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Purpose: The toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA and its synthetic analog polyriboinosinic-
polyribocytidylic acid (poly(I:C)), and the activation of TLR3 is known to induce the production of type I interferon (IFN)
and inflammatory cytokines/chemokines. The purpose of this study was to determine the role played by innate responses
to a herpes simplex virus 1 (HSV-1) infection of the corneal epithelial cells. In addition, we determined the effects of
immunosuppressive drugs on the innate responses.Methods: Cultured human corneal epithelial cells (HCECs) were
exposed to poly(I:C), and the expressions of the mRNAs of the cytokines/chemokines macrophage-inflammatory protein
1 alpha (MIP1-α), macrophage-inflammatory protein 1 beta (MIP1-β), interleukin-6 (IL-6), interleukin-8 (IL-8), regulated
on activation, normal T cell expressed and secreted (RANTES), Interferon-beta (IFN-β), and TLR3 were determined using
real-time reverse transcription-polymerase chain reaction (RT-PCR). The effects of dexamethasone (DEX, 10-6 or 10-5

M) and cyclosporine A (CsA, 10-6 or 10-5 M) on the expression of these cytokines and TLR3 were also determined using
real-time RT-PCR. Levels of MIP1-α, MIP1-β, IL-6, IL-8, RANTES, and IFN-β were measured using the enzyme-linked
immunosorbent assay (ELISA). The activation of nuclear factor kappa B (NFκB) and interferon regulatory factor 3 (IRF3)
in HCECs was assessed by immunohistochemical staining. The effects of DEX and CsA on HCECs exposed to HSV-1
(McKrae strain) were also examined.Results: The expressions of MIP1-α, MIP1-β, IL-6, IL-8, RANTES, IFN-β, and TLR3
were up-regulated in HCECs exposed to poly(I:C). The poly(I:C)-induced expressions of IL-6 and IL-8 were down-
regulated by both DEX and CsA, while the expressions of IFN-β and TLR3 were suppressed by DEX alone. Similarly,
the poly(I:C)-induced activation of NFκB was decreased by both DEX and CsA, and the activation of IRF3 was reduced
by DEX alone. When HCECs were inoculated with HSV-1, DEX led to a decrease in the expression of IL6, IFN-β, and
TLR3, and an extension of plaque formation.Conclusion: These results indicate that DEX may increase the susceptibility
of HCECs to viral infections by altering the TLR3 signaling pathways.

The toll-like receptors (TLRs) are a family of innate
immune receptors that recognize the conserved structures of
microbes, termed pathogen-associated molecular patterns
(PAMPs). The TLR system has been extensively studied in
immune cells, e.g. in macrophages, and recent studies have
demonstrated that epithelial cells also express TLRs. Thus,
respiratory epithelial cells express TLR 1–10 [1,2], epidermal
keratinocytes express TLR1, 2, 4, and 5 [3,4], intestinal
epithelial cells express TLR1–4, 6, and 9 [5], and female
reproductive tract epithelial cells express TLR1–9 [6]. In the
eye, human corneal epithelial cells express TLR 1–7, 9, and
10 [7], and human conjunctival epithelial cells express TLR
1–6 and 9 [8].

The question then arises whether the TLRs play a role in
the keratitis caused by the herpes simplex virus (HSV). It is
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known that treatment of stromal keratitis with topical
acyclovir significantly reduces the number of patients who
suffer serious visual impairment. However, keratitis often
recurs in immunocompromised hosts or in individuals who
receive steroid therapy for a long period of time. In fact,
topical or systemic application of glucocorticoids results in
the reactivation of herpes keratitis [9,10], and glucocorticoids
are contraindicated for epithelial keratitis because they can
worsen the clinical course to virus-induced geographic
keratitis [11].

