of the data distribution. EmployingN and S as

performance indicators for prediction and comparing the magnitudes of the three values of R2, MAE, and RMSE further supports the iden-

tification of RF as the algorithm most suitable for the model. The ranking of prediction accuracy for the three performance metrics is

TSN > N > S, reinforcing the appropriateness of considering TSN as the primary performance metric.

In Figure 3A, the RF algorithm exhibits the highest R2 value, as well as the lowest MAE and RMSE values in predicting the test set. Conse-

quently, RF is identified as the optimal algorithm in conjunction with the aforementioned study. Subsequently, we employ the RF algorithm to

conduct a relative importance analysis of the MOF structure, the relative importance share of the six descriptors is illustrated in Figure 3B. RF

assesses descriptor importance by considering the ratio between the sum of changes in the mean square error (MAE) resulting from splits on

each descriptor and the sum of branching nodes. The larger the relative importance share of a descriptor, the greater its contribution toMOF

adsorption is implied. As depicted in the figure, the relative importance percentage of K is 61%, significantly surpassing other descriptors.

Following closely,Q0
st holds a relative importance percentageof 25%,making it the secondmost crucial descriptor. Among the four structural

descriptors (4, r, LCD, VSA), r has the highest relative importance. The relative importance ranking of descriptors for MOF is

K > Q0
st > r > LCD > 4 > VSA. Notably, the importance proportions of LCD and 4 are closely aligned, implying their similar impact on

MOF adsorption performance. In summary, the energy descriptor K and the structural descriptor r play pivotal roles in the adsorption
4 iScience 27, 110042, June 21, 2024



Figure 2. Machine learning graphs

Performance of four algorithms (A) RF, (B) XGB, (C) DT, and (D) LGBR for predicting TSN in test set.

The bars height is used to represent the density of the points, and the smoothed curve is a normal distribution curve.
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selectivity of MOFs, corroborating our earlier conclusions from univariate analysis. Moreover, the correlation between K and the adsorption of

toxic agents by MOFs provides insights for the screening and design of novel MOFs.

Table 1 presents the ten optimalMOFs selected based on TSN. In the preceding univariate analysis, we outlined approximate outstanding

ranges for MOF descriptors. Notably, the descriptors of these ten optimal MOFs fall within the designated ranges, further affirming the con-

clusions drawn from our univariate analysis.

Molecular fingerprint

MF is a technique that disassembles molecules into substructures and converts the substructures into numerical representations. We can

combine ML and MF to screen for superior substructures that could potentially be the key to designing superior materials. In this study,

MOF design criteria were explored by analyzing the MOF structure, and MACCS fingerprints were generated through the combination of

the OpenBabel and PaDEL Descriptor packages. OpenBabel31 is an open-source toolkit utilized for describing chemical data across various

chemical languages and processing chemical data in fields such as materials science, organic chemistry, and computer chemistry. PaDEL

Descriptor 32 is a dedicated software designed for calculating molecular descriptors and fingerprints, being the only one that supports

over 90 different molecular file formats. The initial step involved the conversion of the ‘‘cif’’ file format of the HMOF to the ‘‘sdf’’ file format

using theOpenBabel package. Subsequently, theMOF in ‘‘sdf’’ format was transformed intoMACCS fingerprints using the PaDELDescriptor

package.MACCS is a commonly applied fingerprintingmethod, and its fingerprints have been utilized in prior studies to investigate the struc-

tural properties of MOFs.33 MACCS is a two-dimensional descriptor-based fingerprint with a length of 166, covering a wide range of chemical

features. MACCS fingerprints also have their limitations. They are binary codes and cannot represent specific numerical properties of mole-

cules, such as information about the charge and bond length of atoms.

In the previous study, K andQ0
st were identified as the two most crucial descriptors. These descriptors, along with the MACCS of 166 bits,

were amalgamated to predict the three properties of adsorbents (N, S, and TSN) using the RF algorithm. The primary goal was to forecast
iScience 27, 110042, June 21, 2024 5



Figure 3. Algorithmic contrast heatmaps and related importance maps

(A) Comparison of algorithm performance. The color represents the value of RMER, MAE and R2. (B) Relative importance of the six descriptors of MOF.
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performance indexes through the MF-assistedMLmethod, conducting a thorough examination of the impact of each MOF structure on per-

formances. The objective was to identify the structure exerting themost significant influence on performances, thereby providing insights into

the design of novel MOFs.

