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Abstract

Facial expressions carry key information about an individual’s emotional state. Research

into the perception of facial emotions typically employs static images of a small number of

artificially posed expressions taken under tightly controlled experimental conditions. How-

ever, such approaches risk missing potentially important facial signals and within-person

variability in expressions. The extent to which patterns of emotional variance in such images

resemble more natural ambient facial expressions remains unclear. Here we advance a

novel protocol for eliciting natural expressions from dynamic faces, using a dimension of

emotional valence as a test case. Subjects were video recorded while delivering either posi-

tive or negative news to camera, but were not instructed to deliberately or artificially pose

any specific expressions or actions. A PCA-based active appearance model was used to

capture the key dimensions of facial variance across frames. Linear discriminant analysis

distinguished facial change determined by the emotional valence of the message, and this

also generalised across subjects. By sampling along the discriminant dimension, and back-

projecting into the image space, we extracted a behaviourally interpretable dimension of

emotional valence. This dimension highlighted changes commonly represented in traditional

face stimuli such as variation in the internal features of the face, but also key postural

changes that would typically be controlled away such as a dipping versus raising of the head

posture from negative to positive valences. These results highlight the importance of natural

patterns of facial behaviour in emotional expressions, and demonstrate the efficacy of using

data-driven approaches to study the representation of these cues by the perceptual system.

The protocol and model described here could be readily extended to other emotional and

non-emotional dimensions of facial variance.

Author summary

Faces convey critical perceptual information about a person including cues to their iden-

tity, social traits, and their emotional state. To date, most research of facial emotions has

used images of a small number of standardised facial expressions taken under tightly con-

trolled conditions. However, such approaches risk missing potentially important facial

signals and within-person variability in expressions. Here, we propose a novel protocol

that allows the eliciting of emotional expressions under natural conditions, without
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requiring people to deliberately or artificially pose any specific facial expressions, by video

recording people while they deliver statements of good or bad news. We use a model that

captures the key dimensions of facial variability, and apply a machine learning algorithm

to distinguish between the emotional expressions generated while giving good and bad

news. By identifying samples along the discriminating dimension and projecting them

back through the model into the image space, we can derive a behaviourally relevant

dimension along which the faces appear to vary in emotional state. These results highlight

the promise of data-driven techniques and the importance of employing natural images in

the study of emotional facial expressions.

Introduction

Human faces convey a wealth of person-specific information. For instance, they offer salient

cues to a person’s identity [1], allow the inference of key social traits [2], and provide critical

information about an individual’s emotional state [3,4]. The perceptual system is able to effi-

ciently extract such information despite substantial variability in facial features both between

and within individuals, for instance resulting from changes in viewpoint or environmental

conditions [5].

Models of face perception generally propose two key accounts of how faces convey emo-

tional information. Categorical models posit that facial expressions can be assigned to a series

of discrete emotion classes [6]. Particular focus has been given to six or seven basic emotion

categories that are considered culturally universal [7,8], though the universality of some of

these categories has been disputed [9]. By contrast, continuous models propose that facial

expressions can be represented as points varying along multiple emotional continua—such as

valence or arousal—within a multi-dimensional face space [10,11]. For instance, expressions

of happiness and sadness could be represented as two discrete and independent classes under

a categorical model, or as projections along opposing directions of a single valence dimension

under a continuous model. Categorical accounts are supported by the fact that facial expres-

sions from basic emotion categories are easily recognised [6], and that expression changes are

often perceived categorically [12]. However, categorical models struggle to account for subtler

or more nuanced expressions that diverge from classic universal categories, or why some cate-

gories (such as fear and surprise) are frequently confused for each other. Such cases may be

more readily explained by a continuous account.

To date, research into facial expressions has almost ubiquitously employed stimuli gener-

ated under tightly controlled experimental conditions. Images in face databases are often rig-

idly controlled to standardise facial expression and head pose, as well as environmental factors

such as lighting. The aim of such approaches is to minimise extraneous sources of image varia-

tion as far as possible, allowing for greater focus on key variations in facial features. However,

such approaches also pose a number of critical limitations. Firstly, applying such extreme con-

trols necessarily adds a degree of artificiality to such images. In attempting to minimise sources

of extraneous variation such approaches risk also eliminating informative dimensions of facial

variation, such as within-person variability [5]. Indeed, so-called ambient face images, which

are left deliberately uncontrolled to retain more natural variability, have been shown to yield

critical information for face identification [5,13] and perception of social inferences [14] that

is not present in traditional controlled stimuli. Secondly, the selection of which emotional cate-

gories and expressions should be posed is necessarily a subjective one. For instance, particular

focus is often given to a small number of basic universal emotions [6]. However, this risks
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biasing the dimensions of facial variation according to preconceived notions on the part of the

experimenter as to which sources of emotional variation should be included. Finally, the

majority of face databases employ static images, which fail to capture potentially informative

sources of dynamic variation present in moving faces [15]. Thus, the extent to which the pat-

terns of variance in facial expressions observed in traditional artificially-controlled static-

images might generalise to more natural dynamic faces remains unclear.