Recent studies have shown that a TLR3 ligand, which is
a double-stranded RNA (dsRNA) can activate different types
of epithelial cells, e.g. airway epithelial cells, female
reproductive tract epithelial cells, and corneal epithelia cells
[7,12,13]. TLR3 is the only TLR that does not interact with
myeloid differentiation factor 88 (MyD88) as a signaling
adaptor [14]. TLR3 interacts directly with the adaptor protein,
Toll/interleukin-1 receptor (TIR) domain-containing adaptor
inducing IFN-β (TRIF), which is also called the TIR-
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containing adaptor molecule (TICAM-1). TRIF/TICAM-1
activates the transcription factor NFκB and the interferon
regulatory factor 3 (IRF3) [15,16]. The activation of NFκB
leads to the production of inflammatory cytokines/
chemokines, and the activation of IRF3 elicits anti-viral
responses, especially through the production of type I IFN
[15,17,18]. The production of type I IFN is the first line of
defense against viral infections, and it acts by limiting the
early replication of viruses [19,20]. Deonarain et al. [21]
demonstrated that IFN-β is crucial for this process, because
IFN-β-deficient mice are highly susceptible to viral
infections.

TLR3 recognizes dsRNA and would not be expected to
detect DNA from a DNA virus, such as HSV. However, it is
known that most viruses synthesize dsRNA during their
replication [22], and therefore TLR3 should be able to
recognize HSV. Recently, Kariko et al. [23] reported that
TLR3 is stimulated by cellular mRNA, and Ashkar et al.
[24] reported that the delivery of ligands for TLR3, but not
TLR4, protected against HSV-2 infections. Hayashi et al.
[25] reported that herpes simplex virus 1 (HSV-1) elicited
inflammatory cytokines via TLR3 and TLR9 in the corneal
epithelial cells. Thus, corneal epithelial cells may play a role
as the first line of defense against viral infection, including
HSV infection, through the TLRs.

The purpose of this study was to determine the role played
by innate responses in controlling HSV-1 infection of the
corneal epithelial cells. In addition, we examined whether
immunosuppressive drugs altered the HSV-1 infection of the
cornea. We shall show that polyriboinosinic-
polyribocytidylic acid (poly(I:C)), a TLR3 agonist, can induce
anti-viral responses in corneal epithelial cells. However, these
anti-viral responses can be altered by dexamethasone (DEX)
and cyclosporine A (CsA).

METHODS
Human subjects: All procedures on human subjects
conformed to the tenets of the Declaration of Helsinki [26].
The experimental protocol for these experiments was
approved by the Institutional Review Board of Ehime
University.
Chemicals and cell cultures: All reagents used for the cell
cultures were purchased from Invirogen (Carlsbad, CA).

Primary human corneal epithelial cells (HCECs) were isolated
from human corneoscleral buttons dissected from eyes
acquired from an American Eye Bank(Sight Life Seattle WA)
as reported [27]. Briefly, the buttons were carefully denuded
of the endothelial cells and adherent iris. After digestion with
1.2 U/ml dispase at 4 ºC for 24 h, the loosened epithelial sheets
were removed and dispersed into single cells by enzyme
digestion with 0.1% trypsin and 0.02% EDTA. Then, the
HCECs were cultured in serum-free modified MCDB 153
type II medium, supplemented with insulin (5 μg/ml),
hydrocortisone (5×10-7 M), ethanolamine (0.1 mM),
phosphoethanolamine (0.1 mM), Insulin-like     growth 

 factor-1 (IFG-1; 10 ng/ml), Epidermal growth factor (EGF;
0.1 ng/ml), and Ca2+ (0.06 mM). The medium was changed
every 2 days.

