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Abstract: The growing incidence of cancer raises an urgent need to develop effective

diagnostic and therapeutic strategies. With the rapid development of nanomedicine, nanos-

cale metal-organic frameworks (NMOFs) presented promising potential in various biomedi-

cal applications in the last 2 decades, especially in cancer theranostics. Due to the unique

features of NMOFs, including structural diversities, enormous porosity, multifunctionality

and biocompatibility, they have been widely used to deliver imaging contrast agents and

therapeutic drugs. Moreover, multiple types of contrast agents, anti-cancer drugs and target-

ing ligands could be co-delivered through one single NMOF to enable combination therapy.

Co-delivering system using NMOFs helped to avoid multidrug resistance, to reduce adverse

effects, to achieve imaging-guided precise therapy and to enhance anti-cancer efficacy. This

review summarized the recent research advances on the application of NMOFs in biomedical

imaging and cancer treatments in the last few years. The current challenges that impeding

their translation to clinical practices and the perspectives for their future applications were

also highlighted and discussed.
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Introduction
The incidence of cancer is increasing rapidly and it is still one of the most

devastating diseases threatening people’s health.1 Therapeutic strategies, including

surgical intervention, radiotherapy (RT), and chemotherapy, are routine methods of

cancer treatment in the clinic. However, owing to poor effects, intolerably systemic

toxicity and high risk of recurrence, traditional treatments often fail to meet the

clinical needs. Thus, there is an urgent need for safer and more effective treatment

strategies to improve the survival rate of cancer patients.

By integrating functions of diagnostics and therapeutics into a single system, cancer

theranostics has attracted great attention in cancer research.2,3 With the rapid develop-

ment of nanotechnology in the last 2 decades, nanoparticles have been used in cancer

theranostics for more efficient early diagnoses and early therapies.4 Metal-organic

frameworks (MOFs) are a series of crystalline hybrid materials composed of metal

ions or clusters and organic ligands.5,6 Recently, MOFs were scaled down to the

nanometer sizes, namely nanoscale MOFs (NMOFs). NMOFs combine many unique

properties into a single loading and delivery system, including high loading capacities,

compositional and structural tenability, controllable and sustained drug release,
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excellent biocompatibility and intrinsic biodegradable.7,8 In

addition, postsynthetic modification offers NMOFs more

desired functionalities.9,10 Nanoscopic size of NMOFs

enables them to accumulate at the tumor sites due to the

enhanced permeability and retention (EPR) effect of

tumors.11 These unique features promote NMOFs’ widely

application in delivering imaging contrast agents and anti-

cancer drugs as attractive theranostic platforms.12

Based on the different microenvironment between

normal and tumor tissues, tumor-targeting NMOFs can

be designed to reduce the damage to normal tissues.

According to the EPR effect, NMOFs can be accumu-

lated at tumor sites, which is passive targeting.13 On the

other hand, active targeting can be achieved by adding

targeting ligands on the surface of NMOFs. Recent

researches demonstrated the successful fabrication of

stimuli-responsive NMOF systems based on acidic pH

conditions in tumor microenvironment14–16 and the

overexpressed biomarkers in cancer cells, such as vas-

cular endothelial growth factor (VEGF)17 and folate

reporter (FR).18,19

As shown in Figure 1, this review summarized the

studies on the diagnostic and therapeutic applications of

NMOFs in the last 5 years. The implication of NMOFs in

combination cancer therapies was especially emphasized.

The remaining challenges and future directions of NMOFs

translational studies were highlighted.

Implication of NMOFs in
Biomedical Imaging
The rapid development of biomedical imaging has greatly

facilitated the early detection of cancers. The metal ions or

clusters on NMOFs make them promising candidates as

contrast agents for biomedical imaging, such as magnetic

resonance imaging (MRI), computed tomography (CT), posi-

tron emission tomography (PET), and optical imaging (OI).

Compared with traditional small-molecule contrast agents

that are restricted by nonspecific distribution and rapid phar-

macokinetics, NMOFs-based contrast agents are easily func-

tionalized. In addition, NMOFs can co-deliver multiple

biomolecules at the same time, so they can be used for
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Figure 1 The applications of NMOFs in diagnostic and therapeutic strategies for cancers.

Abbreviations: MRI, magnetic resonance imaging; CT, computed tomography; PET, positron emission tomography; OI, optical imaging; NMOFs, nanoscale metal-organic

frameworks; RT, radiotherapy; PDT, photodynamic therapy; PTT, photothermal therapy.
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multimodal imaging and image-guided therapy. The implica-

tion of NMOFs as imaging agents is illustrated in Table 1.

MRI
NMOFs have recently been used as potential MRI agents

owing to their large metal payload, which greatly

improved MRI quality and diagnostic sensitivity.

