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PFOS Inhibited Normal Functional Development of Placenta
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Abstract: Perfluorooctane sulfonic acid (PFOS), a persistent environmental pollutant, has adverse
effects on gestation pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) is involved
in angiogenesis, metabolic processes, anti-inflammatory, and reproductive development. However,
the function of PPARγ in PFOS evoked disadvantageous effects on the placenta remain uncertain.
Here, we explored the role of PPARγ in PFOS-induced placental toxicity. Cell viability, cell migration,
angiogenesis, and mRNA expression were monitored by CCK-8 assay, wound healing assay, tube
formation assay, and real-time PCR, respectively. Activation and overexpression of PPARγ were
conducted by rosiglitazone or pcDNA-PPARγ, and inhibition and knockdown of PPARγ were
performed by GW9662 or si-PPARγ. Results revealed that PFOS decreased cell growth, migration,
angiogenesis, and increased inflammation in human HTR-8/SVneo and JEG-3 cells. Placenta diameter
and fetal weight decreased in mice treated with PFOS (12.5 mg/kg). In addition, rosiglitazone or
pcDNA-PPARγ rescued cell proliferation, migration, angiogenesis, and decreased inflammation
induced by PFOS in HTR8/SVneo and JEG-3 cells. Furthermore, GW9662 or si-PPARγ exacerbated
the inhibition of cell viability, migration, angiogenesis, and aggravated inflammation induced by
PFOS in HTR-8/SVneo and JEG-3 cells. Meanwhile, the results of mRNA expression level were
consistent with the cell representation. In conclusion, our findings revealed that PFOS induced
placenta cell toxicity and functional damage through PPARγ pathway.
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1. Introduction

Endocrine-disrupting chemicals (EDCs) are one out of a multitude of chemicals
that can impair normal human development by altering homeostasis through the ac-
tion of endogenous hormones or other endocrine signaling substances [1]. Perfluorooctane
sulphonate (PFOS) is one of the most abundant perfluorinated chemicals that can ac-
cumulate biologically and be transported through all environmental media [2]. It has
been reported that PFOS can be absorbed through several routes, including ingestion,
absorption, and inhalation from food, drinking water, consumer goods, dust, aerosols, and
chemical manufacturing facilities [3]. Based on a worldwide human biomonitoring study,
geometric mean (GM) concentrations of PFOS range from 3.0 to 29.0 ng/mL in blood, 1.1
to 11.0 ng/mL in human cord blood, and 0.06 to 0.18 ng/mL in breast milk [4]. A British
study reported that PFOS was detected in maternal serum samples during pregnancy, and
median concentrations (interquartile range) were 13.8 (11.0, 17.7) ng/mL. High levels of
PFOS (13.8 ng/mL) in prenatal maternal (30 weeks) serum may be associated with reduced
weight of male infants at birth [5]. Studies in pregnant mice found that PFOS can pass
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through the placental barrier and induce developmental toxicity, such as in prenatal mor-
tality and fetal growth retardation [6,7]. Our previous research has also shown that PFOS
can reduce birth weight and damage the placenta in mice [8]. However, the mechanisms of
PFOS-induced fetal developmental toxicity remain unclear.

The peroxisome proliferator-activated receptors (PPARs) family is composed of PPARα,
PPARβ/PPARδ, and PPARγ [9]. PPAR consists of five modular domains with domain
E mediated ligand dependent transcriptional activation, which induces conformational
changes in these receptors, leading to the recruitment of cofactor/co-activator proteins
and subsequent heterodimerization of these receptors with retinoid X receptor (RXR) [10].
PPARs are ligand-inducible transcription factors that play crucial roles in angiogenesis,
metabolic, anti-inflammatory, reproductive developmental processes, and regulate the
expression level of plural genes such as VEGFA and TNF-α [11–13]. In terms of the PPAR
subtypes, PPARγ is primarily involved in placental development. It is a critical component
of trophoblastic differentiation and essential for trophoblastic maturation to establish ma-
ternal fetal transport [14,15]. Moreover, the dysfunctions of PPARγ in trophoblast cause
several diseases associated with pregnancy, including recurrent miscarriage, intrauterine
growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM) [16].
PPARγ has been illustrated as a master regulator to activate the transcription of multiple
genes associated with cell migration, proliferation, and angiogenesis, such as VEGFA,
ANGPTL4, MMP-2, and MMP-9 [17,18]. In addition, substantial studies of mouse knock-
out models have described a massive placental defect that can be reversed by restoring
the PPARγ gene via chimeras, revealing that PPARγ was essential for normal placental
development in the mouse and homozygous PPARγ deficient mice embryos died due
to placental dysfunction [14,19]. In particular, the deletion of PPARγ gene disrupts the
terminal differentiation of trophoblast and placental vascularization [20].

