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Rotation‑time symmetry in bosonic 
systems and the existence 
of exceptional points 
in the absence of PT symmetry
Ewelina Lange1,3, Grzegorz Chimczak1,3*, Anna Kowalewska‑Kudłaszyk1 & 
Karol Bartkiewicz1,2

We study symmetries of open bosonic systems in the presence of laser pumping. Non-Hermitian 
Hamiltonians describing these systems can be parity-time ( PT ) symmetric in special cases only. 
Systems exhibiting this symmetry are characterised by real-valued energy spectra and can display 
exceptional points, where a symmetry-breaking transition occurs. We demonstrate that there is a 
more general type of symmetry, i.e., rotation-time ( RT ) symmetry. We observe that RT-symmetric 
non-Hermitian Hamiltonians exhibit real-valued energy spectra which can be made singular by 
symmetry breaking. To calculate the spectra of the studied bosonic non-diagonalisable Hamiltonians 
we apply diagonalisation methods based on bosonic algebra. Finally, we list a versatile set rules 
allowing to immediately identifying or constructing RT-symmetric Hamiltonians. We believe that 
our results on the RT-symmetric class of bosonic systems and their spectral singularities can lead to 
new applications inspired by those of the PT-symmetric systems.

Symmetries are among the most fundamental concepts in physics. They can be viewed as the source of the 
conservation laws by Noether’s theorem. They also result in degeneracies. For example, degeneracies of open, 
non-conservative systems, described by non-Hermitian Hamiltonians, can be associated with symmetry break-
ing. A special type of a spectral singularity in the parameter space of such systems, where two or more eigen-
values coalesce, is known as an exceptional point (EP)1–3. EPs have been usually studied in the context of P T

-symmetric non-conservative semi-classical systems4–6. However, EPs can be studied in systems without any 
relation to the P T symmetry1,2. Recently, the concept of EPs have been generalised to describe fully quantum 
systems including quantum jumps7–9. Possible applications of EPs for quantum sensing have been attracting 
much interest (see10 and references therein). EPs are widely investigated particularly in optics, where dissipative, 
non-Hermitian systems commonly appear. However, the intriguing physics of symmetry-breaking transitions 
recently has been attracting attention of scientists in other fields like acoustics11–13, atomic physics14, photonic 
crystals15,16, and molecular physics17. The interplay between gain and loss, an intrinsic aspect of open systems, 
leads to new, fascinating effects. The examples of recently discovered phenomena associated with EPs include 
exceptional photon blockade18, unidirectional light propagation19,20, directional lasing21,22, topological energy 
transfer23, and other phenomena24–34. Not only the exact point of symmetry breaking leads to remarkable physics, 
but also the systems found in the vicinity of EPs can exhibit features as potentially enhanced sensitivity35,36. The 
latest studies are commonly associating real-valued spectra with the respective P T symmetry requirements 
and EPs with P T symmetry breaking3,4,37–42.

In this paper, we introduce the notion of rotation-time ( R T ) symmetric bosonic systems, where we dem-
onstrate coalescence of energy values. The concept of rotation-time symmetry was previously introduced only in 
fermionic systems43–45. However, bosonic systems are currently a topic of intense research24,39,46–52 due to being a 
promising platform for gain and loss engineering in physical experiments3. We demonstrate that R T invariance 
allows a given system to have a real energy spectrum, which becomes singular, as a result of a R T symmetry 
phase transition. Furthermore, we demonstrate that the R T symmetry is a superset of the P T symmetry, i.e, 
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we identify a wide class of Hamiltonians that have similar properties to those of the P T-symmetric systems, 
while not necessarily being P T-symmetric.

We also find general rules for constructing R T-symmetric symmetric non-Hermitian Hamiltonians. This 
provides a framework for exploring the physics of singular energy spectra in terms of symmetries in a range of 
bosonic systems including non-linear interactions between modes, associated, e.g., with unconventional photon 
blockades or second- and third-harmonic generation processes51,53–56. Consequently, future experiments could 
explore properties of spectral singularities in areas of quantum and atom optics that have never been studied 
before.

Results
PT symmetry in bosonic system.  Let us begin by considering a P T-symmetric Hamiltonian describ-
ing a damped bosonic linear system with a classical laser drive.