To determine the effects of DEX and CsA on the
poly(I:C)-induced expression of cytokines/chemokines,
HCECs were cultured with hydrocortisone-free, modified
MCDB 153 type II medium for 24 h, then incubated with 100
ng/ml of poly(I:C) in the presence or absence of DEX (10-6 or
10-5 M) or CsA (10-6 or 10-5 M). In the CsA control, CsA was
substituted with 0.01% dimethyl sulfoxide (DMSO), which
was also used to reconstitute the CsA. After 24 h of stimulation
the cells and supernatants were collected.
Real-time PCR analysis: Total RNA was extracted from the
cultured HCECs using RNeasy kit (Qiagen, Valencia, CA),
and then reverse-transcribed using Omniscript Reverse
Transcriptase (Qiagen) according to the manufacturer’s
protocols. Real-time PCR was performed with the DyNAmo
SYBR Green qPCR Kit (Finnzymes, Espoo, Finland) as
follows: 95 ºC for 15 min; 40 cycles of denaturation at 95 ºC
for 10 s; annealing at 60 ºC for 20 s; and extension at 72 ºC
for 30 s using the OPticon 2 DNA Engine (BioRad, Hercules,
CA). The primer pairs used for real-time PCR are listed in
Table 1. The Ct values were determined by the Opticon 2
software, and the amount of each mRNA was calculated
relative to the amount of Glyceraldehyde 3 phosphate
dehydrogenase (GAPDH) mRNA in the same samples [28].
Each run was completed with a melting curve analysis to
confirm the specificity of the amplification and the absence
of primer dimers.
Measurement of proinflammatory cytokines/chemokines
production: The concentrations of MIP1-α, MIP1-β, IL-6,

TABLE 1. PRIMER PAIRS FOR REAL-TIME PCR.

Gene Forward primer Reverse primer
        Product size
(bp:Accession number)

IL-6 TACCCCCAGGAGAAGATTCC TTTTCTGCCAGTGCCTCTTT 175 : M29150
IL-8 GTGCAGTTTTGCCAAGGAGT CTCTGCACCCAGTTTTCCTT 196 : BC013615

MIP-1α TGCAACCAGTTCTCTGCATC TTTCTGGACCCACTCCTCAC 198 : BC071834
MIP-1β AAGCTCTGCGTGACTGTCCT GCTTGCTTCTTTTGGTTTGG 211 : NM_002984
IFN-β CATTACCTGAAGGCCAAGGA CAGCATCTGCTGGTTGAAGA 178 : V00534

RANTES GAGGCTTCCCCTCACTATCC CTCAAGTGATCCACCCACCT 155 : BC008600
TLR3 AGCCTTCAACGACTGATGCT TTTCCAGAGCCGTGCTAAGT 201 : NM_003265

G3PDH CGACCACTTTGTCAAGCTCA AGGGGAGATTCAGTGTGGTG 203 : BT006893
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IL-8, RANTES, and IFN-β in the supernatants of the cultured
HCECs were determined using an ELISA kit (R&D Systems,
Minneapolis, MN) following the manufacturer’s protocols.

Immunostaining for NFκB and IRF3: HCECs were cultured
on CultureSlides (BD Falcon, Bedford, MA) with 100 ng/ml
of poly(I:C) in the presence or absence of DEX (10-5 M) or
CsA (10-5 M) for 3 h. Cells were washed three times with
phosphate-buffered saline (PBS), then fixed for 15 min in
3.2% paraformaldehyde (PFA)/PB. After washing with PBS,
cells were permeabilized with 0.1% Triton X-100 for 5 min,
followed by incubation with primary antibodies to NFκB p65
(0.2 μg/ml; Santa Cruz Biotechnology, Santa Cruz, CA) or to
IRF3 (0.2 μg/ml; Santa Cruz Biotechnology) in 1% bovine
serum albumin (BSA)/PBS at 4 ºC for 16 h. After washing
with PBS, the slides were incubated with specific secondary
antibodies, then incubated with appropriate fluorescein
(FITC) conjugated antibodies (Pierce, Rockford, IL). Finally,
the slides were coverslipped using an anti-fading mounting
medium (Vector, Burlingame, CA). For the controls, sections
were treated with normal rabbit immunoglobulin G (IgG), and
no positive staining was detected with any of the antibodies.