PFOS is known as an activator of PPARs, primarily PPARα and PPARγ [21]. Re-
search has reported that PFOS mediates renal tubular cell apoptosis through activation
of PPARγ [22]. In addition, activation of PPARγ rescued PFOS induced proliferation in-
hibition in rat primary embryonic neural stem cells [23]. However, little is known about
whether PPARγ is involved in the placental toxicity of PFOS. Here, we proposed to eluci-
date whether PPARγ plays a role in placental toxicity induced by PFOS and whether its
mechanism is responsible for disrupting placental function.

2. Materials and Methods
2.1. Reagents

PFOS (potassium salt; >98% pure) was purchased from MAYA-R (Jiaxing, China).
Dimethyl sulfoxide (DMSO) and the cell counting kit-8 (CCK-8) were purchased from
Vicmed (Busan, Korea). MEM medium was purchased from Corning (Shanghai, China).
DMEM/F12 medium and RPMI 1640 medium were purchased from KeyGEN BioTECH
(Nanjing, China). Fetal bovine serum was purchased from ExCell Bio. HiScript® II Q RT
SuperMix for RT-PCR and AceQ® RT-PCR were obtained from Vazyme (Nanjing, China).
Rosiglitazone and GW9662 were purchased from MedChemExpress (Shanghai, China).
pcDNA-PPARγ and siRNAs were obtained or synthesized by GenePharma (Shanghai,
China). Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA) was purchased from
Invitrogen and used for transient transfection.

2.2. Cell Culture and Animal Treatment

The human choriocarcinoma cell line HTR-8/SVneo and JEG-3 cells were a gift from
Nanjing Medical University (Nanjing, China) and cultured in MEM medium supplemented
with 10% heat-inactivated FBS and grown in 5% CO2 at a 37 ◦C humidified incubator.
Animals were treated according to the guidance for the Care and Use of Laboratory Animals
released by the US National Institute of Health. Animal experiments and procedures were
approved by both the local animal care committee and the Animal Ethics Committee of
Xuzhou Medical University (protocol 201605w025, 25 May 2016). 10 week old female and
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male mice with weights of 30–35 g, were chosen in our research. All of the mice were
placed in a 12 h light and 12 h dark cycles and accessed food with water freely. Vaginal
plug appearance was observed at day 0.5 of gestation (GD0.5). Two females were mated
with one male overnight, and the presence of a vaginal plug was defined as gestational
day (GD) 0. Pregnant mice were randomly divided into three groups of eight and were
orally administered with 0, 0.5, 2.5, and 12.5 mg/kg/day PFOS from GD1 to GD17. The
corn oil (10 mL/kg) treated the same as controls. Euthanization was then performed on
GD18, and laparotomies were performed for pregnant mice. The placenta samples were
promptly frozen in liquid nitrogen and stored at −80 ◦C.

2.3. si-PPARγ and pcDNA-PPARγ Transfection

The si-PPARγ (50 nM), si-Control (50 nM) (GenePharma, Shanghai, China), pcDNA-
PPARγ (2 µg), and pcDNA 3.1 (2 µg) (GenePharma, Shanghai, China) were transfected
using the Lipofectamine 2000 reagent in six-well culture plates. To achieve PPARγ knock-
down and overexpression in HTR-8/SVneo and JEG-3, cells were cultured in six-well plates
for 24 h and after 4 h of transfection, DMEM/F12 and MEM supplemented with 10% FBS
was added for 24 h.

2.4. Cell Viability Assay

Cell proliferation rates were subsequently evaluated using the CCK-8 in accordance
with the manufacturer’s instructions. A total of 10 µL of the CCK-8 solution reagent was
pipetted into each well of the 96-well plate with 100 µL of culture medium. The absorbance
at 450 nm was detected using a microplate reader.