Thus, let us choose a system depicted in Fig. 1 and described with Hamiltonian

where a and b are the annihilation operators for two modes, respectively, g is the coupling strength between these 
two modes, κ ≡ κa = κb is the field loss/gain rate of the a/b mode and ε is the strength of the modes drive. We 
assume for the sake of simplicity that g and ε are real and positive. It is known that a Hamiltonian H is regarded 
as P T-symmetric if it commutes with the operator P T . Since P T is a reflection, i.e., P T = (P T )−1 , 
we can rewrite the condition for H to be P T-symmetric as (P T )H(P T ) = H . So, if the transformation 
does not change H, then H is P T-symmetric. Now we want to check whether H1 has P T symmetry proper-
ties. For that purpose, it is convenient to know how P T transforms bosonic operators. For a single field mode, 
one can easily derive all needed formulas knowing the effect of the space-reflection operator (also known as 
the parity operator) P and the time-reversal operator T , where [P ,T ] = 0 , on the position operator x̂ and 
the momentum operator p̂ : P x̂P = −x̂ , T x̂T = x̂ , P p̂P = −p̂ , and T p̂T = −p̂ . From the form of the 
position operator x̂ = (a+ a†)/

√
2 and the momentum operator p̂ = i(a† − a)/

√
2 , we can infer the result of 

applying the symmetry transformation to the bosonic field, i.e., (P T )a(P T ) = −a , (P T )a†(P T ) = −a† 
and (P T )i(P T ) = −i37,38. We have used [P ,T ] = 0 for derivations. In the case of two-mode fields, these 
transformations of both field-mode annihilation operators are sometimes sufficient to reveal P T symmetry 
manifesting itself as real-valued energy spectra (e.g., see Refs.37,38). Unfortunately, it is not the case of Hamilto-
nian (1). One can easily check using P = exp[iπ(a†a+ b†b)]37,38 that (P T )H1(P T )  = H1 because of the last 
two terms of H1 , which describe loss in the mode A and gain in the mode B. The gain-loss terms are, however, 
crucial for the existence of EPs, because non-Hermiticity is necessary for the emergence of EPs9,57. Moreover, 
modelling losses is unavoidable as they are present in all real systems.

Therefore, to properly account for the symmetry between loss and gain we can, e.g., modify the space-
reflection operator by multiplying it by the exchange operator PS58, which can be interpreted as exchanging the 
modes spatially (i.e., a ↔ b ). Since there are only two modes, the exchange operator acts in the same way as a 
permutation operator or a cyclic-shift operator, and thus, we can use all these terms interchangeably here. A 
matrix representation of PS is given by a perfect shuffle59. Hence, we use here the modified parity operator given 
by P̃ = PSP and one can easily check that (P̃ T )H1(P̃ T ) = H1 , so H1 is P̃ T-symmetric. Note that PS does 
not change any important features of the parity operator because PS is also a reflection operator satisfying P2S = 1 , 
[PS,P ] = 0 , and [PS,T ] = 0 . Thus, P̃ T is also a reflection and [P̃ ,T ] = 0 . Using these features of P̃ T and 
applying the Cayley–Hamilton theorem, one can prove that the parameters of the characteristic equation of P̃ T

-symmetric Hamiltonians are real38. Consequently, the eigenvalues of H1 may only appear as complex-conjugate 
pairs or are real. Moreover, one can show that an eigenvalue of H1 is real if the corresponding eigenstate of H1 is 
also an eigenstate of P̃ T . If all the eigenfunctions are identical for both operators, then the entire spectrum of 
H1 is real. In such a case H1 is said to have unbroken P̃ T symmetry. Otherwise, the P̃ T symmetry is broken 
and then, complex-conjugate pairs of eigenvalues appear. It is obvious that values of various system parameters 
determine whether the symmetry of H1 is broken. For example, for κ = 0 , the entire spectrum is real because 

(1)H1 =g(a†b+ b†a)+ ε(ia− ia†)+ ε(ib− ib†)− iκa†a+ iκb†b,

Figure 1.   The scheme of the setup we consider to observe the rotation-time symmetry. It consists of two 
linearly-coupled cavities (one with loss and another with gain) and two lasers driving both cavities. The scheme 
was created using Inkscape 0.92.4, https​://inksc​ape.org.

