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Background: The use of focused assessment with sonography in trauma (FAST) enables

clinicians to rapidly screen for injury at the bedsides of patients. Pre-hospital FAST

improves diagnostic accuracy and streamlines patient care, leading to dispositions to

appropriate treatment centers. In this study, we determine the accuracy of artificial

intelligence model-assisted free-fluid detection in FAST examinations, and subsequently

establish an automated feedback system, which can help inexperienced sonographers

improve their interpretation ability and image acquisition skills.

Methods: This is a single-center study of patients admitted to the emergency room

from January 2020 to March 2021. We collected 324 patient records for the training

model, 36 patient records for validation, and another 36 patient records for testing. We

balanced positive and negative Morison’s pouch free-fluid detection groups in a 1:1 ratio.

The deep learning (DL) model Residual Networks 50-Version 2 (ResNet50-V2) was used

for training and validation.

Results: The accuracy, sensitivity, and specificity of the model performance for ascites

prediction were 0.961, 0.976, and 0.947, respectively, in the validation set and 0.967,

0.985, and 0.913, respectively, in the test set. Regarding feedback prediction, the model

correctly classified qualified and non-qualified images with an accuracy of 0.941 in both

the validation and test sets.

Conclusions: The DL algorithm in ResNet50-V2 is able to detect free fluid in

Morison’s pouch with high accuracy. The automated feedback and instruction system

could help inexperienced sonographers improve their interpretation ability and image

acquisition skills.
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INTRODUCTION

Traumatic injury remains the leading cause of death among
individuals younger than 45 years of age (1), with over 210,000
deaths per year in the last 5 years in the United States (2).
A substantial proportion of such patients suffered from blunt
abdominal trauma (3). Computed tomography had been the gold
standard for diagnosing intra-abdominal or thoracic injuries.
However, time delays and transportation out of the emergency
department (ED) hinders the evaluation of hemodynamically
unstable patients. The use of focused assessment with sonography
in trauma (FAST) enabled clinicians to rapidly screen for injury
at the bedsides of patients. Recent studies have shown that FAST
plays a key role in trauma detection, changing the subsequent
management of an appreciable number of patients. In addition,
pre-hospital FAST improves diagnostic accuracy and streamlines
patient care, leading to dispositions to appropriate treatment
centers. It was previously demonstrated that after performing
pre-hospital FAST, pre-hospital therapy and management can
be altered for 30% of the patients, and patient disposition can
occur in 22% of the cases being admitted to the ED (4–6). A
major limitation of ultrasound is that it is operator-dependent,
with training, experience, and inter-operator variability playing
an important role (7).

Artificial intelligence (AI), a subfield of computer science,
helps create systems that perform tasks in medicine, medically
oriented human biology, and healthcare improvements. Machine
learning (ML), a subfield of AI, outperforms traditional
approaches to various diseases and clinical conditions, including
diagnosis, quality of patient care, and prognosis of a disease
(8–14). Compared with traditional approaches, ML procedures
may have the ability to interact with non-linear and high-
order effects in variable parameters. Owing to the nature of
operator-dependent imaging modality in ultrasound, developing
deep learning (DL) models that assess image quality and
provide feedback to sonographers was considered to provide
ultrasound with more intelligence. AI-assisted ultrasound is
expected to minimize operator-dependent imaging modality,
altering medical therapy and patient disposition in critical care
units and pre-hospital care.

Owing to the amorphous nature of intra-abdominal free
fluid, AI-assisted ascites detection remains a challenge. Our
study aims to determine the accuracy of AI model-assisted
free-fluid detection during FAST examination and subsequently
establish an automated feedback system, which can help
inexperienced sonographers improve their interpretation ability
and image acquisition skills. Moreover, AI model-assisted real-
time ultrasound could enhance the diagnostic performance of
FAST when used by paramedics or during an emergency.

MATERIALS AND METHODS

Study Setting and Variables
This is a single-center study of patients admitted to the ED at
Kaohsiung Chang Gung Memorial Hospital, Taiwan. Abdominal
ultrasound clips were taken for a variety of clinical conditions
and saved in the emergency ultrasound image archive in an

MPEG-4 format. These clips were taken by 10 certified attending
emergency physicians using a time-motion ultrasound machine
with a 5–2 MHz curved mechanical sector transducer. The
study was approved by the IRB committee of the hospital (IRB
number: 202001766B0C601)

For the training set, all patients aged >18 years who
underwent abdominal ultrasounds in the ED from January
2020 to October 2020 were included. Because of the study’s
retrospective nature in this study period, informed consent
from the subjects was not required. Ultrasound examinations
were retrospectively reviewed and retrieved from the image
database in the ED during the study period. We only retrieved
examinations performed on the right upper abdominal quadrant
for Morison’s pouch scanning. Morison’s pouch is the space
that separates the liver from the right kidney, considered the
lowest intra-abdominal area for detecting free fluid in the
supine position.