Lin’s group36 reported the successful application of Gd3+-

based NMOFs as MRI contrast agents for the first time in

2006. Long relaxation time of Gd3+ ensured the capability of

MRI. In 2016, Wang et al20 synthesized a Gd and Eu co-

doped NMOF. By integrating T1 and T2 contrast agents into

a nanoparticle, the Eu,Gd-NMOFs@SiO2 simultaneously

modulated T1- and T2-weighted contrasts, suggesting their

great potential as T1-T2 dual-modal imaging probes.

In recent years, researchers tried to synthesize stimuli-

responsive MRI contrast agents to improve the sensitivity of

early detection and to increase the efficacy of imaging-guided

precision therapy. Ray and Sahu22 demonstrated that magnetic

Fe3O4@IRMOF-3/FA can function as strong T2-weighted

MRI contrast agents and delivery anti-cancer drug delivery

agents at the same time. Fe3O4 were used to offer strong

contrast in T2-weighted MRI. FA conjugated to the NMOF

surface served as the targeted reagent. Cell viability assays

indicated that Fe3O4@IRMOF-3/FA were nontoxic towards

HeLa and NIH3T3 cells. Lin et al26 successfully synthesized

Fe3O4-ZIF-8 as pH- and glutathione (GSH)-responsive MRI

contrast agents due to acidic conditions and overexpressed

GSH in the tumor microenvironment. The disassembled Fe3
O4-ZIF-8 released the Fe3O4 nanoparticles in tumor tissues,

leading to transformation from T2 to T1 contrast enhancement,

and providing a large inverse contrast compared with the T2
contrast enhancement for normal tissues.

CT
Due to high spatial resolution, deep tissue penetration, and

3-dimensional (3D) visibility, CT has been found increasing

use in the diagnosis and treatment of cancers in recent years.37

NMOFs served as contrast agents for CT imaging due to the

incorporation of high Z element.38 Owing to the large X-ray

absorption coefficient, gold nanoparticles were widely used as

contrast agents for CT imaging.39,40 Shang et al28 synthesized

small-scale core–shell nanoparticles, named as Au@MIL-88

(Fe). The modified nanocomposites possessed both CT

enhancement ability and the T2-weighted MRI property.

Therefore, Au@MIL-88(Fe) served as multimodality imaging

agents to integrate various image-enhancing behaviors into

a single system for multimodality imaging. In addition, MTT

assay showed that this nanoparticle had no significant cyto-

toxicity towards U87MG cells even at high concentrations.

Liu et al27 also suggested that TPZ/Hf/TCPP/PEG acted as an

efficient CT contrast agent due to the strong X-ray attenuation

of Hf. In vivo CT imaging ability was validated in 4T1 tumor-

bearing mice.

PET
Compared with other imagingmethods, PET imaging displays

superior sensitivity, deeper tissue penetration capability, and

better quantitative capacity, which made it widely used as

diagnostic tools from preclinical to clinical research.41 The

conventional PET imaging agent Fluorodeoxyglucose (FDG)

hardly targets cancer cells specifically. Fortunately, this can be

overcome by incorporated PET imaging agents into NMOFs.

Chen et al30 designed and synthesized a radioactive

MOF nanomaterial, 89Zr-UiO-66/Py–PGA-PEG-F3. F3 pep-

tide functioned as tumor-targeting ligand because it exhibited

potent binding to tumor cells. In addition, the NMOFs showed

a high loading capacity of DOX. This study suggested the

potential of NMOFs for PET-guided tumor-targeted drugs

delivery. In addition, in vivo safety evaluation confirmed that

there was no observable acute, medium, or chronic toxicity.

Table 1 The Applications of NMOFs in Biomedical Imaging

NMOFs Imaging

Methods

References

Eu,Gd-NMOF@SiO2 MRI [20]

Mn-IR825@PDA-PEG MRI [21]

Fe3O4@IRMOF-3/FA MRI [22]

Mn2(Cmdcp)2(H2O)2]·H2O}n

[Gd(Cmdcp)(H2O)3](NO3)·3H2O}n

MRI [23]

MOF@HA@ICG NPs MRI [24]

NMOF-SNO MRI [25]

Fe3O4-ZIF-8 MRI [26]

TPZ/Hf/TCPP/PEG CT [27]

Au@MIL-88(Fe) MRI/CT [28]

DOX@Gd-MOFs-Glu MRI/CT [29]
89Zr-UiO-66/Py-PGA-PEG-F3 PET [30]

Fe3O4@OCMC@IRMOF-3/FA OI [31]

DOX@NPMOFs OI [32]

[Rs⊂nMOF-801]-GS/[R6G⊂nUiO-67]-GS OI [33]

UiO-66@DOPA-LB OI [34]

UCNP@Fe-MIL-101_NH2 MRI/OI [35]

Abbreviations: MRI, magnetic resonance imaging; CT, computed tomography;

PET, positron emission tomography; OI, optical imaging; PDA, polydopamine;

PEG, polyethylene glycol; FA, folate acid; HA, hyaluronic acid; ICG, indocyanine

green; NPs, nanoparticles; SNO, S-nitrosothiol; TPZ, tirapazamine; TCPP, tetra

(4-carboxyphenyl)porphine; Py-PGA-PEG, pyrene-derived polyethylene glycol; Glu,

glucose; DOX, doxorubicin; OCMC, O-carboxymethyl chitosan; DOPA-LB, 1,2-

dioleoyl-sn-glycero-3-phosphate lipid bilayer.
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OI
OI is increasingly applied to medical and biological

research with its high resolution and high sensitivity.

