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Myocardial infarction and adverse postinfarct remodeling in older persons lead to poor outcome and need greater understanding
of the contributions of age-related factors on abnormal cardiac function and management. In this perspective, how normal aging
processes could contribute to the events of post-myocardial infarction and remodeling is reviewed. Post-myocardial infarction and
remodeling involve cardiomechanical factors and neurohormonal response. Many factors prevent or accelerate aging including
immunosenescence, recruitment and regeneration of stem cells, telomere shortening, oxidative damage, antiaging hormones
klotho and melatonin, nutrition, and Sirtiun protein family, and these factors could affect post-MI remodeling and heart failure.
Interest in stem cell repair of myocardial infarcts to mitigate post-MI remodeling needs more information on aging of stem cells,
and potential effects on stem cell use in infarct repair. Integrating genomics and proteomics methods may help find clinically novel
therapy in the management of post-MI remodeling and heart failure in aged individuals.

1. Introduction

Aging is universal and is governed by may factors, the basis
of which many be theoretical. The fundamental argument
is whether aging is programmed or simply determined by
interactions between environmental and genetic factors [1]
(Table 1). Many are searching for human longevity genes but
the efforts are complicated or compounded by the role of
interdependent environmental factors. The factors suggested
include insulin/insulin-like growth factor-1 (IGF-1), and
Fox-head transcription factors (FOXOs) [2]. Klotho gene is
a recent description of antiaging gene [3, 4]. On the other
side the Wnt canonical and alternate signaling pathways are
participants in aging mainly in their regulation of stem cell
renewal [5]. Moreover, the elderly experience worse heart
failure postMI and are major demographic contributors
to increase in heart failure burden [6]. The offsprings of
centenarians have an advantage as they fare better with
age, have less risk of cardiovascular disease and stroke
[7]. Centenarian offsprings have longer telomeres and their
experience suggests close interaction of environment and
cellular repair systems[8]. Model systems have provided a

wealth of information on the roles of altered genetic factors
on aging [9]. Gene expression changes with aging in mice is
available [10] and changes in gene expression in all organs
with age are noted including 23 genes and 10 gene sets
changed with aging mouse heart.

The present paper aims to summarize relevant ideas of
normal aging process and factors involved in promoting or
protecting tissue and organ aging. The changes in cardiac
function and morphology with aging before onset of myocar-
dial infarction (MI), myocardial infarction and remodeling
and effects of aging factors and the search for ways to
ameliorate the adverse outcome of postMI remodeling in
older individuals including use of “stem cells” for infarct
repair.

2. Pro- and Antiaging Contributors

Multiple factors, genetic and environmental, affect the
aging/longevity process in cells, tissues and organ systems
of humans. The theoretical factors of aging include somatic
mutation, telomere loss, mitochondrial oxidative damage,
and altered proteins, network theories; these factors do not

mailto:hidikio@ualberta.ca


2 Cardiology Research and Practice

adequately explain differences in longevity in model, wild
animals and humans and as some organisms show no aging
and as such studies in model organisms may not reproduce
human aging adequately [1].

2.1. ROS-Induced Mitochondrial and DNA Damage. Reactive
oxygen species (ROS) are generated from the mitochondria
under normal conditions and increases with cellular stress.
NADPH oxidase family of proteins (Nox1, Nox2, Nox3,
Nox4, Nox5, Duox) are the most important for generating
ROS in the heart and other tissues and cells [11, 12].
Nox family oxidases contribute to cardiac hypertrophy and
fibrosis [12]. ROS can damage DNA, proteins and can
lead to cell death (apoptosis). ROS-induced DNA damage
generate mutations as seen in mice and humans. There
are intrinsic antioxidants such as the superoxide dismutases
(copper/zinc and manganese). In animal models, the roles
of molecules/genes in ageing are defined by using knockouts
and mutations of individual molecules and the models
generally lead to premature aging. Inadequate or poor DNA-
damage and repair response leads to tissue stem cell deple-
tion, senescence and apoptosis and ultimately aging [13].
Antioxidative enzymes such as superoxide dismutase (SOD)
and catalase are also antiaging in model systems, though their
contribution longevity in humans is debated [2].