2.5. Cell Migration Assay

Cells were cultured in six-well plates until confluence. After incubation, an artificial
wound of scratched cells was made by a 10 µL pipette tip and three scratches along
the wound were marked randomly, then rinsed with PBS and cultured with serum-free
medium for 24 h. The distances migrated by the cells were calculated by subtracting the
distances of the wound at 24 h from that of the 0 h time point. Analysis of the wound
healing distances was conducted by using the Image J software.

2.6. Tube Formation Assay

The tube formation assay was performed as previously described [24]. HTR-8/SVneo
and JEG-3 cells were seeded at 2 × 105 cells/well. The wells of a 96-well plate were filled
with 50 µL of Matrigel (BD Biosciences, San Jose, CA, USA) incubated at 37 ◦C for 45 min to
form gels and seeding HUVEC 5 × 103 cells/well for 4 h and incubator in 5% CO2 at 37 ◦C.
Appropriate images were acquired by fluorescence microscopy, three random microscopic
fields were seeded per repeat well. The magnification of all the micrographs is 100×. The
key parameters were total tube branch length, then quantified by Image J Software (v1.8.0).

2.7. Real-Time PCR (RT-PCR)

Total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. RNA reverse transcription kit was obtained from Vazyme
(Nanjing, China). Firstly, the RNA template was briefly treated with 4 × GDNA wiper Mix
to remove genomic DNA contamination. Subsequent direct addition of 5 × qRT Supermix
II resulted in immediate reverse transcription. 500 ng RNA was then reverse transcribed.
Quantitative real-time PCR was performed using the SYBR Green qPCR SuperMix. GAPDH
was selected as an internal control. All the procedures were conducted in accordance with
the instructions of the manufacturer. The relative gene expression levels were calculated
by the 2−∆∆Ct method. Specific primer sequences used in this study were obtained from
Invitrogen Bioengineering Corporation (Shanghai, China) and listed in Table S1.
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2.8. Statistical Analysis

All of the assay was repeated at least 3 times and all data were expressed as the mean
± SEM. Statistical analysis was performed using the SPSS 22.0 (IBM, Armonk, NY, USA).
Differences between two groups were analyzed using Student’s t-test. The difference
among multiple groups was assessed by one-way analysis of variance (ANOVA). Dunnett’s
t-test was used for multiple comparisons with controls. GraphPad Prism software (version
8.0, San Diego, CA, USA), was used for data analysis and plotting. p < 0.05 was considered
to be statistically significant.

3. Results
3.1. PPARγ Mediates PFOS-Induced Inhibition of Trophoblast Cells Survival and Proliferation
In Vitro

To investigate the effect of PFOS on cell viability, HTR-8/SVneo and JEG-3 cells were
treated with different concentrations of PFOS. As shown in Figure 1A,F, HTR-8/SVneo and
JEG-3 cells viability decreased gradually along with increased concentration of PFOS. PFOS
significantly inhibited cell viability of HTR-8/SVneo cell and JEG-3 cells at 50 µM and
30 µM respectively. At these doses, PFOS significantly inhibited PPARγ mRNA expression
levels in the two cell lines (Figure 1B,G). Rosiglitazone (a PPARγ agonist) and GW9662
(a PPARγ antagonist) were selected to explore whether PPARγ played a role in placental
toxicity induced by PFOS. Results showed that rosiglitazone could partially rescue PFOS
induced cell growth inhibition while GW9662 aggravated PFOS-induced cell growth
inhibition significantly in HTR-8/SVneo and JEG-3 cells (Figure 1C,H), rosiglitazone and
GW9662 were not toxic to cells at a range of concentrations (Figure S1A,B), and have little
effect on the mRNA expression of PPARγ during PFOS treatment (Figure S2A,B).

Furthermore, findings showed PPARγ was overexpressed or knocked down in HTR-
8/SVneo and JEG-3 cells, increased expression of PPARγ in the pcDNA-PPARγ group
Figures S1C,D and S2C,D), and decreased expression in the si-PPARγ group Figures 1E,F
and 2E,F), validated by comparing to the control. Similar to PPARγ agonist rosiglitazone
treatment, PPARγ overexpression could partially rescue PFOS-induced cell growth inhibi-
tion (Figure 1D,I). PPARγ knockdown significantly aggravated PFOS-induced cell growth
inhibition in the cells as PPARγ antagonist GW9662 (Figure 1E,J).