NMOFs have been widely used in OI due to their attractive

water solubility. In 2016, Chowdhuri et al31 successfully

designed a magnetic NMOF, Fe3O4@OCMC@IRMOF-3/

FA. Highly fluorescent carbon dots were conjugated on the

surface of NMOFs for optical imaging and drug tracking. In

2017, Liu et al32 validated that zirconium-porphyrin MOFs

(NPMOFs) were an ideal OI-guided therapy system.

Porphyrin provided strong fluorescence, but it was hydro-

phobic with a tendency to aggregate. NPMOFs helped to

overcome these disadvantages and retained the photostabil-

ity of the porphyrin. Ryu et al33 encapsulated dye molecules

within pores of NMOFs and then found that Dye⊂NMOFs

could be successfully utilized for fluorescence imaging of

human cells. More recently, Zhang et al34 reported that

UiO-66@DOPA-LB exhibited improved biostability and

prolonged circulation time, which endowed it great poten-

tial to serve as a nanocarrier for imaging agents. When

labeling with NIR dye, IR-800, UiO-66@DOPA-LB-IR

-800 exhibited superior capability for the detection of

small tumor lesions at early stages.

Implication of NMOFs in Individual
Cancer Therapy
A major reason for the failure of conventional cancer

treatment is the inability of therapeutic drugs to be effi-

ciently directed to tumor sites without damage to healthy

tissues and organs. NOMFs not only improve the effects of

traditional treatments such as RT and chemotherapy, but

also benefit the newly development methods of photother-

apy due to their excellent characteristics (Table 2).

Implication of NMOFs in RT
RT is a potent strategy to eliminate tumors. About half of

cancer patients need at least one course of RT at different

stages of treatment.65 However, traditional radio-

therapeutic approaches lacked specificities to cancer cells

and may trigger severe side effects. Therefore, it is of

significant importance to explore effective methods to

enhance the efficacy of RT in tumor tissues and reduce its

adverse effects on normal tissues. NMOFs containing high-

Z elements showed promising potential to enhance RT-

induced tumor fading due to their strong X-ray attenuation

capabilities.66 Ni et al42 reported that Hf-DBB-Ru served as

a mitochondria-targeted NMOF for radiotherapy-

radiodynamic therapy (RT-RDT). Hf-DBB-Ru exhibited

strong mitochondria-targeting properties due to the pre-

sence of Ru(bpy)3
2+. Upon irradiation with low doses of

highly penetrating X-rays, Hf-DBB-Ru depolarized the

mitochondrial membrane to initiate cancer cell apoptosis.

In vivo study demonstrated that NMOF-enabled mitochon-

dria-targeted RT-RDT led to obvious regression of MC38/

CT26 xenograft tumors. More recently, Lan et al43 synthe-

sized a multifarious radioenhancer by integrating three

high-Z components (Hf12, DBB-Ir and W18) into one

NMOF. Upon X-ray irradiation, W18@Hf12-DBB-Ir

showed superb anticancer efficacy on two murine colorectal

adenocarcinoma models.

Implication of NMOFs in Chemotherapy
Low bioavailability, poor tumor specificity and intoler-

able systemic toxicity are main obstacles for the clinical

practice of chemotherapy.67 To overcome these disad-

vantages, NMOFs were used as drug delivery platforms

to specifically target tumor tissues and controllably

release anti-cancer drugs.17,68,69 Several chemotherapeu-

tic drugs successfully delivered by NMOFs in the last 2

decades, such as cisplatin,68 5-fluorouracil (5-FU),47,69

Doxorubicin (DOX),31,48 paclitaxel.14,22

In 2016, Chowdhuri et al31 synthesized a new series of

hybrid magnetic NMOFs that combined cancer-targeted

drug delivery/imaging, high DOX loading capacity, and

pH-sensitive DOX release into one single system. FA

encapsulation on the surface of IRMOF-3 specifically tar-

geted folate-overexpressed cancer cells. Chitosan was used

for controlled and pH-responsive drug release. Carbon dots

were used for optical bioimaging. The as-synthesized

Fe3O4@OCMC@IRMOF-3/FA showed high DOX load-

ing efficiency. In vitro cytotoxicity study showed that Fe3O4

@OCMC@IRMOF-3/FA without DOX were nontoxic

towards both HeLa cancer cells and L929 normal cells.

While DOX encapsulated Fe3O4@OCMC@IRMOF-3/FA

caused toxicity toward both normal and cancer cells, toxi-

city was more prominent in cancer cells than in normal

cells. In 2018, Chen et al17 developed VEGF-induced

DOX-loaded NMOFs to achieve specific killness of cancer

cells. Overexpressed VEGF in cancer cells functioned as

a gate to achieve controlled release of DOX. Apoptosis

experiments revealed selective cytotoxicity of the DOX-

loaded NMOFs towards the MDA-MB-231 breast cancer

cells.