2.2. Protein Misfolding and Aging. Heat shock proteins and
their signaling pathways involved in cellular stress responses,
responding protein misfolding, also promote aging when
their functions decline [14].

2.3. Antiaging Hormone. A recently described antiaging gene
in mouse knockout model, Klotho has many functions that
include inhibition of insulin/insulin-like growth factor (IGF)
signaling and oxidative stress [4, 15]. Klotho interacts with
and dampens Wnt signaling and loss of klotho l leads to more
Wnt signaling [16]. Klotho can be measured in serum and
cerebrospinal fliud. Klotho expression variations exist within
populations with cardiac implications [17].

2.4. Diabetes and Aging. Mouse models of diabetes leads to
aging of “cardiac stem cells” due to generation of ROS, DNA
damage and cell death [18].

2.5. Micronutrient Inadequacy. The Sirtiun family of pro-
teins [19] (nuclear Sirt 1, 6, and 7, cytoplasmic Sirt 2, and
mitochondrial Sirt 3–5) are involved in the response of
cells to environmental and dietary stress. Sirtuins are NAD-
dependent deacetylases and monoadenosine diphosphate-
ribosyl transferases that regulate lipid and glucose meta-
bolism, DNA repair, control cell survival, thermogenesis,
insulin secretion, endothelial nitric oxide synthetase (eNOS),
p53, and possibly mitochondrial flux [19]. Model organisms
have suggested a role of Sirtiuns in aging [19]. Sirt 1
regulates autophagy under starvation conditions. In aging
model animals, Sirt 1 is increased with stress in myocytes and
may serve as antiaging agent [20]. Sirt 3 in excess prevents
cardiac hypertrophy by reducing ROS-dependent signaling
[21]. Many metabolic changes, such as accumulation of

Table 1: Pro- and antiaging factors.

Pro-aging Antiaging

Reactive O2 (ROS) Klotho hormone

Hyperperoxides Melatonin hormone

DNA damage Sirtuins

Ultraviolet light WNT

Telomere attrition
Dietary/Calorie
Restriction

WNT pathway Antioxidants

Increased target of rapamycin (TOR)
activation

Resveratrol (Sirtuin
activator)

Reduced heat shock protein function
Reduced TOR and
insulin

Defective lysosomes Sestrins

altered proteins, advanced glycation end-products (AGE),
toxic methylglyoxal, occur with aging [22] and these changes
contribute to abnormal mitochondrial function.

2.6. Immunologic Aging. The participating cells of the
innate and adaptive immune responses are affected by
aging (immunoscenecence) due to reduction of thymic cell
population, affinity of B-cell-derived immunoglobulins, and
impaired function of CD3 + T-cells [23]. Other participants
in innate immune response such as natural killer cells (NK
cells) show reduced numbers and cytotoxic activity, dendritic
cells and monocytes show reduced phagocytic functions,
FasL, IL-12, and tumor necrosis factor (TNF-)alpha, and
increased IL-10 with age [24]. The serum levels of the
inflammatory mediator and chemokine, interleukin-6 (IL-6)
increases with age [25] while its receptor declines though not
directly responsible for rising IL-6 and may be influenced by
diet and exercise.

2.7. p53 and Aging. The genome protector and complex
transcriptional factor p53 has a role in aging. p53 is involved
in many signaling pathways (DNA damage and repair
signaling) and functions in cell death pathways(apoptosis
and autophagy) and determines cell fate [26, 27]. p53
promotes aging via its induction of cell senescence that could
compromise tissue renewal and pro-oxidant functions; it is
antiageing by its stabilizing genome integrity and restraining
glycolysis and many mouse models confirm the contribution
of p53 in protecting genome integrity. p53 is a participant in
stem cell fate and potential differentiation.