3.2. PPARγ Is Important for Inhibition Effect of PFOS on the Cell Migration

PFOS dose-dependently induced cell migration was evaluated. The results revealed
that PFOS remarkably decreased cell migration in HTR-8/SVneo cells at 50 µM (Figure 2A)
and JEG-3 cells at 30 µM after 24 h treatment (Figure 2B). To elucidate the role of PPARγ in
PFOS-induced trophoblast cell migration, wound healing assays were executed in the two
cell lines pretreated with rosiglitazone or GW9662 and then co-treated with PFOS for 24 h.
Rosiglitazone could partially alleviate PFOS-induced cell migration inhibition, whereas
GW9662 could facilitate PFOS-induced cell migration inhibition (Figure 2C,D). Results
also showed PPARγ overexpression alleviated cell migration inhibition (Figure 2E,F), but
PPARγ knockdown aggravated cell migration inhibition by PFOS at 50 µM (Figure 2G) and
30 µM (Figure 2H) in HTR-8/SVneo and JEG-3 cells, respectively.
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Figure 1. Effect of PPARγ on proliferation exposed to PFOS in vitro (50 µM for HTR-8/SVneo, 30µM for JEG-3). Cell vitality
was detected by CCK-8 assay in (A) and JEG-3 (F) cells exposed to PFOS for 24 h. Relative mRNA expression levels of
PPARγ were analyzed by RT-PCR in the two cell lines (B,G) exposed to PFOS for 24 h. Cell growth of HTR-8/SVneo (C)
and JEG-3 cells (H) were then checked with PFOS treatment in the absence or presence of rosiglitazone and GW9662, and
also estimated with treatment of PFOS when PPARγ was overexpressed and knocked down in HTR-8/SVneo (D,I) and
JEG-3 cells (E,J). The data are shown as the means ± S.E.M. * p < 0.05; ** p < 0.01; compared with the indicated group, n = 3.

3.3. PPARγ Is Involved in Impaired PFOS–Induced Angiogenesis

To explore the role of PPARγ in PFOS-induced angiogenesis, tube formation assay
was performed in HUVECs (Human Umbilical Vein Endothelial Cell) with co-treatment
of rosiglitazone or GW9662 and PFOS for 24 h. PFOS exposure suppressed angiogenesis
in both HTR-8/SVneo (50 µM) and JEG-3 cells (30 µM) (Figure 3A,C), co-treatment of
rosiglitazone rescued angiogenesis inhibition of PFOS and significantly increased the
total tube branch length. Co-treatment of GW9662 and PFOS significantly decreased
the total tube branch length compared to PFOS group in those cell lines (Figure 3B,D).
Moreover, PPARγ overexpression alleviated angiogenesis inhibition induced by PFOS
(Figure 3E,G), while PPARγ knockdown aggravated angiogenesis inhibition induced by
PFOS (Figure 3F,H). Overall, these data suggested that PPARγ was an important mediator
of PFOS-induced angiogenesis inhibition.
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Figure 2. Effect of PPARγ on migration exposed to PFOS in vitro. The distances of the wound healing
were measured after exposure of PFOS at 0 h and 24 h (A,B), exposure of PFOS in the absence
or presence of rosiglitazone and GW9662 (C,D), with PPARγ overexpression (E,F) and knocking
down (G,H) in HTR-8/SVneo and JEG-3 cells (50 µM for HTR-8/SVneo, 30 µM for JEG-3. Scale
bar: 200 µm). The data are shown as the means ± S.E.M. * p < 0.05; ** p < 0.01; compared with the
indicated group, n = 3.
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Figure 3. Effect of PPARγ on angiogenesis exposed to PFOS in vitro. The branches length was
measured in HTR-8/SVneo and JEG-3 cells exposed to PFOS for 24 h (A,C), in the absence or
presence of rosiglitazone and GW9662 (B,D), with PPARγ overexpression (E,G) and knocking down
(F,H) in HTR-8/SVneo and JEG-3 cells (Scale bar: 200 µm). The data are shown as the means ± S.E.M.
* p < 0.05; ** p < 0.01; compared with the indicated group, n = 3.