Samui et al50 developed NMOFs as targeted drug car-

riers and biomedical imaging by a single step synthetic
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procedure. Lactobionic acid (LA) is the ligand of asialo-

glycoprotein receptors overexpressing in hepatocellular

cells.70 The LA-conjugated NMOFs performed as an

effective targeting ligand towards HepG2 cells for drug

delivery. The MTT assay revealed that the DOX-loaded

LA-modified NMOFs showed greater cytotoxicity towards

HepG2 cells compared to normal HEK cells. Zhang et al29

developed a novel strategy for the design of smart NMOF-

based nanoplatforms for MRI-guided tumor-targeted pre-

cise chemotherapy. The glucose not only acted as

a targeting ligand to glucose-transported proteins in cancer

cells, but also endowed the NMOFs with a pH-responded

release of DOX. The presence of Gd3+ ions ensured the

MRI capability. Therefore, targeted MRI-guided pH-

responded chemotherapy was achieved by NMOFs-Glu

nanocomposites.

In conclusion, smart theranostic platforms that com-

bine tumor targeting, stimuli-responded release of anti-

cancer drugs can be achieved by NMOFs, thus to realize

imaging-guided precise chemotherapy.

Implication of NMOFs in Phototherapy
Phototherapy is an effective anticancer intervention that

relies on light activation of photoactive materials localized

Table 2 The Examples of NMOFs in Individual Cancer Therapy

Therapy Strategies NMOFs Cancer Cell Types Animal Models References

RT-RDT Hf-DBB-Ru MC38/CT26 cells Mice bearing MC38/CT26 tumors [42]

W18@Hf12-DBB-Ir MC38/CT26 cells Mice bearing MC38/CT26 tumors [43]

Chemotherapy VEGF-responsive DOX-loaded NMOFs MDA-MB-231cells None [17]

Fe-MIL-53-NH2-FA-5-FAM/5-FU MGC-803 cells None [19]

Fe3O4@IRMOF-3/FA HeLa cells None [22]

DOX@Gd-MOFs-Glu HeLa cells Mice bearing Hela tumors [29]
89Zr-UiO-66/Py-PGA-PEG-F3 MDA-MB-231cells Mice bearing MDA-MB-231 tumors [30]

Fe3O4@OCMC@IRMOF-3/FA HeLa cells None [31]

Fe3O4@ZIF-8 MCF-7 cells None [44]

UiO-66/UiO-67 U-87 MG/HSC-3 cells None [45]

DOX@UiO-68-FA HepG2 cells Mice bearing HepG2 tumors [46]

UCNP@ZIF-8/FA HeLa cells None [47]

P@ZIF-8 MDA-MB-231 cells None [48]

Cisplatin@NMOF-1/DOX@NMOF-1 HeLa cells None [49]

NH2-MIL-53(Al) HepG2 cells None [50]

PDT FA-PCN-224 HeLa/A549 cells None [18]

DBP-UiO SQ20B cells Mice bearing SQ20B tumors [51]

DBC-UiO CT26/HT29 cells Mice bearing CT26/HT29 tumors [52]

PS@MOF-FA HeLa cells None [53]

NP-1 HepG2/HCT116 cells Mice bearing HCT116 tumors [54]

(nUiO-67)-Ru(bpy)3
2+ NPs A549 cells None [55]

UiO-66-TPP-SH HeLa cells None [56]

ZnDTPP-I2⊂UiO-66 HepG2 cells None [57]

PCN-224-Pt HeLa/4T1 cells Mice bearing H22 tumors [58]

MB@THA-NMOF-76@cRGD A549 cells None [59]

Ti-TBP CT26 cells Mice bearing CT26 tumors [60]

Au@ZIF-8 EMT-6 cells Mice bearing EMT-6 tumors [61]

MOF QDs HeLa cells Mice bearing HeLa tumors [62]

PTT Mn-IR825@PDA-PEG 4T1 cells Mice bearing 4T1 tumors [21]

MOF@HA@ICG NPs MCF-7 cells Mice bearing MCF-7 tumors [24]

UiO-66@PAN CT26/HCT116 cells Mice bearing CT26 tumors [63]

THA@Eu-NMOF@Fe/TA None None [64]

Abbreviations: RT-RDT, radiotherapy-radiodynamic therapy; PDT, photodynamic therapy; PTT, photothermal therapy; DOX, doxorubicin; FA, folate acid; OCMC,

O-carboxymethyl chitosan; 5-FAM, 5-carboxyfluorescein; 5-FU, fluorouracil; Py-PGA-PEG, pyrene-derived polyethylene glycol; Glu, glucose; PS, photosensitizer; NPs,

nanoparticles; PCN, porous coordination network; TPP, tris(4-chlorophenyl)porphyrin; MB, methylene blue; HTHA, 4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione;

cRGD, cyclic Arg-Gly-Asp peptide; TBP, 5,10,15,20-tetra(p-benzoato)porphyrin; PDA, polydopamine; PNA, polyaniline; HA, hyaluronic acid; ICG, indocyanine green.
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in tumors, and is commonly implemented in the forms of

photodynamic therapy (PDT) and photothermal therapy

(PTT).71 Photosensitizers (PSs) are required to enhance

the efficacy and selectivity of phototherapy via more sing-

let oxygen (1O2) generation in PDT and photothermal

responses in PTT.72 In both cases, delivery of PSs to the

tumor tissues is of significant importance.