2.8. Sestrins and Aging. Sestrin family of proteins (sestrin 1,
sestrin 2, and sestrin 3) were described in the past decade
and are induced by oxidative stress, and hypoxia. Sestrins are
present in all adult tissues. Sestrins interact with and inhibit
mTOR, interact and regulated by FoxO and p53, and reduce
effects of oxidative stress by generating peroxiredoxins; these
sestrins increase autophgy, reduce ROS and cell growth
[28, 29].
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3. Telomeres, Telomerase and Aging

Telomeric DNA length is dependent on genetic inheritance,
oxidative stress and telomerase activity [30]. The terminal
(TTAGGG)n repeats vary from 5–15 kb in length and losses
occur with each cell division. Telomere length is maintained
by telomerase activity. Telomerase consists of telomerase
reverse transcriptase (hTERT), dyskerin and telomerase
RNA(hTR) and telomerase adds repeats of (TTAGGG)n
to ends of telomeres. Epigenetic changes in telomeres due
to methylation and retinoblastoma protein affect telomere
length and recombination [31]. It is known that telomeres
are transcribed by RNA polymeraseII to create noncoding
RNAs (TERRA or TelRNA) and accumulation of these
noncoding TelRNAs occurs with aging [31]. Telomerase
activity is high in embryonic cells, multipotent germ cells
and cancer cells. The continuing loss of telomeres over time
reduces replicative capacity of dividing cells. Telomere length
varies among individuals, within cells and this variation
depends on subtelomeric sequences. The minimum length
is 2 kb but can be as low as 300 bp. Model organisms such
as mice have longer telomeres. Telomere length, measured
by confocal telomere quantitative fluorescence (Q-FISH)
is longest in stem cell niches [32]. Gender- and organ-
related telomere length is described in model organisms [33].
Telomere length in young persons with paternal history of
early myocardial infarction is generally shorter than controls
[34].

Telomere loss can subject cells to replicative senescence,
apoptosis by activating DNA damage signaling, p53-p21-
retinoblastoma axis signaling pathways and hence genome
instability [35]. Telomere attrition as a trigger for cellular
senescence may subsequently affect the heart by (a) in the
wound healing response by reduced inflammatory response
and (b) limiting adult stem cell life span [36]. Telom-
ere induced senescence leads to the so-called “senescence
secretome” pathway that is characterized by (i) reduced
IGF1 and Wnt2, (ii) increased IL-6 and its receptor, (iii)
increased interferon gamma and cell death and (iv) increased
matrix metalloproteinases 1 and 3, reduced fibronectin and
collagen.

In both aging humans with telomere attrition and model
mouse strains with TERC+/−, atherosclerosis and blood
pressure increase with age, left ventricular function and
wound healing response are impaired [37]. In population
based study of telomere length and longevity of elderly
persons, telomere length was associated with years of healthy
life (YHL) but nor cardiovascular disease [38]. In human
studies, telomere reduction may contribute to premature
myocardial infarction [39].

The factors that are involved in human longevity have
been sought through twin studies and multiple epidemio-
logic analysis. These studies, though imperfect and mainly
done in a single country or a defined population groups,
have found contribution of many of the factors to human
longevity as summarized above for model organisms includ-
ing heat shock proteins, IL-6, Sirtuins, Klotho [40].