More nuanced expressive facial stimuli may be generated by instead sampling emotions

that vary along an emotional continuum. One common approach to this is to visually morph

between two images depicting different categorical expressions [12,16]. A more data-driven

method was applied by Calder and colleagues [17], who derived a principal components repre-

sentation of several face images spanning multiple basic emotion categories, then applied lin-

ear discriminant analysis to discriminate the emotion categories. Not only could categories be

accurately discriminated, but back-projecting the discriminant functions into the image space

revealed critical dimensions of expression variation. However, all such techniques still typically

use traditional artificially-controlled images as inputs to the procedure. Thus, the relationship

between nuanced emotional continua and natural patterns of facial variation still remains

unclear.

Here, we address previous limitations by advancing a novel protocol for eliciting emotional

expressions from dynamic and natural facial behaviour, using a dimension of emotional

valence as a test case. We employ a data-driven approach to extract emotional facial cues from

these natural behaviours, without requiring subjects to deliberately or artificially pose any spe-

cific expressions. Subjects delivered short sentences to camera conveying either positive or

negative news. The principal dimensions of facial variation were captured by representing

each facial expression image by the vector field required to register the face to a reference

expression plus the facial texture warped by this vector field. Registration was accomplished by

a two frame version of the multi-channel gradient motion model [18–20]. A machine learning

algorithm (Linear Discriminant Analysis; LDA) was then used to derive a continuous emo-

tional dimension from the subjects’ natural facial variability. This technique was not only able

to successfully discriminate the emotional state of the faces, but also derive a behaviourally

interpretable dimension of emotional valence.

Results

Recordings

Three subjects delivered a series of phrases to a video camera, conveying either positive (e.g.

“Good news–you’ve got the job”) or negative news (e.g. “I’m sorry to say the operation didn’t

go well”). Subjects each delivered 10 unique positive and 10 unique negative phrases, with Sub-

jects 1 and 2 performing 15 repeats (300 phrases total) and Subject 3 performing 16 repeats

(320 phrases total) of each phrase. A full list of the phrases is provided in S1 Table. Subjects

viewed and addressed a series of putative recipients (consisting of listeners in a YouTube

recorded video conversation) while performing the repeats to increase variability in expressing

the message. Subjects were instructed to deliver the phrases in whatever they felt was the most

natural style to them. Importantly, they were not asked to deliberately pose any specific facial

expressions or perform any other particular actions.

For further analysis, we cut each clip to one of two time periods. Prefix clips were generated

by clipping to the initial 1.44s (36 frames) after speech onset, thereby restricting each clip pri-

marily to the “Good news” or “I’m sorry to say” prefix portion of the phrase. However, these

clips present a potential confound in the form of the common linguistic information shared

across clips. To address this, we also generated suffix clips in which phrases were cut to exclude
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the initial common prefix portions and instead include only the latter unique suffix portions of

each phrase (e.g. “you’ve got the job” or “the operation didn’t go well”).

Multi-channel gradient model

We used an active appearance model, exploiting the Multi-channel Gradient Model (McGM)

[18–20] for registration, to capture the key dimensions of facial variability over frames (Fig

1A). This technique has previously been shown to be successful in extracting and describing

multiple dimensions of facial variance [20–22]. This model warps each frame to best align the

facial texture to a single reference image extracted from the video sequence. Each frame is then

represented as a 5-channel image comprising the RGB image texture information warped to

the reference, and the x- and y-direction warp components. Each frame is thus described in

terms of a “shape-free” version of its textures and the motion vectors that need to be applied to

warp the original textures to the reference. Flattening each frame to a vector allows represent-

ing it in a high-dimensional feature space, with each dimension representing a specific pixel

and channel, and with samples comprising each of the individual frames concatenated across

clips (Fig 1B). The dimensionality of this space was reduced via Principal Component Analysis

(PCA), retaining sufficient components to explain 90% of the variance across samples. PCA-

based face spaces have previously been demonstrated to capture numerous key dimensions of

facial variation [4,23] including emotional expressions [17].

Next, we used Linear Discriminant Analysis (LDA) to classify the positive versus negative

valence phrases based on their representations within the McGM-PCA space [17]. We first

Fig 1. McGM-PCA pipeline. (a) Illustration of the McGM process for an example frame. Each frame is warped to a

common reference, such that it is represented by a 5-channel image containing the x- and y- warp components and

RGB warped textures. (b) Each warped frame is flattened to a vector, such that frames are represented in a high-

dimensional feature space defined by the pixels and 5 image channels. The dimensionality of this space is reduced via

principal component analysis, retaining sufficient components to explain 90% of the variance.

https://doi.org/10.1371/journal.pcbi.1008335.g001
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examined the cross-validated classification accuracy to ensure the valences could be discrimi-

nated reliably. We employed a (10-fold) leave-one-phrase-out cross-validation scheme. Within

each subject independently, the LDA algorithm was fit to all samples for 9 out of the 10 phrases

in each class, and then tested on all samples for the held-out phrases. This procedure was then

repeated such that every phrase in each class was assigned as the held-out phrase once. The

leftmost column of Fig 2 shows the resulting confusion matrices averaged over cross-validation

folds and subjects: correct classifications are represented on the diagonal, while off-diagonal

elements indicate misclassifications. A per-subject summary of the classification accuracies

(given by the average of on-diagonal matrix elements) is shown in Fig 3. Near perfect classifi-

cation was achieved: accuracies appeared close to ceiling and were significantly greater than

chance in all subjects (one-sample t-tests: all p< .001). Importantly, this result was observed

for both the prefix and suffix clips, indicating that classification performance generalises

beyond the linguistic commonalities present in the initial prefix portions of each phrase.