Implication of NMOFs in PDT

PDT combines 3 components, namely PS, light source and

oxygen, and has emerged as an attractive new method of

tumor treatment. Upon irradiation, the excited PS transfers

energy to the surrounding oxygen to generate reactive

oxygen species (ROS), particularly 1O2, resulting in cell

death and tumor-specific immunity.71,73 PDT provides an

effective local cancer treatment by eradicating malignant

tumors without damages to the surrounding normal tissues.

However, owing to the poor water solubility and light

penetration depth of traditional PSs, the clinical applica-

tion of PDT is potentially limited. Recently, photosensitive

agent-based NMOFs were designed to enhance

PDT.51,52,61,74 Proper size and the micropore of NMOFs

allowed high PS loadings without self-quenching, whereas

the porous structures of NMOFs facilitated the diffusion of

ROS, thus leading to improved efficacy in PDT.74

Lin’s group reported the first successful synthesis of

a porphyrin-based NMOF, DBP-UiO, as an efficient PS in

PDT for resistant head and neck cancer.51 They further

optimized the design of NMOF via reducing the porphyrin

ligands to its chlorin counterpart and synthesized the first

chlorin-based NMOF, DBC-UiO. The authors demon-

strated the superior PDT efficacy of DBC-UiO over DBP-

UiO both in vitro and in vivo in 2 colon cancer models.52

In addition, Park et al18 synthesized the size-

controllable NMOF, PCN-224 to enhance PDT efficacy.

This nanoparticle demonstrated active targeting property

due to postsynthetic FA modification. Jia et al59 success-

fully synthesized the MB@THA-NMOF-76@cRGD,

which achieved NIR-triggered targeting PDT.

Modifying cRGD on the surface of MB@THA-NMOF

-76 had better biocompatibility and targeted properties

into cancer cells. Recently, Ma et al61 described the

synthesis and characteristics of an oxygen self-supplied

nanodelivery system with embedded AuNPs on the

NMOF surface as a catalase-like nanozyme and encap-

sulating Chlorin e6(Ce6) inside as a PS. This powerful

nanoplatform not only made full use of NMOFs to fully

utilize the advantages of PSs, but also produced O2 in

a more effective way to relieve tumor hypoxia.

Implication of NMOFs in PTT

PTT causes thermal ablation and death of tumor cells with

photoabsorbing agents to generate heat from light activation,

preferably near-infrared (NIR) light.75 It was recognized as

a safe method to reduce the normal tissue damage and system

adverse effects. Thewidely used PTTagents, such as inorganic

gold nanomaterials and nanorods, are nonbiodegradable and

have the potential for long-term toxicity. NMOFs-based PTT

agents are biodegradable, exhibiting high tumor-homing abil-

ity and strong NIR absorption coefficients.

Wang et al63 synthesized polymer MOF hybrids, UiO-

66@PAN, which not only indicated significant photothermal

therapeutic effect in vitro, but also effectively inhibited the

growth of colon cancers in vivo. Cai et al24 synthesized

a multifunctional nanoplatform for imaging-guided, anti-

cancer PTT. Hyaluronic acid (HA) was conjugated to the

MOF nanoparticles to target tumor cells. Indocyanine green

(ICG), was incorporated function as NIR organic dye. And the

Fe(III) ions in the MOF nanoparticles were utilized in

T2-weighted MRI. In vitro study showed that the

MOF@HA@ICG nanoparticles exhibited strong NIR absor-

bance and low cytotoxicity. In vivo study indicated that the

MOF@HA@ICG nanoparticles could accumulate at tumor

sites due to their targeting capability and effectively inhibited

the growth of MCF-7 xenograft tumors.

Yan et al64 designed and assembled a smart all-in-one

nanoparticle THA@Eu-NMOF@Fe/TA by postsynthetical

functionalization of an Eu(III)-based NMOF, which

achieved precise temperature sensing and optical heating

simultaneously. Fe/TA had PTT effects induced by 808 nm

laser irradiation. The long emission lifetime and ultrasen-

sitive transition of the Eu3+ endowed THA@Eu-NMOFs

with the ability of real-time temperature sensing.

All these studies suggested PTT agents based on

NMOFs significantly enhanced the lethal effects of PTT

and reduce systemic side effects.