4. Aging Heart before Myocardial Infarction
(Part of the Aging Cardiovascular System)

Normal aging affects many components of the cardiovascular
system. The heart undergoes increased left ventricular thick-
ness, increased atrial size, reduced reserve, increased vascular
diameter and wall stiffness and endothelial dysfunction
[41, 42]. In addition, standing heart rate decreases with
age [43]. Precursor/stem cells (c-kit and sca-1 positive) in
human myocardium age and promote heart failure [44].
Age-related gene expression changes in human are described
but the findings are limited by sample numbers [45]. In
mouse models of wild-type and IGF-1 transgenic mice, aging
is accompanied by myocyte senescence, increased apopto-
sis, necrosis, myocyte hypertrophy, loss of telomererelated
protein TRF2 but not TRF1 and reducing telomere length
[46]. In rat hearts, aging leads to increase in cytosolic
cytochrome C, drop in apoptosis markers Bcl-2 and Bax, and
increased lipid peroxidation [47]. Furthermore, aging hearts
show defective autophagy in clearing accumulating damaged
and oxidized lipids, damage and “large mitochondria” [48].
The aged heart, therefore is disadvantaged before any onset
of myocardial ischemia and the extra burden of reperfusion.

5. Effects of Aging on Myocardial
Infarction and Remodeling

Myocardial infarction involves several phases (i) myocyte
damage and cell death (apoptosis, autophagy and necrosis),
(ii) activation of and recruiting of inflammatory cells, (iii)
mesenchymal/stem/progenitor cell response, recruitment
and migration to infarct site and (iv) wound healing response
and collagen deposition [49]. For the preconditioned and
aging heart, the events of myocardial infarction are clearly
additional burden and heavy stress. In addition ROS induces
mitochondrial deficits and ATP depletion after myocardial
infarction and reperfusion [50].

5.1. Effects on Cell Death. Myocardial infarction is associated
with all cell death types-necrosis is best recognized but apop-
tosis and autophagy contribute to border zone and remote
zone cell death [51]. In the aging heart, cell death is already
elevated and renewal of lost cardiomyocytes is limited [44].

5.2. Effects on Inflammation. The inflammatory activation
after MI involves both the innate and adaptive immune
responses to damaged cells, DNA and membrane lipids.
Recent studies in aging mouse models of MI demonstrated
reduced migration of inflammatory cells and hence reduced
cytokine expression and their downstream effects on wound
repair [52].

5.3. Effects on Wound Repair. Mesenchymal stem cells are
recruited to the infarct zone (IZ) as part of the wound repair
response [53]. Although cardiac stem cells are recognized,
they are few and have long turn-over interval [54]. The
studies on diseased and aging human hearts showed attrtion
of c-kit+ve cells compared to nondiseased hearts and
contributed to heart failure [44]. This finding and the general
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Table 2: Summary of factors in Post-MI remodeling and heart
failure.

Parameter of
remodeling

Effects on the heart

Changes in
Myocytes

Myocyte hypertrophy

Fetal gene expression

Increased myocyte length

Decreased myocyte numbers

Increased myocyte cell death

Changes in cardiac
morphology

Left ventricular dilatation

Increased extracellular matrix

Increased spherical shape

Increased wall thinning

Changes in left
ventricular
function

Increased oxygen consumption

Increased adrenergic response

Increased end systolic and diastolic
dysfunction

knowledge of aging hematopeoitic and mesenchymal stem
cells may add to the impairment of recruiting stem cells
to infarct zone. Wnt signaling also participates in wound
healing [5].

5.4. Effects on Cardiac Hypertrophy. Post-MI remodeling
is defined by (a) Infarct expansion and acute dilatation
of infarct zone; (b) dilatation of noninfarct zone and
increased sphericity, leading to poor function; (c) ventricular
(myocyte) hypertrophy, myocytolysis, myocyte loss, myocyte
lengthening, altered extracellular matrix [55]. The model
for postMI remodeling in humans has been characterized as
the “Bio-mechanical model” [56] which involves structural,
functional changes in the heart and the activation of neuro-
hormal response [57, 58] and are the cornerstone for targeted
therapeutics and clinical management. Myocardial hypertro-
phy is complex and promoted by stress signaling, calcium
levels, growth factors, phosphoinositide-3-kinase (PI3K) and
mitogen-activated protein kinase (MAPK) pathways, and
fibroblasts. There are intrinsic negative regulators of cardiac
hypertrophy which include Glucose synthase kinase (GSK),
caveolin-3 and calcineurin inhibitors [59]. Aging mice after
myocardial infarction show reduced collagen deposition, and
myofibroblast induction with progression of remodeling and
limited response to transforming growth factor (TGF-beta)
[52]. In aged rats, postmyocardial infarction mortality and all
left ventricular function parameters (reduced cardiac index,
peak pressure and end-diastolic pressure and increased end-
diastolic volume index) were impaired [60]. The emerging
contributions of microRNAs (cardiac-specific) to angiogen-
esis, myocyte proliferation, myocyte apoptosis and fibrosis
are not fully explored in relation to the aging heart and
remodeling [61]. It is logical therefore that all components of
the initiating MI and postMI remodeling are subject to aging
effect and need full attention (Table 2).