Herpes simplex virus 1 (HSV-1) infection: Stocks of the
McKrae strain of HSV-1 were propagated on African green
monkey kidney (Vero) cells grown in complete Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal
bovine serum (FBS), 1% penicillin, and streptomycin. The
titer of virus stocks was determined by the standard plaque
assay on Vero cells, and titers were expressed as plaque-
forming units (PFU)/ml. Stocks were stored at –70 ºC in 1 ml
aliquots, and a fresh aliquot of stock virus was used for each
experiment.

HCECs were cultured in a hydrocortisone-free, modified
MCDB 153 type II medium for 24 h, and cultured in the
presence or absence of DEX (10-5 M) or CsA (10-5 M) prior
to exposure to HSV-1. For the plaque assay, HCECs were
inoculated with HSV-1 at a multiplicity of infection (MOI) of
50 for 48 h, and the cells were then fixed with 10% formalin
and stained with crystal violet. The area of the plaques was
measured by Adobe Photoshop software (Adobe Systems
Incorporated, San Jose, CA) to evaluate the efficiency of
infection. The supernatants were also collected to evaluate the
concentration of HSV-1 DNA by real-time PCR. To examine

Figure 1. Expression of the mRNAs of
cytokines and chemokines by HCEs
exposed to poly(I:C), a TLR3 ligand.
Total RNA was isolated from HCECs at
6, 12, and 24 h after poly(I:C) exposure,
and the expressions of the mRNAs of
MIP1-α, MIP1-β, IL-6, IL-8, RANTES,
and IFN-β were determined by real-time
PCR. The relative level of expression of
each cytokine and chemokine mRNA is
normalized to the level of G3PDH
mRNA expression. The p values were
calculated using two-tailed paired t-
tests, (*p<0.05, **p<0.01,
***p<0.001).
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the participation of the TLR3 systems in signaling the HSV-1
infection on HCECs, the HCECs were pre-incubated with or
without DEX, and then inoculated with HSV-1. To collect the
cells before plaque formation, the time period from
inoculation to testing was reduced to 24 h, and the inoculated
dose increased to a MOI of 1,000, to allow detection of
changes in inflammatory cytokines/chemokines. Therefore,
HCECs were pre-incubated with or without DEX (10-5 M),
followed by HSV-1 inoculation with a MOI of 1,000, and the
cells collected for real-time PCR after 24 h.
Statistical analyses: Each experiment was repeated 3 times,
and representative results are shown in the figures. Values are
presented as means±standard deviations (SDs). Differences
between the groups were determined by two-tailed paired t-
tests. A p-value of <0.05 was considered to be statistically
significant.

RESULTS
Poly(I:C)-induced TLR3 signaling pathway: To determine
whether the TLR3/TRIF pathway is active in cultured HCECs,

the HCECs were incubated with 100 ng/ml of poly(I:C) for 6,
12, and 24 h. Real time RT-PCR was then performed on the
cells with primer pairs for MIP1-α, MIP1-β, IL-6, IL-8,
RANTES, IFN-β, and TLR3. After stimulation by poly(I:C),
the expression of the mRNA of MIP1-α, IL-6, IL-8, and
RANTES were up-regulated as early as 6 h, and the level had
increased 750 fold, 60 fold, 50 fold, and 10,000 fold,
respectively, at 24 h. MIP1-β was also up-regulated at 12 h
and reached about 400 fold at 24 h. IFN-β was up-regulated
9.9 fold within 6 h, which was maintained for 24 h (Figure 1).
TLR3 was also up-regulated at 12 h, and the level had
increased about 40 fold after 24 h (Figure 2A). The
expressions of inflammatory cytokines/chemokines and TLR3
were not significantly altered without poly(I:C) stimulation
(Figure 1 and Figure 2A).