As depicted in Figure 4A on the test set, whenN and TSNwere designated as performance indicators, the R2 values consistently surpassed

0.8. This observation underscores the appropriateness of employing MACCS fingerprints. However, due to the dispersed nature of S values,

predictive accuracy diminishes when S is chosen as the performance indicator, aligning with findings from our prior work. According to ML

algorithm evaluation criteria, and in comparison, withN and S, TSN emerges as the more suitable performance indicator. Simultaneously, as

illustrated in Figure 4B, a comprehensive analysis of metal content was conducted in all MOFs and the top 100MOFs. Notably, within HMOFs,

only four metals are present: Zn, Cu, V, and Zr.

Firstly, the fingerprints of 31,399 HMOFs were converted, and the frequency of each fingerprint bit was tallied. The top 10 bits with the

highest frequency were identified as 164, 157, 159, 22, 124, 146, 130, 102, 140, and 16. These conventional molecular fingerprints appear

both in good-performingMOFs and poor-performingMOFs. From the perspective of big data analysis, these fingerprints have no significant

effect on findingMOFswith enhancedmustard gas adsorption performance. Detailed information can be found in Table S6. Tomitigate inter-

ference from traditional fingerprints, MOFs were ranked based on the TSN performance metric. The top 100 MOFs were meticulously

selected, and the frequency of each fingerprint bit within this subset was precisely tallied. The ten bits with the highest frequencies were

164, 159, 157, 146, 130, 124, 102, 22, 148, and 140. Significantly, these ten bits closely overlapped with our previously identified common

bits, hindering a definitive assessment of their exceptional nature. In this context, a frequency difference approach was employed to define

exceptional fingerprint bits. By subtracting the frequency of each fingerprint bit in the top 100 MOFs from its frequency across all 31,399

MOFs, bits with differences exceeding 10% were filtered out. As illustrated in Figure 4C, a higher difference in frequency indicates a concen-

tration of these fingerprint bits within the top 100 MOFs, suggesting their potential significance as critical structures influencing the excep-

tional characteristics of MOFs. The resulting exceptional fingerprint bits selected were 103, 7, 31, 76, 75, 121, 125, 145, 99, 50, 45, 144, 162, 26,

142, 161, 122, 158, 94, 163, 117, 126, and 134.
Table 1. Ten MOFs with optimal performance for mustard gas adsorption

NO IDa 4 VSA/(m2/cm3) LCD/(Å) r/(kg/m3) K/(mol/kg/Pa) Q0
st/(kJ/mol) N/(mol/Kg) S TSN

1 6004092 0.796 1787 11.381 610.7 0.0025 32.5 8.235 222736 101.4

2 6001603 0.763 1670 10.905 622.5 0.0054 38.3 7.669 289057 96.4

3 26666 0.836 1824 12.520 679.0 0.0032 34.0 7.755 236527 96.0

4 5050062 0.821 2011 11.054 669.2 0.0196 39.8 7.680 219301 94.4

5 5049995 0.843 1903 12.341 663.0 0.0134 39.51 7.774 184916 94.2

6 6001799 0.741 1847 10.137 655.8 0.0007 28.6 7.4 14 333129 94.3

7 5062975 0.824 1828 10.891 697.3 0.0014 29.0 7.405 295457 93.3

8 22878 0.807 1937 11.892 689.0 0.0019 31.7 7.435 262443 93.0

9 22303 0.828 1947 12.101 699.6 0.0034 34.7 7.436 258154 92.7

10 27210 0.811 1904 11.063 665.1 0.0089 37.0 7.508 225861 92.6

aStructure for HMOFs could be checked by the IDs in the HMOF database:http://hmofs.northwestern.edu.30

6 iScience 27, 110042, June 21, 2024
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Figure 4. Molecular fingerprints and metal content maps

(A) Performance of the RF algorithm for three adsorption properties indicators.

(B) Proportion of MOFs with the four metal centers in the top 100 MOFs and in all MOFs.