To probe the stimulus features underlying the discrimination performance, we identified

samples along the discriminant dimension and back-projected them into the image space. As

this analysis does not require cross-validation we re-fit the LDA algorithm to the full dataset

(including all 10 phrases). We identified the discriminant dimension as the line lying orthogo-

nal to the decision boundary and passing through the centroids of each class. We then pro-

jected samples between ±3 standard deviations along this dimension. By inverting the PCA

these samples were transformed from the McGM-PCA space to the McGM space, then an

inverse warp further transformed them to the original image space. Examples of samples at 0,

±1.5, and ±3 standard deviations are shown in Fig 4. Video animations of the projections are

also supplied in the supporting information (S1–S6 Videos). Note that these images are not

frames that were ever actually acquired from the subjects–rather they represent hypothetical

images simulated by projecting samples through the feature spaces. The negative versus

Fig 2. Within-subject cross-validated confusion matrices. Matrices indicate mean proportion of LDA classifications for each combination of “good news” (GN) and

“I’m sorry to say” (ISTS) classes. Models are displayed across columns, and top and bottom rows display results for prefix and suffix clips respectively. Annotations

indicate means and standard deviations of values over subjects.

https://doi.org/10.1371/journal.pcbi.1008335.g002
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positive valence of these faces at either end of the dimension is clearly evident for all subjects

and for both prefix and suffix clips. Intermediate samples illustrate gradations along a continu-

ous dimension of emotional valence. While some of the facial variations along this dimension

are captured by changes in facial expression typically represented in face databases (such as

changes in the internal features), there are also other changes in external features (such as head

pose) that would often be controlled away in standardised images. The patterns of variation

observed in each subject appear highly similar between prefix and suffix clips, suggesting the

discriminant dimension is largely independent of linguistic cues.

To quantify this relationship more formally, we extracted features from the back-projected

images following the Facial Action Coding Scheme (FACS) [24,25]. Thirteen images were

sampled along the discriminant dimension (±3 standard deviations in steps of 0.5). We then

used the OpenFace toolbox [26,27] to automatically extract head pose (position and orienta-

tion) and intensities of 17 action units for each of these images. The relationship between each

of these features and the LDA projections are shown in Fig 5 and Fig 6 for prefix and suffix
clips respectively. The most prominent source of variation is in the vertical position and pitch

of the head pose, corresponding to a dipping / raising of the head from negative to positive

valence. Subjects 1 and 3 also show a clear modulation of head yaw (left/right turn of the head)

but in opposing directions, while all subjects show modulations of head roll (cocking head to

one side) but to different magnitudes and again often in different directions. Action units 1

(inner brow raiser), 12 (lip corner puller), and 17 (chin raiser) are broadly consistent over sub-

jects in terms of the direction of the effect, though are more variable in terms of magnitude

and rate of change. Other action units are less consistent; for instance, AU2 (outer brow raiser)

is negatively associated with valence in Subject 1, but positively associated in Subject 2. A num-

ber of action units (AU7 –lid tightener, AU9 –nose wrinkle, AU45 –blink) are not present in

any of the images and hence do not covary with the projection. Thus, both commonalities and

idiosyncrasies in facial behaviours were observed over subjects.

Fig 3. Summary of cross-validated classification accuracies. LDA classification accuracies for each model across subjects and for the cross-subject analyses. Values are

averaged over cross-validation folds. Error bars indicate the standard error of the mean. The dashed line indicates the 50% chance level.

https://doi.org/10.1371/journal.pcbi.1008335.g003
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Fig 4. Projections along LDA discriminant dimension. Samples were identified along the discriminant dimension and back-projected into the

image space for (a) prefix and (b) suffix clips. Examples at 0, ±1.5, and ±3 standard deviations along the dimension are illustrated for each subject.

https://doi.org/10.1371/journal.pcbi.1008335.g004

PLOS COMPUTATIONAL BIOLOGY A data-driven characterisation of natural facial expressions when giving good and bad news

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008335 October 28, 2020 7 / 22

https://doi.org/10.1371/journal.pcbi.1008335.g004
https://doi.org/10.1371/journal.pcbi.1008335


Finally, we sought to quantify the behavioural relevance of the discriminant dimension.

Five naive human observers rated the back-projected images on their emotional valence on a

scale ranging from -1 (negative) to +1 (positive). Responses are illustrated in Fig 7. There was a

strong positive correlation between observers’ ratings and position along the discriminant

dimension (mean Pearson’s r = .83 ± .05 SEM; all p< .01 except for Rater 4’s ratings of Subject

2 where correlations were not significant). There was also high inter-rater reliability, with

raters’ responses all positively correlating with each other (mean Pearson’s r = .81 ± .02 SEM;

all p< .001). Thus, the images derived from this data-driven procedure convey behaviourally

interpretable dimensions of facial emotion.