For the validation and test sets, patients aged >18 years who
underwent FAST study in the ED from November 2020 to March
2021 were included. Informed consent was obtained from all
subjects involved during this study period prior to beginning the
abdominal ultrasound examinations.

To compare the ascites interpretation between emergency
medicine (EM) residents and model performance, 10 registered
EM residents were recruited for the trial from hospital personnel.
Each EM resident had received at least a 1-year training course
in the ED. The result for the EM residents’ ultrasound finding
interpretation of the test set was compared to that of the DL
model in terms of accuracy, sensitivity, and specificity.

Data Pre-processing and Labeling
All collected ultrasound videos were first converted to still images
at a rate of 10 frames per second with an initial size of 800× 600
pixels. Subsequently, each image was reviewed by 4 ultrasound
instructors in the hospital to determine whether it was positive
or negative for free-fluid detection.

A feedback labeling for the standard Morison’s pouch view
was subsequently added during the image review process to
implement the assisting system that enabled the operator to
distinguish whether the current image was qualified to detect the
Morison’s pouch fluid. The qualified view was defined as the area
between the liver and kidney, caudal edge of the liver, or right
paracolic gutter area. The image was classified as a non-qualified
view if less than one-third of the right kidney was observable.

After the review process, each image was classified into one
of four classes: positive/qualified view, positive/non-qualified
view, negative/qualified view, and negative/non-qualified view.
All images were labeled by four qualified ultrasound instructors
who were certified attending emergency physicians in Taiwan,
and at least 3 out of 4 instructors had to agree on the classification
of each image.

Deep Learning Training Process
To avoid overfitting the model, all labeled images were
cropped to a size of 400 × 400 pixels to remove unnecessary
information such as the background grid and knobology settings
information. Other image augmentation techniques, namely,
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random rotation, random zoom, and horizontal flip, were applied
to the training set.

In this study, we used the DL model Residual Networks 50-
Version 2 (ResNet50-V2) for training and validation (15). With
limited clinical data, we obtained model weights of ResNet50-
V2 from the ImageNet database (16) as a pre-trained model
and performed transfer learning through a fine-tuning process
during training. During transfer learning, we froze the model
weights in convolution layers 1 to 3 and updated the weights
in convolution layers 4 and 5 and in the fully connected neural
network on the top during training. All the aforementioned
deep neural networks were developed using Python 3.8 and
TensorFlow version 2.4.1.

Statistical Analysis
We balanced positive and negative free-fluid detection groups
with a 1:1 ratio during model training, validation, and testing
to prevent deviations due to imbalanced data. We collected 162
patient records with positive free-fluid detection and randomly
extracted 162 patient records with negative findings from the
image database for the training model. We also collected 18
patient records each from the positive and negative groups
for validation and another 18 patient records each for testing.
Each patient record contained 15–35 second long ultrasound
videos. During the DL training process, we tried to optimize
the model to achieve the best performance in the validation
set. The final performance was evaluated in the test set as an
external validation.

The performance of the model for fluid detection was assessed
in terms of accuracy, sensitivity, and specificity. The performance
of the feedback was evaluated based on accuracy. In addition,
from a clinical perspective, sensitivity is consideredmore relevant
than specificity because it shows how accurately the intra-
abdominal free fluid was identified; thus, the level of sensitivity
was prioritized over specificity during training and validation.

For a real-time ultrasound assisting system, predicting a class
for every input image might be difficult. Alternatively, generating

a prediction every 10 frames is more feasible in clinical practice.
Consequently, we also considered another evaluation strategy
for model performance on ascites prediction in both validation
and test sets, which employed a majority-voting scheme for
consecutive images in a 1-s window, where the majority of the
image class predictions were taken in that specific time frame.

In this study, continuous variables were presented as mean
± standard deviation. Dichotomous data were presented as
numbers (percentages). Categorical variables were analyzed using
the chi-square test, and continuous variables were analyzed
using the independent sample t-test. All statistical analyses were
performed using SPSS 26.

RESULTS

The demographic characteristics of the patients included in the
study are listed in Table 1. There was no significant difference in
age, sex, body mass index, and underlying diseases between the
training set, validation set, and test set. For training, validation,
and testing, 10,794, 6,118, and 5,456 images were, respectively,
included. In the validation set, there were 3,121 negative and
2,997 positive ascites images. Among them, 3,750 images were
labeled as qualified images. In the 2,997 positive ascites images,
there were 1,488 frames with mild ascites, 774 with moderate
ascites, and 735 with massive ascites. In the test set, there were
2,780 positive and 2,676 negative ascites images. Among them,
3,337 images were labeled as qualified images. In the 2,676
positive ascites images, there were 1,332 frames with mild ascites,
682 with moderate ascites, and 662 with massive ascites. Figure 1
depicts a flowchart of the dataset construction process.