Implication of NMOFs in Other Cancer

Therapies
Nucleic Acid-Based Cancer Detection and

Therapeutics

NMOFs were used to deliver nucleic acids such as DNA,76

small interfering RNA (siRNA)68,77 and microRNA.78,79

Morris et al76 demonstrated that UiO-66-N3 NMOFs

had the ability to deliver DNA to HeLa cells to achieve
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intracellular gene regulation. In addition, multiple research

demonstrated that siRNA could be loaded by NMOFs to

overcome multidrug resistance (MDR).68,77 Wu et al79

developed NMOF-based strategies for multiplexed

microRNA (miRNA) detection in living cancer cells for

early diagnosis of cancer. Previous researches demon-

strated that miRNA functioned as specific biomarkers on

different kinds of cancer cells.80 For example, miRNA-21

is overexpressed in MCF-7 breast cancer cells, and

miRNA-221 is overexpressed in OVCAR-3 ovarian cancer

cells.81,82 Chen et al78 designed miRNA-21- and miRNA-

221-responded DOX-loaded NMOFs for the treatment of

breast cancer and ovarian cancer.

Nitric Oxide (NO) Delivery

Recently, free-radical gas NO has drawn widespread atten-

tion in cancer treatment.83,84 NMOFs have been reported

for use in NO delivery due to suitable characteristics.85

Zhang et al25 developed a Mn-porphyrin NMOF platform

as a novel theranostic system for MRI-guided controllable

NO release and PTT synergetic therapy under single NIR

irradiation. This platform showed effective tumor accumu-

lation in vivo.

Implication of NMOFs in
Combination Cancer Therapy
Generally, individual cancer therapy approach cannot elim-

inate tumor effectively. The combination of two or more

therapeutic treatments has been considered as a promising

cancer treatment strategy due to fewer side effects and syner-

gistic anti-cancer efficacy.86 The realization of combination

therapy based on NMOFs relied heavily on their multimodal

loading capability. Recently, various types of therapeutic

combinations, such as dual chemotherapy drugs,69

chemotherapy/siRNAs,68,77 chemotherapy/PDT,27,32 PDT/

immunotherapy87–90 or RT/immunotherapy91,92 based on

NMOFs have been examined for tumor therapies both

in vitro and in vivo (Table 3).

Dual Chemotherapy Drugs
Single chemotherapy drug always needs a high dose,

which brings severe side effects. Zhang et al69 firstly

established a co-delivery platform of 2 different chemical

drugs based on nanoscale ZIF-90, which not only reduced

the drug toxicity, but also achieved effective therapeutic

synergy. Owing to high surface area and excellent biocom-

patibility, ZIF-90 was chosen as the framework of the

Table 3 The Examples of NMOFs in Combination Cancer Therapy

Therapy Strategies NMOFs Cancer Cell Types Animal Models References

Dual Chemo-drugs 5-Fu/DOX 5-FU@ZIF-90-DOX None None [69]

Chemo/siRNAs Cisplatin/siRNAs siRNA/UiO-Cis SKOV-3 cells None [68]

Paclitaxel/siRNAs Se/Ru@MIL-101-(P+V)siRNA MCF-7/T cells Mice bearing MCF-7/T tumors [77]

Chemo/PDT DOX/PDT DOX@NPMOFs HepG2 cells Mice bearing HepG2 tumors [32]

DOX/PDT DOX/UCMOFs 4T1 cells Mice bearing 4T1 tumors [93]

DOX/PDT NH2-MIL-125/PEG MCF-7 cells None [94]

Tirapazamine/PDT TPZ/Hf/TCPP/PEG 4T1 cells Mice bearing 4T1 tumors [27]

Banoxantrone/PDT A@UiO-66-H-P U87MG cells Mice bearing U87MG tumors [95]

Chemo/PTT DOX/PTT Au@Cu3(BTC)2NPs A549 cells Mice bearing A549 tumors [96]

Chemo/PTT/PDT CPT/PTT/PDT AuNR@MOFs@CPT 4T1 cells Mice bearing 4T1 tumors [97]

PTT/NO NMOF–SNO MCF-7 cells Mice bearing MCF-7/T tumors [25]

PDT/RT Hf-TCPP NMOF-PEG 4T1 cells Mice bearing 4T1 tumors [66]

PDT/Immunotherapy PDT/IDOi IDOi@TBC-Hf CT26/MC38 cells Mice bearing CT26/MC38 tumors [88]

PDT/αPD-1 TBP-nMOF 4T1 cells Mice bearing 4T1 tumors [89]

PDT/αPD-L1 Fe-TBP CT26 cells Mice bearing CT26 tumors [87]

RT/Immunotherapy RT/αPD-L1 Hf6-DBA and Hf12-DBA CT26 cells Mice bearing CT26 tumors [91]