The supernatants of the culture media were collected at
0, 6, 12, and 24 h, and the levels of MIP1-α, MIP1-β, IL-6,
IL-8, RANTES, and IFN-β was evaluated using ELISA. The
levels of MIP1-α, MIP1-β, and RANTES in the supernatant
were elevated from undetectable levels at 0 h to 57.6 pg/ml,

Figure 2. Cytokines and chemokines
secreted by HCECs treated with
poly(I:C). Culture medium was
collected at 6, 12, and 24 h after
poly(I:C) stimulation and analyzed for
MIP1-α, MIP1-β, IL-6, IL-8, RANTES,
and IFN-β protein by ELISA. The p
values were calculated using two-tailed
paired t-tests (*p<0.05, **p<0.01,
***p<0.001).
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630 pg/ml, and 1748.7 pg/ml, respectively, at 24 h after
poly(I:C) stimulation. There was a slight but not significant
elevation without poly(I:C) stimulation. The levels of IL-6
and IL-8 were slightly elevated without poly(I:C) stimulation,
but were significantly elevated to 390 pg/ml and 920 pg/ml,
respectively, at 24 h after poly(I:C) stimulation. The level of
IFN-β was elevated to 43.8 pg/ml by poly(I:C) after 24 h, and
no production of IFN-β was found without poly(I:C)
stimulation (Figure 3).
Effect of DEX and CsA on TLR 3 signaling pathway: To
determine whether DEX and CsA altered the expressions of
the poly(I:C)-induced TLR3 and inflammatory cytokines/
chemokines, HCECs were cultured with 100 ng/ml of
poly(I:C) with or without DEX (10-6 or 10-5 M) or CsA (10-6

or 10-5 M). After 24 h, the cells and supernatants were
collected, and the expression of the mRNAs and proteins of
IL-6, IL-8, IFN-β, and TLR3 were evaluated by real-time PCR
and ELISA.

Incubation with DEX down-regulated the poly(I:C)-
induced expression of TLR3 mRNA about 0.5 fold with 10-6

M and 0.6 fold with 10-5 M of DEX, whereas no effect was
found when incubated with CsA (Figure 2B,C).

Incubation with DEX down-regulated the poly(I:C)-
induced expression of the mRNA of IL-6 about 0.4 fold with
10-6 M and 0.5 fold with 10-5 M of DEX (Figure 4). ELISA
also showed that the poly(I:C) induced IL-6 production was
decreased about 0.6 fold with 10-6 M and 0.5 fold with 10-5 M
of DEX (Figure 5). The poly(I:C)-induced expressions of the
mRNA and proteins of IL-8 were more significantly down-
regulated by DEX, and the decrease was dose-dependent.
Real-time PCR showed that the expression of the mRNA of

IL-8 was down-regulated about 0.4 fold with 10-6 M and 0.3
fold with 10-5 M of DEX. ELISA also showed a reduced
production of IL-8 protein of about 0.5 fold with 10-6 M and
0.4 fold with 10-5 M of DEX (Figure 4 and Figure 5). DEX
also down-regulated the poly(I:C)-induced mRNA expression
of IFN-β by about 0.5 fold with 10-6 M and 10-5 M of DEX
and decreased IFN-β production by about 0.6 fold with 10-6

M and 0.5 fold with 10-5 M of DEX (Figure 4 and Figure 5).
The effect of CsA on the poly(I:C)-induced inflammatory

cytokine/chemokine expression was not as extensive as with
DEX. However, the poly(I:C)-induced IL-6 mRNA
expression was down-regulated about 0.8 fold with 10-5 M of
CsA, and ELISA showed that the poly(I:C) induced IL-6
production was reduced about 0.7 fold with 10-5 M of CsA
(Figure 4 and Figure 5). The poly(I:C)-induced IL-8 mRNA
expression was also down-regulated about 0.65 fold with 10-5