Fig 5. Prefix clips: FACS features of McGM-PCA LDA projections. FACS features extracted for images projected along LDA discriminant dimension, including (a)

head position, (b) head orientation, and (c) action unit intensities. Points are omitted from graphs where the action unit was not detected in any image.

https://doi.org/10.1371/journal.pcbi.1008335.g005
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Facial action coding analysis

We also tested the ability to discriminate the positive versus negative phrases on the basis of

FACS-based features. We used the OpenFace toolbox [26,27] to extract 6 head pose (3D posi-

tion and orientation) and 17 action unit (AU) intensities for each frame in every clip. We

tested three models: one using the AU features alone, one using the head pose features alone,

and one using both. We then tested classification accuracy using an LDA classifier within a

leave-one-phrase-out cross-validation, in the same manner as for the McGM-PCA model.

The resulting confusion matrices are shown in Fig 2 and the classification accuracies in Fig

3. In all subjects and for both prefix and suffix clips, the positive versus negative phrases could

Fig 6. Suffix clips: FACS features of McGM-PCA LDA projections. FACS features extracted for images projected along LDA discriminant dimension, including (a)

head position, (b) head orientation, and (c) action unit intensities. Points are omitted from graphs where the action unit was not detected in any image.

https://doi.org/10.1371/journal.pcbi.1008335.g006
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be discriminated well above chance (one-sample t-tests: all p< .01). Classification was gener-

ally better for the combined AUs+Pose model than for either feature set alone. Nevertheless,

classifications appeared diminished relative to the performance of the McGM-PCA model. A

series of one-way ANOVAs (Table 1) revealed a significant main effect of model type for all

subjects and for both prefix and suffix clips (all p< .001). Planned contrasts (Table 2) revealed

that the McGM-PCA outperformed all of the FACS-based models in all subjects (all p< .05),

except for the comparison against the AUs+Pose model for suffix clips in Subject 1 (p = .134).

Full pairwise comparisons between all models are listed in S2 Table; briefly, the McGM-PCA

model again outperforms the FACS-based models, the AUs+Pose model generally outper-

forms the AUs- and Pose-only models, and the relationship between the AUs- and Pose-only

models is more variable over subjects. Thus, while the coarse-scale information provided by

the FACS features was sufficient to discriminate the emotional valence, these models were out-

performed by the finer-grained pixel-level detail of facial texture and shape changes offered by

the McGM-PCA model.

Cross-subject generalisation

Inspection of the patterns of facial variation revealed by the discriminant dimension (Fig 4)

indicates some commonalities across subjects. This suggests that classification of emotional

valence may show some degree of generalisation across subjects. To investigate this possibility,

we repeated our classification analyses using a cross-subject cross-validation scheme.

Fig 7. Behavioural valence ratings along LDA discriminant dimension. Observers rated images along the discriminant dimension for emotional valence on a

continuous scale between -1 (negative) and +1 (positive). Recording subjects are displayed across columns, prefix and suffix clips across rows, and rating subjects by

colour. ��� p< .001, �� p< .01, � p< .05, (ns) p> .05.

https://doi.org/10.1371/journal.pcbi.1008335.g007
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There is unlikely to be a one-for-one correspondence in the dimensions of the feature

spaces between subjects, so the data must first be aligned across subjects. We adapted a hypera-

lignment procedure [28] which applies a Procrustes transformation to align the data using

translations, rotations (including reflections), and a global scale factor. To mitigate overfitting,

the data used for calculating the alignment must remain independent of the data used for test-

ing classification accuracy. To this end, we employed a nested cross-validation scheme. First,

an outer (5-fold) leave-two-phrases-out cross-validation scheme was used to perform the

hyperalignment. Datasets were aligned across subjects based on all samples in 8 out of the 10

phrases in each class, then samples in the remaining 2 phrases in each class were brought into

the aligned space using the transformation parameters identified from the outer-training set.

Next, within just the outer-test set, LDA classification accuracy was assessed via an inner

(6-fold) cross-validation using a simultaneous leave-one-subject- and leave-one-phrase-out

scheme. The LDA algorithm was fit to all samples in 2 of the 3 subjects for one of the phrases

in each class, then tested on all samples for the third subject on the other phrase in each class.

This procedure was repeated across all folds of the inner and outer cross-validation schemes,

yielding 30 folds in total.

The resulting confusion matrices are shown in Fig 8, and a summary of the classification

accuracies are shown in Fig 3. Classification performance is clearly reduced relative to the

within-subject analyses, indicating that some idiosyncratic information is lost. Nevertheless,

Table 1. ANOVAs testing the main effect of model type on classification performance.

Subject Clip type F df p η2 η2
G

S1 Prefix 190.81 1.36, 12.26 < .001 .95 .93

Suffix 66.11 1.37, 12.37 < .001 .88 .81

S2 Prefix 131.82 1.66, 14.97 < .001 .94 .87

Suffix 61.01 1.65, 14.87 < .001 .87 .79

S3 Prefix 51.36 1.71, 15.42 < .001 .85 .79

Suffix 20.30 1.22, 10.97 < .001 .69 .59

Cross-subject Prefix 28.81 2.21, 63.97 < .001 .50 .41

Suffix 29.83 2.56, 74.31 < .001 .51 .40

https://doi.org/10.1371/journal.pcbi.1008335.t001

Table 2. Planned contrasts of McGM-PCA model classification accuracies against the FACS-based models.