Abbreviations: RT-RDT, radiotherapy-radiodynamic therapy; PDT, photodynamic therapy; PTT, photothermal therapy; IDOi, Indoleamine 2.3-dioxygenase inhibitor; αPD-1,

anti-programmed death-1; α-PD-L1, anti-programmed death-ligand 1; 5-FU, 5-fluorouracil; DOX, doxorubicin; NP,nanoparticles; PEG, polyethylene glycol; TPZ, tirapaza-

mine; TCPP, tetra(4-carboxyphenyl)porphine; BTC, 1,3,5-benzenetricarboxylate; CPT, camptothecin; SNO, S-Nitrosothiol; TCPP, tetra(4-carboxyphenyl)porphine; TBC,

tetra(p-benzoato)chlorin; TBP, 5,10,15,20-tetra(p-benzoato)porphyrin; DBA, 2.5-di(p-benzoato)aniline.
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NMOFs. This co-delivery system was generated by attach-

ing DOX on the surface of nanoscale ZIF-90, while encap-

sulating 5-FU into the pores of the framework at the same

time. Moreover, ZIF-90 exhibited more stability at high

pH, while at lower pH, the framework of ZIF-90 was

instable. Due to the acidic environment at tumor sites,

5-FU@ZIF-90-DOX could achieve cancer-targeted co-

delivery and controlled release of DOX and 5-Fu.

Chemotherapy/siRNAs
RNA interference (RNAi) is a sequence-specific and post-

transcriptional gene silencing technique, which can be used

to regulate protein expression and is currently used as a tool

to modulate disease-related genes, such as MDR genes.98

Several studies have shown that silencing MDR genes using

RNAi reversed cisplatin resistance in ovarian cancer

cells.99–101 Several NMOFs have been developed to deliver

chemotherapeutic drugs and siRNAs targeting MDR to

chemo-resistant cancer cells to overcome MDR.68,77

He et al68 reported the first use of UiO NMOFs for the co-

delivery of cisplatin and pooled siRNAs to reverse MDR in

ovarian cancer cells. Cisplatin prodrug was encapsulated into

the pores of UiO,whereas pooled siRNAs binded tometal ions

on the NMOFs surfaces. UiO protected siRNAs against nucle-

ase degradation, and facilitated the siRNAs internalization to

enhance the silencing efficiency of MDR genes. Chen et al77

used a similar strategy to utilize Se/Ru@MIL-101-(P+V)

siRNA nanoparticles for pooled siRNAs delivery to overcome

MDR in Taxol-resistant breast cancer cells. MIL-101 had

a large surface area. Selenium (Se)-based complexes exhibited

excellent anti-tumor effects and low systemic toxicity,102 and

ruthenium (Ru) anticancer drugs showed a remarkable anti-

metastatic activity.103 In vivo study indicated that Se@MIL-

101-(P+V)siRNA significantly suppressed cancer growth in

MCF-7/T cells xenografts model.

Chemotherapy/PDT or Chemotherapy/

PTT
Several studies demonstrated that combining chemother-

apy based on PDT potentially enhanced anticancer

efficacy.27,95 The main obstacle of PDT is the hypoxia of

tumor environment, which significantly limits its applica-

tion. Therefore, relieving tissue hypoxia by NMOFs can be

used to enhance the efficacy of PDT. Liu et al27 synthe-

sized TPZ/Hf/TCPP/PEG with high loading capacity of

the hypoxia-activated prodrug tirapazamine. This study

demonstrated the potential of NMOF-based platforms to

combine PDT and chemotherapy. More recently, He et al95

synthesized multifunctional A@UiO-66-H-P NMOFs,

which also achieved a combination of NMOFs-based

PDT with hypoxia-activated chemotherapy. In addition,

due to the large surface area of A@UiO-66-H-P NMOFs

and concentration gradient of phosphate between plasma

and cells, efficient prodrug loading and controlled prodrug

release can be realized.

The combination of chemotherapy with PTT also

showed a synergistic anti-cancer effect. He et al96 manu-

factured multifunctional core–shell Au@Cu3(BTC)2 nano-

particles, which showed both high DOX loading efficiency

and excellent photothermal effect.

With the unique features of good biocompatibility and

high sensitivity, Au nanoparticles were recognized as

ideal materials of this NMOF. Due to good stability,

low toxicity and strong NIR absorbance, Cu3(BTC)2
was selected to enhance the photothermal effect. In

vitro cytotoxicity studies revealed that even at a high

concentration, Au@Cu3(BTC)2 nanoparticles exhibited

very low cytotoxicity on A549, beas-2b, MCF-7 and

HeLa cells. In vivo study indicated that there were no

obvious body weight losses of A549 xenograft model,

suggesting its safety. This work inspired further

researches on the invention of more multifunctional ther-

anostic platforms based on NMOFs.

PDT/RT
Severe toxicity greatly limits the potential of RT. Combining

RTwith other therapeutic approaches has drawn great atten-

tion in the past few years, which significantly enhanced anti-

cancer efficacy and decreased systemic toxicity.104,105 In

2016, Liu et al66 reported the successful synthesis of novel

NMOFs that were used for the combination of PDTandRT in

a murine breast cancer model. In this NMOFs platform,

TCPP served as a PS of PDT, and Hf4+ with strong X-ray

attenuation ability functioned as a radiosensitizer to enhance

RT-induced tumor killing. In addition, these NMOFs showed

tumor targeting due to the EPR effect. In vivo study indicated

that the mice bearing 4T1 tumors showed greatly tumor

shrinking in the combined therapy group (i.v. injection with

NMOF-PEG + X-ray + Laser) compared with respective

mono-therapies.