M of CsA (Figure 4), and ELISA showed a decrease in
production of about 0.65 fold with 10-5 M of CsA (Figure 5).
Interestingly, CsA had no effect on poly(I:C)-induced IFN-β
mRNA expression or production (Figure 4 and Figure 5).
Immunohistochemical staining for NFκB and IRF3: The
effect of DEX (10-5 M) or CsA (10-5 M) on the activation of
NFκB and IRF-3 was determined immunohistochemically
after 3 h of stimulation by poly(I:C). NFκB p65 and IRF-3
staining were weakly detected in the cytosol of cultured
HCECs without poly(I:C) stimulation (Figure 6A,E), but
activated NFκB p65 and IRF-3 were clearly detected in the
nuclei of most of cultured HCECs 3 h after stimulation by
poly(I:C; Figure 6B,F). After stimulation by poly(I:C) in the
presence of DEX, NFκB p65 and IRF-3 were detected in the
nuclei of some HCECs but only in the cytosol of other HCECs

Figure 3. Effect of DEX and CsA on the
expression of TLR3 by HCECs exposed
to poly(I:C). Total RNA was isolated
from HCECs at 6, 12, and 24 h after
poly(I:C) stimulation (A), or from
HCECs cultured with or without of DEX
(B) or CsA (C) for 24 h and stimulated
with poly(I:C) for 24 h. The expression
of the mRNA of TLR3 was determined
by real-time PCR. The relative level of
expression of each cytokine and
chemokine mRNA is normalized
against G3PDH mRNA expression. The
p values were calculated using two-
tailed paired t-tests (*p<0.05, **p<0.01,
***p<0.001).

Molecular Vision 2009; 15:937-948 <http://www.molvis.org/molvis/v15/a98> © 2009 Molecular Vision

941

http://www.molvis.org/molvis/v15/a98


(Figure 6C,G). After stimulation by poly(I:C), NFκB p65
staining was detected in more HCEC nuclei after exposure to
CsA than to DEX, but some HCECs were stained only in the
cytosol when exposed to CsA (Figure 6D). IRF3 was detected
only in the nuclei of cultured HCECs after 3 h of stimulation
by poly(I:C) in the presence of CsA (Figure 6H).

Effect of DEX and CsA on Herpes simplex virus 1 (HSV-1)
infection: To determine whether DEX and CsA affected the
HSV-1 infection of HCECs, HCECs were cultured in the
presence or absence of DEX (10-5 M) or CsA (10-5 M), and
inoculated with HSV-1 at a MOI of 50. The plaque area was
increased when HCECs were pre-incubated with DEX, but
CsA had no effect on HSV-1 infection (Figure 7A). Real time
PCR showed more HSV-1 DNA in the supernatant of DEX-
exposed HCECs (Figure 7B).

In addition, we investigated the involvement of TLR3
signaling systems in HSV-1 infection of HCECs. Real-time
PCR showed that the expressions of IL6, IFN-β, and TLR3
were down-regulated by DEX when HCECs were inoculated
with HSV-1 (Figure 8). IL-6 and IL-8 were also down-

regulated, although the decrease was not statistically
significant for IL-8 (Figure 8).

DISCUSSION
Our results showed that poly(I:C), a TLR3 agonist, up-
regulated the production of inflammatory cytokines/
chemokines such as MIP1-α, MIP1-β, RANTES, IL-6, and
IL-8, by activating NFκB. Incubation of HCECs with
poly(I:C) also activated IRF3 followed by IFN-β production.
The up-regulated expression of TLR 3 by poly(I:C) indicates
that the TLR3/TRIF signaling pathways were most likely
activated by poly(I:C) in HCECs. This is consistent with
previous reports [1,15-17]. The cytokines and chemokines
investigated are known to have powerful effects in recruiting
immune cells and stimulating the maturation of dendritic cells
[29-31]. Therefore, we suggest that corneal epithelial cells,
when the TLR3s are activated de novo, are able to recruit and
activate immune cells against viral infections.