Subject Baseline model Prefix clips Suffix clips

t df p t df p
S1 AUs 6.34 27 < .001 2.86 27 .023

Pose 22.46 27 < .001 12.87 27 < .001

AUs + Pose 4.71 27 < .001 2.02 27 .134

S2 AUs 18.88 27 < .001 12.89 27 < .001

Pose 14.84 27 < .001 9.94 27 < .001

AUs + Pose 11.51 27 < .001 8.18 27 < .001

S3 AUs 11.49 27 < .001 7.56 27 < .001

Pose 9.73 27 < .001 5.17 27 < .001

AUs + Pose 6.27 27 < .001 3.38 27 .006

Cross-subject AUs 5.06 87 < .001 7.52 87 < .001

Pose 8.52 87 < .001 8.28 87 < .001

AUs + Pose 7.47 87 < .001 7.22 87 < .001

https://doi.org/10.1371/journal.pcbi.1008335.t002
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classification remains well above chance for all models for both prefix and suffix clips (one-

sample t-tests: all p< .001), indicating some generalisation of facial variation across subjects

too. Consistent with the within-subject analyses, one-way ANOVAs revealed a significant

main effect of model type for both prefix and suffix clips (Table 1; all p< .001), and planned

contrasts showed the McGM-PCA model outperformed all the FACS-based models (Table 2;

all p< .001). Full pairwise comparisons between all models are listed in S2 Table; briefly, the

McGM-PCA model again outperforms the FACS-based models, the AUs-only model outper-

forms the Pose-only model for prefix clips only, and no other comparisons reach significance.

Discussion

In this study we developed a novel protocol for eliciting natural and dynamic emotional facial

expressions, without requiring subjects to deliberately or artificially pose specific expressions.

Image registration using a multiple-channel gradient model combined with a principal com-

ponents analysis was able to capture the critical dimensions of facial variance, providing a

data-driven solution to identifying emotional facial cues from the natural facial behaviours. A

classification algorithm (linear discriminant analysis) was then not only able to discriminate

the facial emotions, but also extract a behaviourally relevant dimension of emotional valence.

Projections along this dimension were consistently perceived as varying in valence by human

observers, demonstrating the psychological relevance of this computational approach. Both

classification performance and projections along the discriminant dimension appeared highly

similar between prefix clips (which contain a common linguistic component) and suffix clips

(which do not), indicating the features underlying the discrimination of facial emotion were

independent of linguistic cues. Indeed, back-projections along the discriminant dimension for

each clip type produced highly similar visualisations (Fig 4), indicating substantial overlap in

Fig 8. Cross-subject cross-validated confusion matrices. Matrices indicate mean proportion of LDA classifications for each combination of “good news” (GN) and

“I’m sorry to say” (ISTS) classes. Models are displayed across columns, and top and bottom rows display results for prefix and suffix clips respectively. Annotations

indicate means and standard deviations of values over cross-validation folds.

https://doi.org/10.1371/journal.pcbi.1008335.g008
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the model representations of the prefix and suffix clips. The discrimination of facial emotion

was also observed to generalise across subjects, demonstrating a degree of commonality in pat-

terns of facial variation across people.

We derived emotional expressions from natural and dynamic facial behaviours. This proto-

col contrasts substantially with more traditional paradigms that require actors to deliberately

pose specific expressions under tightly controlled experimental conditions. A limitation of

such approaches is that they risk controlling away potentially important sources of facial varia-

tion, such as within-person variability [5]. By back-projecting samples along the discriminant

dimension into the image space, we could visualise the patterns of facial variation underpin-

ning the discrimination of emotional valence. Some of these patterns included changes consis-

tent with those seen in traditional face stimuli, such as variations in the internal features of the

face that would be adequately described by facial action units [6,24,25]. However, we also iden-

tified patterns of behaviour that, while informative, would nevertheless typically be controlled

away in traditional stimuli. For instance, one of the most prominent and consistent changes

was seen in the head posture—characterised by a dipping of the head when conveying mes-

sages with negative valence and a raising of the chin when conveying messages with positive

valence—yet head position is often rigidly controlled in traditional face stimuli. Interestingly,

the relevance of head posture has previously been discussed in relation to expressions falling

outside of the basic universal emotions included in traditional stimuli. For instance, a lowering

of the head has been associated with emotions such as shame and embarrassment, while raising

the head has been linked to expressions of pride [29–31]. Previous studies have identified the

importance of using so-called ambient face images, which maintain natural patterns of facial

variation, for tasks such as face identification [5] and perception of social traits [14]. Our results

therefore further highlight the importance of such natural facial behaviours in the perception of

emotional expression. Such a proposal is consistent with recent discussions of the role of facial

variability within emotion categories in supporting initial learning of those categories [32].

The data-driven approach employed here is similar to previous studies [17,33] demonstrat-

ing that linear discriminant analysis applied to a PCA-based face space can discriminate emo-

tion categories. However, such studies still required traditional controlled face stimuli as

inputs to the analysis. Here, we extend this by demonstrating that data-driven approaches can

also be applied to ambient and dynamic faces that embody more natural variability. These

data-driven approaches help overcome limitations posed by experimenter bias in the selection

of expressions that can potentially confound more traditional face stimuli. The combined PCA

and linear discriminant analysis approach described here has also been applied to the classifi-

cation of other facial properties such as identity, sex, and race–using both controlled [33] and

natural [34] face stimuli. This demonstrates the approach’s utility for the extraction of multiple

facial properties beyond emotion. It should be noted that there are also several alternative

computational approaches to extracting facial features. Notably, deep neural networks have

demonstrated high performance in recognising facial identity [35,36] and expressions [37,38].