PDT/Immunotherapy
PDT can efficiently eliminate local tumors but is unable to

control distant metastases. Immunotherapy, especially the

application of immune checkpoint inhibitors, has achieved
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promising anti-cancer efficacy, but only worked for a few

patients. It is also ineffective against poorly immunogenic

tumors. Lu et al52 demonstrated that NMOF-mediated

PDT induced immunogenic cell death, which endowed

them with potential applications to enhance cancer immu-

notherapy. In recent years, there have been several studies

about combining PDT and immunotherapy that elicited

superb anticancer efficacy both in local and distant tumor

in animal models.87–90

Indoleamine 2,3-dioxygenase (IDO) is an immune

checkpoint. In 2016, Lu et al88 synthesized a chlorin-

based nMOF, TBC-Hf, to load an IDO inhibitor (IDOi),

which achieved an synergistic anti-cancer effect by com-

bining NMOF-enabled PDT and immunotherapy. The

combination therapy not only eliminated local tumors,

but also achieved abscopal effects in breast and colorectal

cancer mouse models. The mechanism study revealed an

increased T cell infiltration in the tumor microenvironment

after PDT treatment with IDOi@TBC-Hf. This study indi-

cated the potential of NMOFs to enhance cancer immu-

notherapy. Similar strategies were also used to reduce

primary and metastatic lung tumors.90

To overcome the hypoxia of tumor microenvironment,

Lan et al87 synthesized NMOF to improve the PDT-

induced immune response even under hypoxic conditions.

Fe-TBP-based PDT significantly improved the efficacy of

anti-programmed death-ligand 1 (α-PD-L1) treatment and

elicited abscopal effects in a mouse model of colorectal

cancer by recruiting both CD4+ and CD8+ cytotoxic

T cells. Meanwhile, Zeng et al89 synthesized TBP-

NMOF, which can also function as a superb PS of PDT

under hypoxic conditions. When combined with anti-

programmed death-1 (αPD-1) antibody, abscopal effects

were elicited.

RT/Immunotherapy
RT has the function of local immunomodulatory, which

changes the microenvironment of irradiated tumors and

synergizes with immune checkpoint blockade. Ni et al91

reported the design of Hf-based NMOFs, Hf6-DBA and

Hf12-DBA, as highly effective radioenhancers, which

combined NMOF-mediated RT and an α-PD-L1 antibody,

achieving local and distant rejection of colorectal tumors

in mouse models. In addition, Lu et al92 described that

++ +
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Figure 2 Schematic presentation of the synthesis and the implication of NMOFs in cancer theranostics.

Abbreviations: FA, folate acid; LA, lactobionic acid.
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combined NMOF-enabled RD-RDT therapy with IDOi

both local and systemic tumors in mouse models of breast

and colorectal cancer.

Challenges of the Clinical
Translation of NMOFs
By combining both biomedicine imaging agents and anti-

cancer drugs in a single NMOF platform, we can achieve

both diagnosis and therapy of cancers at the same time. Due

to passive targeting and active targeting of NMOFs, imaging

agents and therapeutic drugs can accumulate at the tumor

sites. Controlled and sustained drug delivery can be realized

due to the existence of stimuli-responsive NMOFs. In addi-

tion, many surface modification approaches, such as PEG

modification, have been employed, which improved the sta-

bility and long-circulating property of NMOFs efficiently.

Moreover, combined therapeutic strategies based on NMOFs

substantially enhanced the anti-tumor effect (Table 3), and

researchers highly valued the importance of in vivo study.

Figure 2 presents the schematic of the synthesis and the

implication of NMOFs in cancer theranostics briefly.

Although significant progress has been made in the

development of NMOFs for biomedical imaging and

anti-cancer drug delivery, there were still some chal-

lenges which limit their translation to clinical settings.

Firstly, the long-term toxicity and biosafety of NMOFs

still need to be further evaluated. Although most

NMOFs systems have no significant acute or subacute

cytotoxicity in mice, but the long-term safety is to be

examined. Secondly, there are significant differences

between animal models and humans. Although many

NMOFs platforms displayed efficient anti-cancer effects

in animal models, its functions in the human body are

still to be investigated. In addition, although targeted

ligands can be incorporated into the NMOFs to realize

tumor-targeted delivery of imaging agents and anti-

cancer drugs, it is still quite difficult to distinguish

cancerous and normal cells. Moreover, the construction

of NMOFs systems often involves complex chemical

synthesis and post-modifications Further studies are

required to fully validate the implication of NMOFs at

the clinical translation stage.

Given recent technical advancements over the last dec-

ades, smart and targeted NMOFs as cancer theranostic

platforms will be further improved to enhance anti-

cancer effects and better life quality for cancer patients.
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