https://inkscape.org
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then H1 is Hermitian. However, one can expect that large enough κ values result in symmetry breaking. We can 
easily illustrate this feature of H1 in the case when ε = 0 , i.e., when lasers are turned off, because the solution for 
such a Hamiltonian is well known5. For ε = 0 , we can diagonalise the Hamiltonian by introducing new bosonic 
operators, which are superpositions of the old ones, and which describe eigenmodes. Eigenvalues are then given 
by n� , where � =

√
g2 − κ2 and n is the difference between the numbers of excitations in the first and second 

eigenmode.
In Fig. 2, we plot real and imaginary parts of three eigenvalues (corresponding to n = −1, 0, 1 ) as functions 

of κ for g = 1 . One can see that for κ < g all these eigenvalues are real. However, for κ > g , one eigenvalue 
is real, while the two other make a complex-conjugate pair. One can also see that exactly at the point κ = g a 
symmetry-breaking transition takes place. All eigenvalues have there the same real and imaginary parts — they 
are identical. In such points not only the eigenvalues are the same, but also the corresponding eigenvectors are 
parallel, and therefore, the Hamiltonian is not diagonalisable3,41. Such points in the parameter space are known 
as EPs. Since some of eigenvectors are parallel in EP, Hermitian Hamiltonians cannot exhibit any EP9,57. The 
Hamiltonian (1) is non-Hermitian, so in Fig. 2 we can observe an EP.

Spectral singularities are of great importance because non-Hermitian systems in their vicinity can exhibit 
phenomena, which cannot be observed in Hermitian systems. It is worth mentioning that in case of two or more 
dimensional parameter spaces it possible to observe not single points but exceptional lines or even exceptional 
surfaces60,61. Exceptional surfaces have similar properties as EPs, but are more stable and easier achievable in 
experiments62.

The effect of laser pumping on a spectral singularity.  We are going to investigate the influence of a 
non-zero ε on the spectrum of the Hamiltonian H1 and on its spectral singularity. For this purpose, we diagonal-
ise H1 by expressing it in terms of the bosonic operators cε , c+ε  , dε , and d+ε  (see Methods), i.e.,

where �0 = −2gε2/�2 . Let us restrict ourselves to considering only three different eigenvalues — one of them 
corresponding to the cases, in which there are equal numbers of excitations in both cε and dε modes:

and the two others corresponding to the cases, in which there is one excitation more in one mode than in the 
other:

(2)H1 =� (c+ε cε − d+ε dε)+ �0 Î ,

(3)E0 =− 2gε2

�2
,

(4)E± = ± �− 2gε2

�2
.

Figure 2.   Spectrum of the P̃ T-symmetric Hamiltonian H1 as a function of the gain and loss parameter κ 
in units of the intercavity coupling strength g. Panel (a) shows the real part of the first three eigenvalues for 
the drive strength ε = 0 , whereas panel (b) shows their imaginary parts. One can observe the regions where 
the P̃ T symmetry is unbroken, and, thus, the eigenvalues are real, and the regions where the symmetry is 
broken and the eigenvalues are complex-conjugate pairs (dotted curves). Plots were created using Wolfram 
Mathematica 12.1.1.0 (https​://www.wolfr​am.com) and merged using Inkscape 0.92.4 (https​://inksc​ape.org).

https://www.wolfram.com
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As one can see from Fig. 3, the effect of laser pumping on the spectrum is to shift real parts of all the eigenval-
ues by the same value, i.e., �0 . The absolute value of the shift increases with the increase of κ/g ratio. As a result we 
observe an unusual spectral singularity. All three eigenvalues tend to the same value in their real and imaginary 
parts as κ → g , but unlike typical EP, in the case of this spectral singularity, all eigenvalues go to −∞ . It is also 
seen from Fig. 3 that a non-zero ε does not influence the imaginary parts of the eigenvalues.