Nevertheless, our model was able to discriminate facial expressions with a high degree of accu-

racy, and the simplicity of this approach compared to others offers its own advantages such as

greater transparency of the model representations.

We also compared the McGM-PCA model to models based on more traditional facial cod-

ing metrics, including estimates of head pose and facial action units [24,25]. These models

were also able to discriminate the emotional valence of the faces, but were consistently outper-

formed by the McGM-PCA model. This is likely due to the relatively coarse level of detail that

the facial action coding models provide, compared to the fine-scale pixel-level detail in facial

texture and shape change offered by the McGM-PCA model. The use of PCA to capture criti-

cal dimensions of facial variation from images has previously been employed to describe facial
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emotions [17,39], but also features such as facial identity [23,40,41], gender [42], and race [43].

Such approaches typically apply PCA to the original images or after first morphing the faces to

a common template to provide a “shape-free” texture representation [17,41]. Applying factor

analysis to facial action units, rather than the images themselves, has also been used to charac-

terise a number of meaningful facial behaviours [39]. Here, we first used the McGM to warp

images to a common template, and performed principal components decomposition on the

combination of the warped textures and warp components. Warping images to a common

template essentially provides a “shape-free” estimate of the visual textures, similar to previous

approaches, but by also including the warp components we additionally represent information

about changes in facial configuration across frames. This approach is therefore well suited to

capturing the critical patterns of variation observed in dynamic faces [20,22].

Sampling along the discriminant dimension of the McGM-PCA model yielded images that

varied consistently along a dimension of emotional valence. Human observers reliably per-

ceived the modulation of valence in line with this dimension, demonstrating our data-driven

technique was able to extract behaviourally relevant features. These behavioural ratings also

highlighted individual differences in facial behaviours; for instance, observers typically pro-

vided more extreme ratings for Subject 1 than the other subjects. Indeed, the back-projected

images (Fig 4) do subjectively appear to show a greater range of expression for Subject 1. Simi-

larly, analysis of the head poses and facial action units in the projected images also revealed

both commonalities and idiosyncrasies in facial behaviours over subjects. Interestingly, while

both behavioural ratings and facial action coding metrics indicate individual differences,

human observers nevertheless perceived a consistent direction of valence along the discrimi-

nant dimension, while the coding metrics frequently showed opposing directions of effect

between subjects. This suggests a potential disconnect between facial action coding metrics

and human perceptions of facial emotion when dealing with more natural patterns of facial

behaviour.

The modulation and perception of valence along a single continuum is consistent with con-

tinuous models of facial emotion [10,11] that propose representing faces in multi-dimensional

face spaces defined by multiple emotional dimensions. By contrast, categorical models of face

perception posit that emotions are organised into a number of discrete classes, with particular

focus given to universal basic emotions [6]. Such a view is less consistent with our description

of a continuous valence dimension, though the nature of this representation may be somewhat

task dependent. For instance, our behavioural experiment may have yielded more categorical

responses if we had employed a categorisation rather than a rating task [12]. Here we applied

our model to a dimension of emotional valence, but it could in principle be extended to other

emotional dimensions. For instance, continuous models often identify arousal as another key

emotional dimension [10,11]. Future research may further consider interactions between

valence and other emotional dimensions; for instance, positive versus negative valence com-

bined with high arousal could yield surprised expressions but with excited versus tense inter-

pretations. The technique could also be extended to further facial dimensions beyond

emotion, for instance to dimensions of social evaluation such as dominance, trustworthiness,

and perceived political affiliation [2,14,44].

The classification of emotional valence also generalised across subjects. A clear decrement

in performance was observed relative to the within-subject analyses, but discrimination

remained well above chance. Thus, while patterns of natural facial variation embody some idi-

osyncratic features that do not generalise across subjects, they also include some common fea-

tures that do generalise. This result is particularly striking given the relatively small number of

subjects that were recorded here, suggesting that such features are highly consistent across

individuals and do not require larger populations to be identified. However, this finding does
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contrast with recent research suggesting that PCA face-spaces are relatively idiosyncratic and

should not generalise well across people [45]. One possible explanation is that whereas the

changes in the mouth, say, in a smile might be idiosyncratic and differ across individuals and

principal components, the key feature picked up in the present analysis is a global postural

change—chin tucking against chin raising. This global transformation may be more universal

and will generalise even if featural changes may differ. Cross-subject generalisation is consis-

tent with similar approaches that have previously demonstrated generalisation of the

McGM-PCA model over facial genders [21]. In this case, if a male face is coded as longer and

thinner than average, and this transformation is projected into a female face space, then an

apparent sibling-like similarity across the genders can be generated.