To prevent the model from overfitting during training, we
added a batch normalization layer and a dropout layer on top of
the last fully connected neural layer of the final developed model.
We used the Adam algorithm as an optimizer with an initial
learning rate of 2 × 10−6 and adjusted the class weight to favor
prediction over positive ascites for clinical priority purposes. The
model was trained for 100 epochs, and the best model weights

TABLE 1 | Demographic data of patients.

Training set Validation set Test set P value

(n = 324) (n = 36) (n = 36)

Demographic characteristics

Age, years, mean ± SD 59.7 ± 17.2 61.1 ± 15.9 60.5 ± 19.2 0.889

Sex, male, n (%) 174 (53.7) 19 (52.8) 20 (55.6) 0.981

BH, mean ± SD 162.2 ± 8.8 161.8 ± 9.8 163.4 ± 8.5 0.731

BW, mean ± SD 60.9 ± 13.1 62.6 ± 14.2 62.3 ± 12.0 0.661

BMI (kg/m2 ), mean ± SD 23.3 ± 4.4 23.6 ± 4.3 23.4 ± 4.1 0.968

Underlying disease

Heart failure, n (%) 19 (5.9) 3 (8.3) 2 (5.6) 0.779

Chronic kidney disease, n (%) 57 (17.6) 6 (16.7) 5 (13.9) 0.906

Liver cirrhosis, n (%) 40 (12.3) 5 (13.9) 6 (16.7) 0.840

Malignancy, n (%) 54 (16.7) 4 (11.1) 8 (13.9) 0.699

BH, body height; BW, body weight; BMI, body mass index.
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FIGURE 1 | Flowchart of dataset construction.

during training were saved and evaluated in the validation and
test datasets.

The confusion matrix for the four class prediction results
in the validation and test sets are shown in Figure 2. The
accuracy, sensitivity, and specificity of the model performance
for ascites prediction were 0.961, 0.976, and 0.947, respectively,
in the validation set and 0.967, 0.985, and 0.913, respectively,
in the test set (Table 2). For ascites prediction in the EM
resident group, the accuracy, sensitivity, and specificity were
0.966, 0.989, and 0.943, respectively (Table 3). The result for
human interpretation was not significantly different compared
with the DL model (p = 0.570). Regarding feedback prediction,

the model correctly classified qualified and non-qualified
images with an accuracy of 0.941 in both the validation and
test sets (Table 2).

By using the aforementioned majority-voting scheme for
evaluation, the model was able to identify every ascites clip
in both the validation and test sets, while it misclassified only
two negative ascites frames: one into the positive class in the
validation set and one into the positive class in the test set. The
results of all the prediction performances are provided inTable 2.
The accuracy, sensitivity, and specificity of the resident physician
vs. model performance were, respectively, 0.986 vs. 0.998, 1 vs. 1,
and 0.972 vs. 0.996 (p= 0.001).
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FIGURE 2 | Confusion matrix for the four class prediction results. (A) Validation set (B) Test set.

TABLE 2 | Model performance for ascites and image location feedback prediction.

Validation set Test set

By frame (n = 6,118) (n = 5,456)

Ascites prediction

Accuracy 0.961 0.967

Sensitivity 0.976 0.985

PPV 0.947 0.949

Specificity 0.947 0.913

Feedback prediction

Accuracy 0.941 0.941

By 1-s majority voting (n = 309) (n = 500)

Ascites prediction

Accuracy 0.997 0.998

PPV 0.993 0.996

Sensitivity 1 1

Specificity 0.994 0.996

PPV, Positive predictive value.

DISCUSSION

In our study, we detected abdominal free fluid and predicted
the location of the Morison pouch using only a single
frame of the ultrasound image. ResNet50-V2 was able to
detect the abdominal free fluid of the Morison pouch with
accuracy, sensitivity, and specificity values of 96.1, 97.6, and
94.7%, respectively, in the validation set and 96.7, 98.5, and
91.3%, respectively, in the test set. The result of ResNet50-V2
performance was non-inferior to the EM resident interpretation.
By using the majority-voting scheme for consecutive images
in a 1-s window, the DL model was able to reach 100%

sensitivity, and the specificity was significantly better than the EM
resident interpretation. Previous studies demonstrated that FAST
examinations with human interpretation for intra-peritoneal
free-fluid detection have a sensitivity ranging from 61.3 to 100%
and specificity ranging from 94 to 100% for blunt abdominal
trauma (17–20). The sensitivity of the ultrasound examination
(28–100%) was considered insufficient for it to be used alone
in determining operative intervention for penetrating torso
trauma (21–23). Although initially developed for the evaluation
of trauma patients, FAST examination can also be used in non-
trauma patients to narrow down differential diagnoses, change
patient disposition, expedite consultation, avoid unnecessary
procedures, and alter imaging needs (24). However, studies of
sensitivity and specificity are limited owing to the large variety
of etiologies in non-trauma patients.