Our results showed that DEX and CsA inhibit the
poly(I:C)-induced NFκB activation and the subsequent

Figure 4. Effect of DEX and CsA on the
expression of cytokines and chemokines
by HCEs treated with poly(I:C). Total
RNA was isolated from HCECs
cultured with or without of DEX or CsA
for 24 h and stimulated with poly(I:C)
for 24 h. The expressions of the mRNAs
of IL-6, IL-8, and IFN-β were
determined by real-time PCR. The
relative level of expression of each
cytokine and chemokine mRNA is
normalized to the level of G3PDH
mRNA expression. The p values were
calculated using two-tailed paired-tests
(*p<0.05, **p<0.01, ***p<0.001).

Molecular Vision 2009; 15:937-948 <http://www.molvis.org/molvis/v15/a98> © 2009 Molecular Vision

942

http://www.molvis.org/molvis/v15/a98


production of inflammatory cytokines/chemokines. Earlier
studies have shown that the concentration of topically applied
reagents in tears sharply decreases to less than 1/100 of the
original concentration by one hour after administration, and
keeps decreasing until only trace levels remain [32,33]. The
concentrations of DEX and CsA used in this study were 1/500
and 1/5,000 of the concentration used in eye drops in a clinical
setting (0.05%), and so the results should be clinically
applicable.

Glucocorticoids, potent inhibitors of immune responses,
act through glucocorticoid receptors (GRs) to depress the
activities of other DNA-bound transcription factors, such as
activator protein 1(AP-1) and NFκB [34-37]. CsA is known
to inhibit T cell activation and proliferation [38]. Recent
studies have shown that the inhibitory effects of CsA result
from interference in the degradation of inhibitory kappaB
(IκB) and a reduction in the transcriptional activity of the
classic NFκB signaling pathway [39,40]. Our
immunohistochemical results showed that DEX and CsA
inhibit the poly(I:C)-induced nuclear translocation of NFκB,
and these findings are in accord with earlier reports. Thus, the

inhibition of inflammatory cytokines/chemokines by DEX
and CsA in HCECs may result from the inhibition of NFκB,
and this may be one of the mechanisms responsible for the
immunosuppressive property of DEX and CsA.

DEX and CsA have different effects on the activation of
IRF3 and IFN-β production, and both are part of the TRIF/
TICAM-1 TLR3 signaling pathways [15,17,18]. DEX
inhibited the poly(I:C)-induced IRF3 activation and the
subsequent IFN-β production, while CsA inhibited neither
IRF3 activation nor IFN-β production. The exact mechanism
of action of DEX and CsA on IRF3 has still not been
determined, however Reily et al. [41] have identified the
glucocorticoid receptor-interacting protein 1 (GRIP1) to be an
IRF3-interacting protein that facilitates IRF3-mediated
transcription. They showed that the GRIP1:IRF3 interaction
is blocked by the activation of GRs [41]. Our finding that DEX
inhibited the poly(I:C)-induced IRF3 activation in HCECs is
in accord with their findings.

The different effects of DEX and CsA on the activation
of IRF3 and IFN-β production might also be explained by their
differing effects on the expression of TLR3. Because the IFN-

Figure 5. Cytokines and chemokines
secreted by HCECs stimulated with
poly(I:C) and cultured with or without
DEX or CsA for 24 h. Culture medium
was collected 24 hours after poly(I:C)
stimulation and analyzed for the
presence of IL-6, IL-8, and IFN-β
protein by ELISA. The p values were
calculated using two-tailed paired-tests,
(*p<0.05, **p<0.01, ***p<0.001).
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responsive element (ISRE) is located on the human TLR3
promoter region, it has been suggested that IFNα/β induces
the expression of TLR3 [42,43]. It has not been determined
whether CsA regulates the IRFs or IFN, but our results showed
no effect of CsA on IRF3 activation or on IFN-β production
in HCECs.