However, this is true only for the exact resonant case considered here. If we introduce a detuning of the two 
modes by the substitution κ → κ + i δ/2 then we can observe that also the imaginary parts of the eigenvalues 
are shifted. In order to show this we present Riemann surfaces of the eigenvalues of H1 in Fig. 4. Note that despite 
of the presence of this unusual spectral singularity, eigenvalues behave as we expect from a P T-symmetric 
system. There are ranges of κ , for which eigenvalues are real, and such ranges that a complex-conjugate pair 
appear. Spectral singularity marks the boundary between these two ranges and in its vicinity we can observe 
phenomena, which cannot be observed in Hermitian systems. For instance, one can check that we can obtain 
the enhancement of sensing, since eigenvalue splitting is given by �E = E+ − E0 ≈

√
2κ�g  , where �g = g − κ 

can be interpreted as a perturbation strength.
We conclude this section by noting that the lasers pumping process does not change any typical feature of 

P T-symmetric systems except that eigenvalues tend to ±∞ while going to coalescence. To our knowledge, 
this kind of behaviour was not predicted yet even in other systems.

Spectral singularities beyond the P̃T symmetry.  Remarkably, spectral singularities can be found 
also in non-Hermitian systems that are not P̃ T-symmetric9,57. Therefore now the question arises: can a given 
bosonic non-P̃ T-symmetric systems display any singularity and how to engineer such systems? In order to 
answer this question let us consider the following Hamiltonian

It is seen that H2 is not P̃ T-symmetric. Nevertheless, eigenvalues of H2 are exactly the same as those of H1 , 
because U−1H2U = H1 and U = exp[iπ/2(a†a+ b†b)] is a unitary transformation. We calculate eigenvalues 
of H2 in the section Methods. Therefore it is reasonable to expect that H2 has some other type of symmetry. In 
order to find this symmetry, we note that the reflection operator P = exp[iπ(a†a+ b†b)] describes, in fact, 
the rotation of the frame by an angle π . Zhang et al. have shown that in fermionic systems the rotation-time 

(5)H2 =g(a†b+ b†a)+ ε(a+ a†)+ ε(b+ b†)− iκa†a+ iκb†b.

- 2

- 1

0

1

2

0 1 2
- 2

- 1

0

1

2

0 1 2 0 1 2

Figure 3.   Spectrum of the Hamiltonian H2 as a function of the gain and loss parameter κ in units of the 
intercavity coupling strength g. We have plotted the real (a–c) and imaginary (d–f) parts of the eigenvalues 
given by Eq. (3) (solid curves) and by Eq. (4) (dashed curves) for different values of the drive strengths: ε = 0.01 
(a,d), ε = 0.1 (b,e) and ε = 0.2 (c,f). Plots were created using Wolfram Mathematica 12.1.1.0 (https​://www.wolfr​
am.com) and merged using Inkscape 0.92.4 (https​://inksc​ape.org).
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symmetry is a generalisation of the parity-time symmetry43,44. Therefore, we can expect that the symmetry we 
are looking for in our bosonic system is also the rotation-time symmetry.

Let us introduce the rotation operator given by

where θ is an arbitrary angle and let us see whether the R T symmetry leads to the same conclusions as those 
for the P T symmetry. We need to apply again the permutation operator PS because of the gain-loss terms. So, 
we define R̃ = PSR.

Note that R has different properties than P , i.e., it is not a reflection operator, i.e., R −1 �= R , and it does 
not commute with the time-reflection operator T , i.e., [R ,T ] �= 0 . It seems to be an obstacle. Fortunately, the 
operator R̃ T is a reflection operator:

Using the above property of R̃ T , we are going to show now that a non-Hermitian Hamiltonian H, which com-
mutes with R̃ T , has real energy spectra, if eigenstates of R̃ T are also the eigenstates of H. To this end, let us 
first note that, from [H , R̃ T ] = 0 and (R̃ T )2 = 1 , we can infer that the characteristic equation of H is real38, 
and thus, eigenvalues of H can only be real or appear as complex-conjugate pairs.