3.4. PFOS Alters mRNA Level of PPARγ Target Genes Associated with Proliferation
and Angiogenesis

To understand the mechanisms of PPARγ in PFOS-induced effects on cell proliferation
inhibition, migration inhibition, angiogenesis inhibition, pro-inflammatory in the two
human placenta cell lines, we detected the expression of cell proliferation and angiogenesis
related PPARγ target genes HMOX1, ANGPTL4 and VEGFA. As shown in Figure 4A,B,
HMOX1, ANGPTL4, and VEGFA mRNA expression were significantly reduced by PFOS
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exposure in HTR-8/SVneo (50 µM) and JEG-3 cells (30 µM). Co-exposure of PFOS and
rosiglitazone up-regulated HMOX1, ANGPTL4, and VEGFA mRNA whereas co-treatment
of GW9662 and PFOS significantly down-regulated these mRNA expressions (Figure 4C,D).
Similarly, when HTR-8/SVneo and JEG-3 cells were co-treated with PFOS and overex-
pressed with PPARγ, HMOX1, ANGPTL4, and VEGFA mRNA expressions were signifi-
cantly increased (Figure 4E,F). Knocking down of PPARγ and PFOS treatment significantly
decreased HMOX1, ANGPTL4, and VEGFA mRNA expression levels (Figure 4G,H).
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Figure 4. Effect of PFOS on PPARγ target genes associated with proliferation and angiogenesis in vitro. The mRNA
expression was analyzed by RT-PCR in HTR-8/SVneo and JEG-3 cells were exposed to PFOS for 24 h (A,B), in the absence or
presence of rosiglitazone and GW9662 (C,D), with PPARγ overexpression (E,F) and knocking down (G,H) in HTR-8/SVneo
and JEG-3 cells. The data are shown as the means ± S.E.M. * p < 0.05; ** p < 0.01; compared with the indicated group, n = 3.

3.5. PFOS Alters mRNA Level of PPARγ Target Genes Associated with Migration

The expression levels of cell migration related PPARγ target genes MMP-2 and MMP-9
were detected. MMP-2 and MMP-9 mRNA expression were significantly decreased in
PFOS-exposed groups (Figure 5A,B). When HTR-8/SVneo and JEG-3 cells were exposed to
PFOS and co-treated with rosiglitazone for 24 h, they were significantly increased, whereas
with co-treatment of GW9662 and PFOS they were significantly decreased (Figure 5C,D).
MMP-2 and MMP-9 mRNA expression levels were also significantly lifted when cells were
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treated with PFOS and overexpressed with PPARγ (Figure 5E,F), and significantly lowered
with PFOS and transfected with si-PPARγ (Figure 5G,H).
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Figure 5. PFOS alters mRNA level of PPARγ target genes associated with migration. The mRNA
expression was analyzed by RT-PCR in HTR-8/SVneoand JEG-3 cells were exposed to PFOS for 24 h
(A,B), in the absence or presence of rosiglitazone and GW9662 (C,D), with PPARγ overexpression
(E,F) and knocking down (G,H) in HTR-8/SVneo and JEG-3 cells. The data are shown as the means
± S.E.M. * p < 0.05; ** p < 0.01; compared with the indicated group, n = 3.

3.6. PFOS Alters mRNA Level of PPARγ Target Genes Associated with Inflammation

The mRNA expression of p65, IL-6, IL-1β, and TNF-α were significantly increased
with PFOS exposure in HTR-8/SVneo (50 µM) and JEG-3 cells (30 µM) (Figure 6A,E). With
supplemented exposure of rosiglitazone for 24 h, the expression levels of those genes
were significantly decreased compared to PFOS groups although increased when exposed
to GW9662 for 24 h (Figure 6B,F). Consistently, when cells were treated with PFOS and
PPARγ over-expressed, p65, IL-6, IL-1β, and TNF-α mRNA expressions were decreased
(Figure 6C,G), levels of those genes were raised up when cells were treated with PFOS and
PPARγ knocked down at the same time (Figure 6D,H).
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shown as the means ± S.E.M. * p < 0.05; ** p < 0.01; compared with the indicated group, n = 3.
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3.7. PFOS Induces Placenta Dysfunction in Mice

To determine the toxicity of PFOS to placenta in vivo, uterus, placenta size, and fetal
weight were detected in PFOS-exposed mice. Our results showed that placental diameter
and fetal weight decreased in the PFOS-treated mice compared with controls (Figure 7A–C).
Our previous research indicated that the relative number of Ki67 positive cells reduced
placental angiogenesis of PFOS-treated mice, which suggested PFOS might affect placental
angiogenesis by inhibiting the proliferation of vascular cells [25].
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Representative picture of fetus. (C) Representative picture of placenta. (D) The mRNA expression was analyzed by RT-PCR
in GD17 mice placental. The data are shown as the means ± S.E.M. * p < 0.05; ** p < 0.01; compared with control group,
n = 3.