(C) The fingerprint bits with difference in frequency of occurrence between top 100 MOFs dataset and all MOFs dataset exceeding 10%.
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VB, VIB, and VIIB are classified as transition metal elements (Group 7). Among HMOFs, only the element V belongs to these three sub-

groups. Transition metals can function as binding sites for HD adsorption, and the integration of a high density of transition metals into

the MOF structure can enhance the stability of MOFs.33,34 As indicated in Table 2, outstanding MOFs for HD adsorption should contain

no fewer than two six-membered rings and aromatic rings. Hydrogen bonding in the six-membered rings improves the adsorption efficiency

of MOFs,35 while aromatic rings provide additional adsorption sites for MOFs, enhancing the affinity between HD and MOFs, which is favor-

able for MOF adsorption.36 The negatively charged halogen atoms in the framework (Group 103 and Group 134) can coordinate with the

metal ions in the framework, dispersing positive charges.37 Additionally, the inclusion of halogen elements enhances the polarizability of

the framework, promoting interaction between the framework and HD molecules.38 The C=C double bond is a nonpolar bond, and HD is

also a nonpolar molecule in this study. This results in an instantaneous dipole when they are nearby, and the dispersive force generated be-

tween the framework and HD molecules facilitates HD adsorption. N-containing heterocycles can directly coordinate with metals through

deprotonation, yielding electron-neutral zeolite-like structures. Mulliken population analysis reveals that N is more negatively charged

than pristine C atoms, and the addition of N atoms allows for stronger electrostatic interactions between the HD and the MOF.39

The structure ofMOFs is digitized and the public fingerprints of outstandingmaterials aremicroanalyzed byMF. The adsorption simulation

diagrams of MOFs are depicted in Figure 5, with three MOFs selected from the top 10. Figures 5B and 5D represent different angles of the

same MOF, with black dots indicating mustard gas. Simultaneously, their structures are decomposed one by one using the bit number of

MACCS fingerprints. These four diagrams reveal a higher concentration of mustard gas near the functional groups, thereby verifying the in-

fluence of functional groups on MOF adsorption. In Figures 5A and 5B, a majority of the mustard gases cluster near chlorine (Cl) atoms, poly-

cyclic rings, C=C bonds, and oxygen atoms. Similarly, in Figures 5C and 5D, most mustard gases cluster near polycyclic rings, N-containing

heterocycles, and Cl atoms. Furthermore, in all four adsorption diagrams, certainmustard gases appear fragmented and are situated close to

the center of the pore. This fragmentation is attributed to the combined influence of multiple functional groups along the surrounding pore

walls. Notably, these fragmented mustard gases do not exhibit specific proximity to a particular functional group. These observations rein-

force the robust correlation between the superior fingerprint positions and the adsorption properties of theMOF. For theMOF-HD system, it

is suggested that pivotal information determining MOF performance may be concealed within the molecular framework (MF).

As depicted in Figure 6, three novel organic ligands have been designed, incorporating themajority of the exemplary fingerprint structures

outlined in Table 2. All three organic ligands encompass (a) aromatic rings, (b) double bonds, (c) halogens, (d) nitrogen-containing
iScience 27, 110042, June 21, 2024 7



Table 2. Optimal MACCS MFs with the top 22

Bit SMART Description Combination

94 ’[!#6;!#1]�[#7]’, 0 One atom except C and H connected with N

atom by any bond.

117 ’[#7]�*�[#8]’ N and O atoms connected with any atom by

any bond.

126 ’*!@[#8]!@*’, 0 Two non-ring atoms connected with O atom

7 ’[V, Cr, Mn, Nb, Mo, Tc, Ta, W, Re]’,0 Element in VB, VIB, or VIIB V

76 ’[#6]=[#6](�*)�*’,0 C and C atoms are connected by a double

bond, and one of them connected with two

atoms by any bond.

99 ’[#6]=[#6]’, 0 C and C atoms are connected by a double

bond.

50 ’[#6]=[#6](�[#6])�[#6]’, 0 C and C atoms are connected by a double

bond, and one of them connected with two C

atoms by any bond.

45 ’[#6]=[#6]�[#7]’, 0 C and C atoms are connected by a double

bond, and one of them connected with a

nitrogen atom by any bond.

161 ’[#7]’, 0 N atom.