Let us demonstrate now that eigenvalues of the operator R̃ T , which we denote by χ , cannot be equal to zero. 
In fact, they are just phase factors, i.e., the absolute value of each eigenvalue is equal to unity. The eigenvalue 
equation reads

Multiplying Eq. (8) on the left by R̃ T and using the fact that (R̃ T )2 = 1 we obtain

Now we can use Eqs. (8) and (7), and T = T
−1 to make further transformation:

and, then, using T iT = −i , we finally obtain

This concludes the proof that χ cannot be equal to zero.
Next, let us show that the eigenvalue E of a Hamiltonian H is real if |�� is an eigenstate of both operators, H 

and R̃ T . We begin with the time-independent Schrödinger equation

Multiplying it on the left by R̃ T , once more recalling (R̃ T )2 = 1 and using assumption that |�� is also an 
eigenstate of R̃ T we obtain

(6)R = exp[iθ(a†a+ b†b)],

(7)(R̃ T )−1 =T
−1

R̃
−1 = T (PSR )−1 = TR

−1PS = TR
−1

T
2PS = R PST = R̃ T .

(8)R̃ T |�� = χ |��.

(9)|�� = (R̃ T )χ(R̃ T )2|��.

(10)|�� = R̃ TχTR̃
−1χ |��

(11)|�� = χ∗χ |�� = |χ |2|��.

(12)H|�� = E|��.

(13)(R̃ T )H|�� = (R̃ T )E(R̃ T )χ |��.

Figure 4.   Plots of Re(E±) and Im(E±) versus the gain/loss parameter κ and the detuning δ . These Riemann 
sheets are centered around a spectral singularity. Plots were created using Wolfram Mathematica 12.1.1.0 (https​
://www.wolfr​am.com) and merged using Inkscape 0.92.4 (https​://inksc​ape.org).
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Since we have assumed that H is R̃ T-symmetric, i.e., it commutes with R̃ T and because R̃ T = (R̃ T )−1 , 
we can rewrite Eq. (13) in the form

which leads us to

Since χ is nonzero, pure phase, we deduce that E = E∗ , which means that the eigenvalue E is real.
Hence, the symmetry described by the rotation-time operator R̃ T leads to the same conclusions as those 

for P T-symmetry: (i) eigenvalues of R̃ T-symmetric Hamiltonians are real if corresponding eigenstates are 
the same for both R̃ T and H; (ii) or eigenvalues appear as complex-conjugate pairs, when the symmetry is 
broken. Most importantly, we can find EPs at the boundary between the broken and unbroken R̃ T symmetry 
regions in the parameter space.

We conclude this section noting that H2 is R̃ T-symmetric in the rotation operator (6) with θ = 0.

R̃T‑symmetric bosonic systems.  The R̃ T symmetry can play an important role in searching for 
bosonic systems with EPs. Note that the R̃ T symmetry includes much larger class of bosonic systems than 
the P̃ T symmetry because operator P̃ T is just one specific instance (corresponding to θ = π ) of all R̃ T 
operators. To give an example of a class of R̃ T-symmetric Hamiltonians with potential EPs, let us consider a 
Hamiltonian, which is a generalisation of both previously analysed Hamiltonians H1 and H2:

The Hamiltonian H3 has the same eigenvalues as H1 , since they are related by a unitary transformation. The 
Hamiltonians H1 , H2 and H3 describe the same quantum system but in different frames. The effect of an action 
of the R̃ T operator on the Hamiltonian can be quickly inferred using the formulas: R̃ TaR̃ T = b exp(−iθ) , 
R̃ TbR̃ T = a exp(−iθ) , R̃ Ta†R̃ T = b† exp(iθ) R̃ Tb†R̃ T = a† exp(iθ) and R̃ T iR̃ T = −i . Thus, 
using (R̃ T )2 = 1 one can easily derive R̃ TH3R̃ T . The result of this transformation is

Hence, H3 remains R̃ T invariant, i.e., HR̃ T

3 = H3 , if we choose θ = −2φ.
It is straightforward to give expressions in their most general form, which can be a part of the Hamiltonian 

that governs a bosonic R̃ T-symmetric system. Each of them guarantees itself the R̃ T invariance.
The most relevant Hamiltonian terms having this property are presented in Table 1. By utilising these R̃ T

-invariant terms, one can compose a wide class of R̃ T-symmetric models, which can exhibit exceptional points.