3.8. PFOS Alters PPARγ Target Genes mRNA Expression in Mice Placenta

PFOS treatment decreased the mRNA expression of PPARγ in the placental tissues
in dose-dependent settings (Figure 7D). The mRNA level of PPARγ target genes in the
placental tissues of PFOS-treated mice were detected. The relative expression of Homx1,
Angptl4, Vegfa, Mmp-2, and Mmp-9 in placentas were decreased in the PFOS-exposed
group (Figure 8A,B). Furthermore, the relative expression of p65, Il-6, Il-1β, and Tnf-α were
increased in the placentas of PFOS-exposed mice (Figure 8C), which were all consistent
with the results in vitro.
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group, n = 3.

4. Discussion

Despite multiple developmental toxicities shown to be induced by PFOS, the mecha-
nism of PFOS-elicited severe placental dysfunction has not been well investigated. Here,
our research group investigated the mechanisms of PFOS-elicited effects on the function
of trophoblast cells in vitro and in vivo. We demonstrated whether PPARγ is involved
in the toxicity of PFOS by regulating placental cell growth, angiogenesis, and inflam-
matory responses in HTR-8/SVneo and JEG-3 cells. Our results indicated that PFOS
dose-dependently inhibited cell growth in HTR-8/SVneo and JEG-3 cells, which corre-
sponded to the discoveries of our previous study in mice [25]. Cell proliferation contributes
significantly to placental growth during gestation [26]. The imbalance in human syn-
cytiotrophoblast proliferation may contribute to multiple adverse pregnancy outcomes,
such as miscarriage, preeclampsia, preterm birth, and fetal growth restriction [27]. Pham
also found there to be undesirable reproductive complications associated with prenatal
exposure to PFOS, including preeclampsia [28]. In addition, PFOS weakens the migra-
tion capacity of HTR-8/SVneo and JEG-3 cells. These effects could be associated with
the decreased levels of MMP-2 and MMP-9, it is known that several cell migration gene
decreases of above gene expression have been implicated in human placental dysfunction
or pregnancy complication progression in several human pregnancies [29]. A previous
study also reported that PFOS inhibited trophoblast migration and decreased the mRNA
expression of MMPs involved in migration [30].

Angiogenesis is a biological approach that has formatted new vascular beds and is a
critical process to provide tissue growth and development with oxygen and nutrients [31].
Placental angiogenesis seems to play an important role in the development of viable and
healthy offspring [32]. Decreased placental vascular development and increased vascular
resistance have been believed to be associated with early embryonic mortality [33,34]. Our
results describe that PFOS dose-dependently inhibited angiogenesis in HTR-8/SVneo and
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JEG-3 cells, and our previous study showed that blood vessel branching was significantly
reduced in the labyrinth layer of mice treated with PFOS [25]. Moreover, treatment with
PFOS also reduced the expression of PIGF, a potent angiogenic factor, which is implicated
in preeclampsia and IUGR [28]. In addition, PFOS inhibited VEGFA mRNA expression
dose-dependently in HTR-8/SVneo and JEG-3 cells, which is a major angiogenic growth
factor of the placenta [35].

PPARγ has also been reported to play a key role in placental development. PPARγ
null mutant placentae accumulate lipid droplets in the labyrinth barrier, and failure of
vascular labyrinth formation leads to vascular anomalies and major placental dysfunctions
that in turn result in embryonic lethality [36]. PPARγ regulates differentiation, maturation,
secretion, fusion, proliferation, migration, angiogenesis, and invasion of trophoblast cells
by regulating lipid and glucose metabolism and inflammatory response [37]. To investigate
the role of PPARγ on PFOS-induced inflammatory cytokines and inhibition of cell growth
and angiogenesis, rosiglitazone, a specific agonist of PPARγ, was used to reverse PFOS-
evoked downregulation of PPARγ pathway [38]. As expected, rosiglitazone significantly
rescued PFOS-induced cell growth and angiogenesis inhibition in HTR-8/SVneo and
JEG-3 cells. Previous studies have demonstrated that treatment of hypoxic JEG-3 cells
with rosiglitazone improves cell survival and decreases apoptosis [39]. Treatment with
rosiglitazone greatly increased wound healing and improved angiogenesis in mice with
spontaneous glucose metabolic disorders [40]. For instance, rosiglitazone rescued HO-
1 expression and inhibited inflammation in myometrial and decidual macrophages in
inflammation-induced preterm birth [41]. GW9662 is a potent PPARγ antagonist that
prevents activation of PPARγ [38]. Pretreatment with GW9662 abolished cell migration
and invasion in prostate cancer cells [42].