In conclusion, we advance a novel protocol for eliciting natural patterns of facial behaviour

from dynamic faces. A data-driven method was able to both discriminate the emotional state

of the faces and recover behaviourally relevant emotional dimensions. This method repro-

duced patterns of facial variance frequently seen in traditional face stimuli (such as changes in

internal facial features), but also revealed dimensions that would typically be omitted from

such stimuli (such as a dipping versus raising of the head posture between negative and posi-

tive valences). Here we applied this model to a dimension of emotional valence, but this proce-

dure could be readily extended to other emotional and non-emotional facial dimensions.

Methods

Recordings

Three subjects (2 females, 1 male, age range 26–42) were video recorded. The study was

approved by the ethics committee of the School of Psychology at the University of Nottingham

(ethics approval number: 717) and conducted in accordance with the guidelines and regula-

tions of this committee and the Declaration of Helsinki. All subjects provided informed writ-

ten consent to take part in the study and for their likeness to be used in publication.

Recordings were made in an anechoic chamber against a uniform visual background. Vid-

eos were acquired on a Sony HXR-NX5U NXCAM camera connected to an Atomos Ninja-2

recorder that recorded videos in Apple ProRes RAW format. Videos were acquired at a resolu-

tion of 1920x1080 pixels and at 25 fps with a 6.67ms exposure. Videos were then encoded

using MPEG-4 lossless compression prior to further processing.

Subjects each delivered a total of 20 unique phrases to the camera each conveying either

positive or negative news (10 phrases of each). A list of the phrases is provided in S1 Table.
Subjects 1 and 2 performed 15 repeats of each phrase (300 phrases total), and Subject 3 per-

formed 16 repeats (320 phrases total). Subjects were instructed to deliver the phrases in what-

ever manner felt most natural to them; they were not instructed to deliberately pose or

perform any specific expressions or actions. To aid subjects in delivering their phrases in a nat-

ural way they viewed pre-recorded silent videos of a variety of recipients, presented on a tele-

prompter directly in front of the camera. Recipient videos were obtained from YouTube and

depicted video-conference style calls, helping give subjects the impression of delivering their

phrase to a person listening to them.

For each phrase, we generated two types of clips. Prefix clips comprised the first 1.44 sec-

onds (36 frames) after the onset of each phrase, primarily including the initial “Good news” /

“I’m sorry to say” portion of each phrase and a small part of the later sentence. The onset of

each phrase was identified in a semi-automated procedure by identifying the increase in audio

amplitude from a spectrogram of the audio signal, and then applying manual corrections

where necessary. To rule out potential confounds from the common linguistic information

shared across the prefix clips, we also generated suffix clips that removed the initial common
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prefix sections of each phrase and retained only the later sentence portion. Onsets and offsets

of the suffix portions were identified in a semi-automated fashion using the Google Cloud

Speech-to-Text algorithm (https://cloud.google.com/speech-to-text) to generate timestamps

for each word, and then applying manual corrections as necessary. Unlike the prefix clips, the

suffix clips were variable in length.

McGM-PCA model

A Multi-channel Gradient Model [18–20] (McGM) was used to capture textures and register

all images in a sequence to a reference image. First, for each clip a Haar cascade face-detection

algorithm implemented in OpenCV (https://opencv.org/) was used to determine the average

position of the face within the scene, and the video was cropped to a square bounding

box centred on this position and allowing a small border around the face. This helped ensure

the face was placed approximately centrally within the scene. These clips were then down-

sampled to a resolution of 128x128 pixels using an anti-aliasing filter.

The cropped and downsampled clips were then entered into the McGM. For each frame, a

warp vector field was calculated that registered that frame to a standard reference image. The

reference was initially set as an individual frame taken from one of the recording sequences.

However, to provide a more standardised reference, the original reference was then replaced

with the average of all textures after warping. This process was then repeated three times, re-

calculating the warps and updating the reference with the average warped texture each time, to

allow the reference to stabilise. For each input frame, the McGM produced a 5-channel image

comprising the x- and y-direction warp components and a “shape-free” version of the RGB

textures warped to the final average reference. Flattening these images to vectors yields an

81,920-dimensional (128 × 128 × 5) feature space, with each frame in each clip represented as

an individual sample within this space. Note that the two frame version of the McGM used

here for the purpose of image registration [20] differs from some previous applications of the

model that instead computed local image velocities over extended temporal sequences [18,19].

The dimensionality of this feature space was reduced via a principal components analysis

(PCA) [17,23], retaining a sufficient number of components to explain 90% of the variance across

samples. For the prefix clips, applying this to the full dataset yielded 321, 149, and 383 components

for each subject respectively. For the suffix clips, applying this to the full dataset yielded 346, 135,

and 395 components for each subject respectively. For the cross-validated analyses the PCA pro-

cedure was modified to ensure independence of training and test splits. For a given cross-valida-

tion fold, the PCA was computed based on the samples included in the training set only, and the

resulting transformation coefficients were then applied to both the training and test sets. In this

way, both datasets are brought into the same PCA-space, but the definition of this space remains

independent of the test data. Transformation of the test data into this space will therefore only be

appropriate if the principal components generalise between training and test sets. For the leave-

one-phrase-out cross-validation utilised for within-subject analyses, this yielded a median (across

folds) 310, 146, and 373 components for prefix clips, and 335, 133, and 378 components for suffix
clips for each subject respectively. For the leave-two-phrases-out outer cross-validation employed

for the cross-subject analyses, a common number of components were retained across subjects

that explained a minimum of 90% variance in all subjects. This yielded a median (across folds)

350 and 271 components for the prefix and suffix clips respectively.