Discussion
In summary, we have studied the R̃ T symmetry and its applications, and conditions for its presence in a laser 
pumped bosonic system with losses and gain. To our knowledge, this is the first proposal of adopting this type 
of symmetry to quantum optics. We have shown that the P T symmetry is only a special case of a rotation-time 
symmetry. Our study of the effect of laser pumping on symmetries and symmetry phase transitions resulted in 
discovering a new type of spectral singularity (as shown in Fig. 3). This was possible by creating a new types of 
operators to diagonalise a Hamiltonian describing a bosonic system with a classical laser drive (see Methods). 
There, we have obtained real energy values without applying requirements of the P T symmetry, which turned 
out to be too restrictive for many types of photonic systems. We have created a versatile framework for certifying 
the R̃ T symmetry based on a set of expressions that guarantee the R̃ T invariance. We believe that this work 
can significantly contribute to quantum optics and we hope that can open opportunities to study new classes of 
systems and related physical effects.

(14)H(R̃ T )|�� = R̃ TETR̃
−1χ |��,

(15)Eχ |�� = E∗χ |��.

(16)
H3 =�a†a+�b†b+ ga†b+ g∗b†a+ ε(eiφa+ e−iφa†)+ ε(eiφb+ e−iφb†)

− iκa†a+ iκb†b.

(17)H
R̃ T

3 =�b†b+�a†a+ g∗b†a+ ga†b+ |ε|(e−i(φ+θ)b+ b†ei(φ+θ))+ |ε|(e−i(φ+θ)a+ a†ei(φ+θ))

+ iκb†b− iκa†a.

Table 1.   Different types of R̃ T-invariant terms for a specific choice of R , i.e., θ = −2φ . Parameters n, m, j, 
and l are arbitrary natural numbers.

Type    R̃T invariant terms Examples of physical processes

(a) α0(a
†)nan +H .c. n-th order non-linearity63–65

(b) α1(a
†)mbm +H .c. m=1 → couplers with linear exchange66–68

m=2 → couplers with non-linear exchange69

(c) |α2|
(
eiφaj+1(b†)j + eiφbj+1(a†)j j=1 → second harmonic generation53–56

+H .c.
)

unconventional photon blockade70,71

(d) |α3|
(
ei2φal+2(b†)l + ei2φbl+2(a†)l +H .c.

)
l=1 → third-harmonic generation54,55
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Methods
Diagonalisation.  Let us first show how to diagonalise the Hamiltonian H2 . For that purpose, we have to 
perform the following transformations5 [c, d]T = R [a, b]T and [c+, d+]T = R [a†, b†]T , where

and α ∈ C . For the sake of simplicity we assume here that g and ε are real and positive. Then it is easy to show 
that sin (α/2) =

√
(�+ iκ)/(2�) and cos (α/2) =

√
(�− iκ)/(2�) , where � =

√
g2 − κ2 . Note that c+ ( d+ ) is 

not a Hermitian conjugate of c (d). Nevertheless, these operators can be considered as annihilation and creation 
operators, because they satisfy the canonical commutation relations [c, c+] = 1 , [d, d+] = 1 , [c, d+] = 0 and 
[d, c+] = 0 . Using these operators we can rewrite H2 as

where εc = ε[cos(α/2)+ sin(α/2)] and εd = ε[cos(α/2)− sin(α/2)] . One can see that we need one addi-
tional step to diagonalise the Hamiltonian. We apply transformations given by displacement operators 
Dc = exp(εc/�c

+ − εc/�c) and Dd = exp(−εd/�d
+ + εd/�d):

where Î is the identity operator. It is easy to check that [cε , c+ε ] = 1 , [dε , d+ε ] = 1 , [cε , d+ε ] = 0 and [dε , c+ε ] = 0 . 
The Hamiltonian H2 rewritten in terms of these operators takes the diagonal form

where �0 = −2gε2/�2.
The Hamiltonian H1 can be diagonalised in the same way but with one additional step. H1 in terms of the 

operators c, c+ , d, and d+ is given by

In this additional step we introduce new operators: ic → c , −ic+ → c+ , id → d , and −id+ → d+ . These new 
operators satisfy the same commutation relations as original operators. In this way we transform H1 to the 
form given by Eq. (19). Then we apply transformations given by the displacement operators to obtain the same 
eigenvalues as for H2.
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