PPARγ downstream targets, such as ANGPTL4, MMP-2, MMP-9, HO-1, VEGFA, p65,
TNF-α, IL-6, and IL-1β play essential roles in inhibiting cell migration, angiogenesis, and
inflammation response [43,44]. Our gene expression data have demonstrated that PFOS in-
duced dysfunction of HTR-8/SVneo and JEG-3 cells were characterized by an imbalance of
cell proliferation, migration, angiogenic and inflammatory factors, in terms of increased p65,
TNF-α, IL-6, and IL-1β levels and decreased ANGPTL4, MMP-2, MMP-9, HO-1, and VEGFA
levels. ANGPTL4, as a transcription target of PPARγ, participated in cellular functional
regulation including cell survival, proliferation, migration, and invasion in trophoblast
cells [45]. PPARγ activation has been demonstrated that up-regulate HO-1 expression an
antioxidant enzyme and decreased sFlt-1 the production of the anti-angiogenic media-
tor [46,47]. Furthermore, PPARγ agonists have been illustrated to restore proangiogenic
factors and upregulate HO-1 and VEGFA expression in vitro and in vivo [47]. MMP-2 and
MMP-9, as downstream target genes of PPARγ, have been improved that could accelerate
the trophoblast migration [18]. In the present study, rosiglitazone altered cell proliferation,
migration, angiogenesis, and inflammation factors in the PFOS- induced HTR-8/SVneo and
JEG-3 cells. Previous studies have reported that HO-1 is regulated by PPARγ agonists and
that induction of HO-1 can prevent TNF-α induced endothelial dysfunction in vitro, which
indicated that rosiglitazone may be responsible for protecting the vascular system via HO-1
and potentially anti-inflammatory mechanism [48]. Untimely inflammatory triggers that
shift immunological balance towards activation can lead to adverse pregnancy outcomes,
including preterm birth and miscarriage [49]. Several researchers have demonstrated that
exposure to inflammatory stimuli could induce the secretion of p65, IL-6, TNF-α, and IL-1β
pro-inflammatory cytokine and cell apoptosis in trophoblast cells [50,51]. In our study,
the expression of several inflammatory cytokines including p65, TNF-α, IL-6, and IL-1β
were upregulated in the placentas of mice and HTR-8/SVneo and JEG-3 cells exposed
to PFOS. Consistent with other research, treatment with PFOS (1.0 mg/L) increased the
mRNA expression of p65, IL-6, and TNF-α in HTR-8/Svneo cells compared with the control
group [52]. Ji et al. found that rosiglitazone significantly inhibited LPS-induced cell apop-
tosis, and inflammation in HUVECs [53]. GW9662 partially aggravated PFOS-induced
inflammatory cytokines in HTR-8/SVneo and JEG-3 cells. Further, rosiglitazone rescued
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premature delivery, reduced inflammation, and improved both placental and fetal weight
in a mouse model of inflammation-induced preterm birth [41,54]. PPARγ seemed to affect
the inflammation by interacting with p65 in HTR-8/SVneo [55]. In the present study,
administration of the PPARγ agonist rosiglitazone ameliorated both cell proliferation and
placenta angiogenesis dysfunction via ANGPTL4, MMP-2, MMP-9, HO-1, and VEGFA
dependent pathway in HTR-8/SVneo and JEG-3 cells. These results suggest that PFOS
inhibit normal functional development of placenta cells through PPARγ pathway, at least
partially in vitro and in vivo.

5. Conclusions

We demonstrated that PFOS negatively alters normal functional development of
placenta cells partially through PPAR signaling. This study provides a novel insight into
PFOS-induced placental toxicity. In particular, it investigates the molecular mechanism for
PPARγ in abnormal placental development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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