158 ’[#6]-[#7]’, 0 C andNatoms are connected by a single bond.

134 ’[F, Cl, Br, I]’, 0 F atom, Cl atom, Br atom and I atom. Cl

103 ’Cl’,0 Cl atom.

75 ’*!@[#7]@*’,0 Any atom and N atom connected by a non-ring

bond, and N atom connected with another

arbitrary atom by a ring bond.

121 ’[#7;R]’, 0 Nitrogen heterocycle.

162 ’a’, 0 Aromatic compounds

142 ’[#7]’, 1 The number of N is more than 1.

125 ’?’, 0 The number of aromatic ring is more than 1.

145 ’*1�*�*�*�*�*�1’, 1 The number of Six-membered ring ismore than

1.

144 ’*!:*:*!:*’, 0 An arbitrary atom is connected to three other

atoms via alternating aromatic and non-

aromatic bonds.

122 ’*�[#7](�*)�*’, 0 N atom connected with three atoms by any

bond.

26 ’[#6]=;@[#6](@*)@*’, 0 C and C atoms are connected by a cyclic

olefinic bond, and one of them connected with

two rings.

163 ’*1�*�*�*�*�*�1’, 0 Six-membered ring.

Note: ‘‘*’’: any atom; ‘‘Q’’: any atom except carbon and hydrogen. SMARTS is a language that allows you to specify substructures using rules extending from the

SMILES encoding.
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heterocycles, and (e) oxygen atoms. The incorporation of one or more of these organic ligands into the design of MOFs may serve as inspi-

ration for achieving efficient HD adsorption. This underscores the advantages derived from combining MF and ML in the design of MOFs for

effective HD adsorption, further facilitating the development of efficient and high-performance MOFs.
Conclusion

In this study, a database of 137,953 hypothetical MOFs was utilized, from which 31,399 hydrophobic MOFs were selected to screen their

adsorption capacity for HD through high-throughput simulations. Initially, a univariate analysis was conducted on the MOF descriptors

(LCD, VSA, 4, r, Q0
st, and K) along with the adsorption properties of HD in MOFs (N, S, and TSN). It was concluded that the key factors
8 iScience 27, 110042, June 21, 2024



Figure 5. The adsorption simulation diagrams of three high-performance MOFs

(A) 26666, (B) and (D) 5049995, (C) 5050062. (B), and (D) are the same MOF from different views. Bule dots represent HD.
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influencingMOF adsorption are the energy descriptorsQ0
st and K. Subsequently, four machine learning models—RF, XGB, DT, and LGBR—

were employed to predict the three performance metrics. The results indicated that the RF algorithm was deemed more suitable for the sys-

tem, with TSN exhibiting superior performance compared to the other two metrics. Regarding HD adsorption, the top 10 high-performance

MOFs were screened, and it was observed that the descriptors of these optimal MOFs fell within the range outlined in the univariate analysis.

Finally, themolecular fingerprinting techniquewas employed to generateMACCS fingerprints. Utilizing a combination of ML andMF, the top

22 optimal fingerprint bits were selected. These positions corresponded to excellent structures such as -Cl, C=C, N-containing heterocycles,

aromatic rings, and oxygen atoms. Three new organic ligands were designed based on the optimal fingerprint bits, providing a directional

approach for designing adsorbents for HD.
Limitations of the study

The limitation of this study should also be noted. The three new organic ligands we have designed have not been subjected to theoretical

simulations or experimental validation at this time.
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Figure 6. The three substructures employed in the design of high-performance MOFs

(A–C) Three substructures with different functional groups. The number represents the bit of MFs in Table 2. The color represents the different combinations in

Table 2.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

HMOFs http://hmofs.northwestern.edu.

Software and algorithms

ML code(RF,XGB,DT,LGBR) scikit-learn: machine learning in Python — scikit-learn 1.4.2 documentation

python Welcome to Python.org

OpenBabel Install Open Babel — Open Babel 3.0.1 documentation (open-babel.readthedocs.io)

PaDEL-Descriptor http://padel.nus.edu.sg/software/padeldescriptor

Materials Studio BIOVIA Materials Studio | Dassault Systèmes (3ds.com)
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and codes should be directed to and will be fulfilled by the lead contact, Zhiwei Qiao (zqiao@

gzhu.edu.cn)

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data for this study were publicly available and could be found in method details.