Aged heart
MI-inflammation, wound healing

collagen deposition, and microRNAs

Proaging
ROS

DNA damage

Diabetes
short telomeres

MI and remodeling
“Biomechanical model”

New therapy

Antiaging
melatonin

sirtuins
klotho

diet
Wnt

“Integromics”

Figure 1: The possible interactions between Pro- and Antiaging
factors is indicated. The proteins and their genes are well char-
acterized but defined interactions in their signaling pathways and
expression patterns during myocardial infarction and remodeling
are not known. The knowledge of these interactions may help in
further drug discovery.

6. Future and Emerging Approaches to Post-MI
Remodeling and Heart Failure Management

In the search for “aging” factors, Human Aging Genomic
Resources is now available and expanding [62]. The infor-
mation generated should help promote more appropriate
approaches to the so-called “aging therapies” [63]. The
complex interactions of many signaling pathways in heart
failure clearly calls for integrated approach to preclinical
studies of aging effects on postinfarct remodeling. Although
the conceptual framework for postinfarct remodeling is
strong and relevant for clinical management, newer models
that incorporate all available information may be needed
[64]. A systems based approach using all “omics” tools may
be the way for better understanding of aging in general
and specifically for cardiovascular discovery (Figure 1) as
suggested for heart failure [65, 66]. The suggestion that
signaling pathways modulate with age [67] also means that
system wide assessment of the effects of pro- and antiaging
factors on cardiomyocyte function will be the optimal
approach to the discovery of age-modulating pathways.

6.1. Do We Target Telomerase Function and Telomeres?

Telomerase inhibition (using nucleoside analogs or Glucose
synthesase kinase 3 inhibitors) are proposed for other
conditions but obviously not needed to modify aging and
stem cells [68].

6.2. Do We Promote Wound Healing

and Reduce Cardiac Hypertrophy?

6.2.1. Emerging Use of Stem Cells for Infarct Repair. There
are many attempts to use hematopoeitic, peripheral blood or
mesensenchymal stem cells to mitigate the wound repair in
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infarct hearts [69]. The studies and clinical trials have used
chemokines (Granulocyte-colony stimulating factor-GCSF)
to promote engraftment combined with direct implantation
into infarct zone via the coronary artery and have produced
results in model animals and humans ([70, 71] but need care-
ful assessments of cell types used and long-term regenerative
potential [72]. In addition, the aged cardiac environment
may influence the capacity of mobilized, transplanted,
or implanted stem/progenitor cells to differentiate and
function [73].

Induced pluripotent cells (iPSCs) generated by retroviral
vectors carrying Oct4, Sox2, and Klf4, are now a potential
source cells for cardiac repair [74, 75]. Biological and
molecular profiles of iPSCs and potential drawbacks on their
use have been reviewed recently [76]. Alternate method
for generating same cells, RNA-induced pluripotent cells
(RiPSCs) is described [77]. iPSCs have been used in mouse
models of myocardial infarction and repair and the cells
can repair infarcts by producing functional cardiomyocytes,
smooth muscle cells and vessels [78]; a side effect is
promoting teratomas.