The production of type I IFN is the first line of defense
against viral infections, and it acts by limiting the early
replication of viruses [19,20]. Deonarain et al. [21]
demonstrated that IFN-β is crucial to this process because
IFN-β-deficient mice were highly susceptible to viral
infections. Our preliminary experiments showed that HSV
infection was clearly depressed by poly(I:C) treatment prior
to the HSV inoculation of the HCECs (data not shown). DEX
treatment prior to HSV inoculation of HCECs led to the down-
regulation of TLR3 and IFN-β followed by increased HSV-1
DNA and plaque formation. However, CsA did not interfere
with the HSV-1 infection (data not shown). It is of interest to
note that the anti-viral capabilities of corneal epithelial cells
arise from their ability to produce IFN-β. Topical or systemic
application of glucocorticoids results in the appearance of
clinically active herpes keratitis, in which viral particles infect
the corneal epithelial cells, leading to viral replication [9,10].
DEX has also been shown to increase the susceptibility of
corneal epithelial cells to HSV-1 infection [44].

It has been known that TLR9 recognizes deoycytidylate-
phosphate-deoxyguanosine (CpG) motifs in bacterial DNA,
however, recent reports have demonstrated that TLR9 also
recognizes CpG motifs in viral DNA, including HSV [24,45,
46]. In addition, retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs), including RIG-I, melanoma differentiation-
associated gene 5 (Mda5), and Leishmania G-protein 2

(LGP2), have recently been identified as cytoplasmic proteins
that recognize viral RNA [47,48]. The RLRs also activate
NFκB and IRF3 following viral infection and poly(I:C)
stimulation. RLRs-mediated signaling induced by dsRNA has
been demonstrated in epidermal keratinocytes [49]. Our
results showed an elevated production of inflammatory
cytokines/chemokines that was associated with an up-
regulated expression of TLR3, indicating that TLR3/TRIF
signaling pathways are involved in the anti-viral response of
HCECs. However, the presence of signaling cannot be fully
accounted for by the TLR3/TRIF signaling pathway alone. It
is possible that the TLR9 and RLRs pathways may also play
a role in the production of inflammatory cytokines/
chemokines, but we did not study the RLRs pathway. Further
investigation will be needed to determine the exact
mechanisms.

In summary, we have demonstrated that HCECs have
ability to produce inflammatory cytokines/chemokines via the
innate immune system, and these responses can be modified
by DEX and CsA. DEX down-regulated both NFκB and IRF3,
whereas CsA down-regulated only NFκB. This inhibition by
DEX of IRF3 followed by IFN-β production may be another
mechanism in the immunosusceptibility of HCECs to HSV
infection. Thus, the innate corneal immune system may be
involved in HSV infection of HCECs, and further studies to
determine the function of the innate immune system might
lead to new therapeutic agents, or the development of effective
ways of preventing corneal infections.

Figure 6. Immunohistochemical staining for NFκB and IRF3 in HCECs stimulated with poly(I:C) and cultured with or without of DEX or
CsA for 24 h. NFκB p65 staining without poly(I:C, A), with poly(I:C, B), with DEX 10-5M and poly(I:C, C), and with CsA 10-5M and poly(I:C,
D). IRF3 staining without poly(I:C, E), with poly(I:C, F), with DEX 10-5M and poly(I:C, G), and with CsA 10-5M and poly(I:C, H). Scale
bar, 100 µm. Activated NFκB p65 and IRF-3 were clearly detected in the nuclei of most of cultured HCECs 3 h after stimulation by poly(I:C,
B and F). In the presence of DEX, NFκB p65 and IRF-3 were detected in the nuclei of some HCECs but only in the cytosol of other HCECs
(C, G). In the presence of CsA, NFκB p65 staining was detected in more HCEC nuclei after exposure to CsA than to DEX (D), while IRF3
was detected only in the nuclei of cultured HCECs (H).
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Figure 7. Effect of DEX and CsA on
Herpes simplex virus 1 (HSV-1)
infection. HCECs were cultured in the
presence or absence of DEX (10-5 M),
and inoculated with 50 MOI of HSV-1
for 48 h. The plaque area was increased
when HCECs were pre-incubated with
DEX (A). Real-time PCR results show
a significantly higher level of HSV-1
DNA in the supernatant with DEX (B).
(*p<0.05)
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