Applications of DL in medical ultrasound analysis include
anatomical applications, diagnosis tasks (classification,
segmentation, detection), and clinical tasks (computer-aided
diagnosis, biometric measurements, image-guided interventions)
(8). DL models have been used to detect different anatomical
structures of human organs in medical analyses, including the
brain (9), heart (10), thyroid (11), breast (12), liver (13), and
prostate (14). Recognized as one of the most popular deep
architectures, the convolution neural network (CNN) has been
applied to various tasks, such as image classification, object
detection, and target segmentation (9, 25). Our study shows
that a computer program developed incorporating ResNet50-V2
could aid in the detection of free fluids in FAST examination,
with the results obtained on par with the interpretations of a
medical doctor.

In various ultrasound protocols, performance plateaus occur
at different points for image interpretation and quality (26).
In addition, physicians acquire the ability to interpret FAST
images quicker than they acquire the technical skills required
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TABLE 3 | Comparison of resident doctor and model performance for ascites interpretation.

Resident physician (n=10) ResNet50-V2 model P value

By frame (n = 5,456)

Accuracy 0.966 0.967 0.570

Sensitivity 0.989 0.985

Specificity 0.943 0.913

By 1-s majority voting (n = 500)

Accuracy 0.986 0.998 0.033*

Sensitivity 1 1

Specificity 0.972 0.996

*p < 0.05.

to perform the examination (27). Focusing on the acquisition
of images for FAST examination, Jang et al. (27) found that
the ultrasound technique continued to improve even after 75
examinations. Blehar et al. demonstrated that the learning curve
in image quality for FAST examination improved even after
200 examinations (26). In our model, the accuracy of locating
Morison’s pouch reached 94.05 and 91.35% in the validation and
test sets, respectively. The automated feedback and instruction
system is believed to assist inexperienced sonographers improve
their interpretation ability and image acquisition skills.

Free-fluid detection by ultrasound could be used in both
trauma and non-trauma patients and could have a broad impact
on patient care across a wide range of medical settings (28). In
addition, AI model-assisted real-time ultrasound could enhance
the diagnostic performance of FAST when used by paramedics
or during an emergency. Using FAST examination in the pre-
hospital stage can significantly improve the outcomes of blunt
abdominal trauma (5). However, to obtain the benefits of
AI model-assisted FAST in-patient care, additional large-scale
studies should assess the performance of free-fluid detection for
different trauma and non-trauma etiologies.

The limitations in our study are discussed below. First, we
trained using only perihepatic views in our study. In certain
conditions, a single Morison’s pouch view was employed because
the right upper quadrant was considered the primary area
where free fluid is initially seen and the most sensitive for
free-fluid assessment (29, 30). However, a multiple-view FAST
examination was recommended to increase sensitivity (31).
Second, we tested our model with a single-frame ultrasound
image and 1-s majority voting, which may have led to variable
sensitivity and specificity. The purpose of free-fluid detection
should be for identification using serial video clips. Third,
the development of automated feedback and instructions by
AI model-assisted free-fluid detection remains a challenge. For
the classification of qualified or non-qualified view, the binary
classifications in our study potentially caused a loss of continuous
information. The feasibility of a real-time AI model-assisted
system should be tested in future studies, including ultrasound
acquisition software, real-time feedback speed, and indication
for proper probe location. Finally, the performance of free-
fluid detection for different etiologies should also be considered.

Future studies should also include a separate assessment of the
test performance for different free fluid etiologies, such as blunt
trauma, penetrating trauma, and various non-trauma etiologies.

AI model-assisted real-time ultrasound could enhance the
diagnostic performance of FAST when used by paramedics or
during an emergency. The DL algorithmwith ResNet50-V2, used
in our study, was able to detect free fluid in Morison’s pouch
with accuracies reaching 94.05 and 91.35% in the validation and
test sets, respectively. By using the majority-voting scheme for
consecutive images in a 1-s window, the DL model was able to
reach 100% sensitivity, and the specificity was significantly better
than the EM resident interpretation. In the future, AI-assisted
ultrasound will minimize operator-dependent imaging modality
and alter medical therapy and disposition in critical care units
and prehospital care.
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