A recent study in mice illustrates the need to verify the
stem cell capacity to generate myocytes and repair infarcts
and reestablish function [79]. The progenitor and stem cells
used in studies and clinical trials probably have varying
potentials and have differing stem cell biomarkers such as
isl1, sca-1 like, Nkx2.5, GATA4, Lin, c-kit and others [80].
The cells with regenerative capacity used in infarct repair
include (a) mesenchymal (b) hematopoeitic (circulating),
embryonic stem cells and (d) residual cardiac stem cells in the
myocardium. Many mouse models have reported functional
improvement after infusion or activation of stem cells of
varying potential or type (cardiac progenitors, mesenchymal
stem cells, human hematopoeitic stem cells, or embryonic
stem cells) [81–84]. Studies in humans including clinical
trials are providing support for the mouse models [85]. Some
studies show no improvement, as in the swine model of
large infarcts using mononuclear cells [86] and older mouse
models that had poorer engraftment of stem cells [87]. In
reviewing five clinical trials [88], it was found that gains in
ejection fraction were not universal and depended on length
of study and time of assessment. Additional meta-analyses
have highlighted the varied methods of delivery including
intracoronary and endocardial, use of different stem cells
[89] embryonic, adult) and the varied observation periods;
the average increase left ventricular ejection fraction (LVEF)
was 3% in ten randomized trials. The human studies have
not separated young and older infarct patients to determine
differences in engraftment and functional recovery. In order
to properly compare results in model animals and in
humans, complete or comparable data sets on the use of stem
cells should be available.

6.2.2. Other Ways to Reverse Cardiac Hypertrophy. Mela-
tonin, the pineal hormone and antioxidant [90], is a protec-
tor of cardiac reperfusion injury [91]. Melatonin, potentially
are antiproliferative and antiapoptotic [92]. Ischemia and

reperfusion related ROS-induced myocyte damage is reduced
by melatonin in mouse models [93]. Sirt 3 overexpres-
sion in mouse models can inhibit cardiac hypertrophy
[21] by activation of Foxo3a-dependent antioxidants and
inhibition of reactive oxygen species (ROS) dependent
signaling. Melatonin also reduced reperfusion induced fib-
rillation and arrythmias [94]. Some investigators suggest
targeting the ROS-induced damages after reperfusion [50]
and the use of statins, selective xanthine oxidase inhibitor
oxipurinol [95].

6.2.3. Age Well to Improve the Heart. This is the simple
part as long as ageing is not reformulated as an illness or
disease. As aging is partly dependent on the environment,
dietary approaches are simple. Dietary/calorie restriction is
a well-defined way to promote longevity [96] and leads to
activation of nutrient sensors (TOR-target of rapamycin)
and Sirtuins which promote cell cycle progression, improve
detoxification and mitochondrial biogenesis. Zinc in diet
can limit aging in Klotho knockout mice [97]. Lipoic acid
in model mice reduced oxidative stress [98]. Melatonin is
also projected to improve aging-related immune senescence
and change both the T-cell and cytokine profile [99]. An
activator of Sirtuin and AMPK pathways, Resveratrol [100]
has been promoted as antiaging supplement. Healthy habits
such as diet including vitamins [101] and antioxidants
such as blue-berries [102] are proposed to promote healthy
aging. Tea-derived flavonoids (catechins and theafavins) via
their proposed antioxidant, antiinflammatory could protect
from age-related effects [103]. Exercise [104] and other
preventions could assist in healthy aging.

7. Summary

The contributions of the multiple pro-and antiaging factors
to human aging are of great interest and are now better
understood. The contributions of environmental, genetic
and biologic factors (telomere attrition, sestrins, Sirt 1,
klotho, diabetes, p53) to the function of the aging heart
and their possible effects on the outcome of myocardial
infarction, postMI remodeling and heart failure are impor-
tant areas of research. An integrated approach to future
studies in model animals and humans with myocardial
infarction may uncover new therapeutic targets. There are
emerging therapeutic options such as “stem cell therapy” for
myocardial infarction. All of these advances will certainly
benefit all aging individuals in future.
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