� All code could be found in the github (ML code: https://github.com/dancingBit/MLCode/tree/MLCode02).
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Our study is computational science research.

METHOD DETAILS

Molecular model

In this study, the database of 137953 hypothetical MOFs (HMOFs) designed by Snurr’s group40 was utilized. From this database, 31,399 hy-

drophobic MOFs were selectively chosen to mitigate the potential competitive adsorption of water vapor. Six descriptors (volumetric surface

area (VSA(m2/cm3)), largest cavity diameter (LCD(Å)), density (r(kg/m3)), void fraction (4), heat of adsorption (Q₀
st(kJ/mol)), and Henry coeffi-

cient (K(mol/kg/Pa))) were applied to characterize the structure and energy of the MOFs. Using the RASPA41 software package, 4 was esti-

mated by detecting the framework utilizing a He atom with a 2.58 Å diameter. The VSA was computed by rolling an N₂ probe with a diameter

of 3.64 Å on the framework surfaces of theMOFs. The Zeo++ software package42 was employed for estimating LCD and r. Within RASPA, the

NVT-MC scheme (where N is the number of particles, V is the volume of the system, and T is the temperature of the system) was utilized to

simulate K and Q0
st.

Force field parameter

Giant canonical Monte Carlo (GCMC) simulations43 were employed to model the adsorption separation properties of 31,399 HMOFs in N₂

andO₂ concerning HD interactions. Given the static condition of theMOF, where its atoms remain stationary, considerations for the potential

energies associated with bond angle bending, double angle bending, and bond expansion of the MOFs are omitted. However, it is crucial to

account for interactions betweenMOFs and mustard gas, as well as the potential energy associated with mustard gas. These interactions are

described by the Lennard-Jones (LJ) potential function for inter-atomic interactions:

uLJ+elecðrÞ =
X

4εij

"�
sij

rij

�12

�
�
sij

rij

�6
#
+
X qi qj

4pε0rij
(Equation 2)
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We employed the MEPO-QEq44 method to estimate the atomic charges of MOFs, and this method facilitates a swift and efficient assess-

ment of electrostatic interactions. The accuracy of this method has been validated in a study by Qiao et al.45 The LJ parameters for MOFs are

outlined in Table S1, utilizing the widely accepted universal force field (UFF).46
Simulation method

A diverse selection of MOFs was utilized as adsorbents in our extensive computational study. In adherence to common assumptions asso-

ciatedwith computations involving a substantial quantity of adsorbents, theMOF structures were treated as rigid. The focus of our simulations

was on the adsorption of a ternary gas mixture (HD, N2, and O2), where N2 and O2 represented the primary components of air. The propor-

tions of N2, O2, and HD were assumed to be 0.789:0.21:0.001, as outlined in Table S2. The force field parameters for HD, N2, and O2 were

derived from the TraPPE force field. The simulation was conducted at room temperature (298 K) and atmospheric pressure (101.325 kPa),

and the conditions were maintained consistently throughout the simulation (constant chemical potential, volume, and temperature). The in-

teractions of MOFs with HD, N2, andO2 were calculated using the Lorentz-Bertelot rule, and the LJ interactions were computed with a spher-

ical truncation radius of 12 Å, including a long-range correction. Electrostatic interactions between the frameworks and the gas molecules, as

well as between the gasmolecules, were determined by summation via the Ewaldmethod.47 In eachMOF, the GCMC simulation consisted of

100,000 cycles, the first 50,000 cycles were dedicated to equilibrating the simulated system, and the last 50,000 cycles were used to calculate

the system average. Each cycle comprised n simulated motions (where n is the number of adsorbate molecules), including rotation, transla-

tion, exchange, and regeneration motions. The exchange motions, in turn, included insertion and deletion. Each GCMC simulation was con-

ducted independently, and all simulations were performed using the RASPA software package.
QUANTIFICATION AND STATISTICAL ANALYSIS

Python was used for machine learning analysis, OpenBabel and PaDEL Descriptor were used to disassemble the molecular fingerprints, and

Materials Studio was used to simulate the adsorption of mustard gas by MOF.
14 iScience 27, 110042, June 21, 2024
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