Facial action coding models

We used the OpenFace toolbox (v2.2.0; https://github.com/TadasBaltrusaitis/OpenFace)

[26,27] to automatically extract a number of facial features from the clips following the Facial
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Action Coding Scheme (FACS) [24,25]. Specifically, for each frame in each clip we extracted 6

head pose features (3D position and orientation parameters) and 17 action unit (AU) intensi-

ties (AUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, and 45). Prior to processing, each

clip was cropped to a central square but left at full resolution (1080p). We constructed three

models based on: the AU intensities alone, the head pose alone, and the AU intensities and

head pose information combined. Each frame in each clip is therefore represented as a sample

in a 17-, 6-, or 23-dimensional feature space for the AUs-only, Pose-only, and AUs+Pose mod-

els respectively. No dimensionality reduction was required as these spaces are already relatively

low-dimensional.

Linear discriminant analysis

We employed a Linear Discriminant Analysis (LDA) classification algorithm to discriminate

the positive versus negative emotional valences of the clips based on their representations by

the McGM-PCA and FACS-based models. We tested the cross-validated classification accu-

racy of each model, and also back-projected images from along the discriminant dimension of

the McGM-PCA space.

Within-subject classification. We tested the within-subject classification accuracy using

a (10-fold) leave-one-phrase-out cross-validation scheme. In the case of the McGM, PCA

decomposition was also applied within this cross-validation scheme (see above). For each sub-

ject and each model, datasets were partitioned into a training set comprising all samples in all

clips for 9 of the 10 phrases in each class, and a test set comprising all samples in all clips for

the remaining phrase in each class. In each set independently, data were normalised by z-scor-

ing along each feature dimension. The LDA algorithm was then fit to the training set, and pre-

dicted class labels were generated for the test set. Classification accuracy is given as the

proportion of predicted class labels that match the target labels within the test set. This proce-

dure was then repeated for the remaining folds of the cross-validation, and accuracies were

averaged over the folds.

Cross-subject classification. The cross-subject analyses further require that subjects’ fea-

ture spaces be aligned together as there will not necessarily be a one-to-one correspondence in

features across subjects. We adapted a hyperalignment [28] procedure, which aligns the data

using an affine Procrustes transform allowing for translations, rotations (including reflec-

tions), and a global scale factor. This requires a common number of samples across subjects, so

the final 20 clips in Subject 3 were discarded such that all subjects had 300 clips, and then all

clips in all subjects were truncated to the length of the shortest clip in any subject such that all

clips comprised the same number of frames. The hyperalignment itself is performed in a two-

stage process. The first stage aligns the second subject’s data to the first, then aligns the third

subject’s data to the average of the preceding two and updates the average accordingly. In the

second stage, the alignments for each subject are recomputed to point to the final average

obtained from the first stage. Applying these transforms will bring all subjects’ data into align-

ment in a common group feature space.

To mitigate overfitting, both the hyperalignment and classification analyses were cross-vali-

dated using a nested cross-validation scheme. The hyperalignment was performed within an

outer (5-fold) leave-two-phrases-out cross-validation scheme. In the case of the McGM, the

PCA transformation was also performed within this cross-validation (see above). As the align-

ment procedure requires a common number of dimensions over subjects, a common number

of principal components were retained over subjects such that a minimum of 90% of the vari-

ance was explained in all subjects. PCA coefficients (McGM only) and Procrustes parameters

for each subject were calculated based on all samples in all clips for 8 of the 10 phrases in each
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class. The PCA decomposition (McGM only) and Procrustes transforms were then applied to

all samples in all clips for the two held-out phrases in each class. Within the outer-test set only,

LDA classification was then performed within an inner (6-fold) simultaneous leave-one-sub-

ject- and leave-one-phrase-out cross-validation. Samples were normalised by z-scoring along

each feature within inner-training and inner-test sets independently. The LDA classifier was fit

to all samples in all clips for one of the phrases in each class for 2 of the 3 subjects. Predicted

class labels were then generated for all samples in all clips for the other phrase of each class in

the held-out subject. As per the within-subject analyses, classifier accuracy was assessed by com-

paring predicted and target class labels. Successful classification thus depends on generalisation

across both subjects and phrases. Repeating this process across all folds of the inner and outer

cross-validations yielded 30 folds in total, and classification accuracies were averaged over folds.

Analysis of model performance. All statistical analyses of models were performed within

each subject and for the cross-subject analyses independently. Classifier accuracies were tested

against chance (50%) via one-sample t-tests, subject to a Holm-Bonferroni correction [46] for

multiple comparisons across models. Comparisons between models were made by one-way

ANOVAs, entering the model type as a repeated-measures factor (with levels: McGM-PCA,

AUs-only, Pose-only, and AUs+Pose). A Greenhouse-Geisser sphericity correction was applied

to all tests. Effect sizes are reported in units of eta-squared and generalised eta-squared [47,48].

To further interrogate differences between models a series of planned contrasts were run testing

each of the FACS-based models against the McGM-PCA model subject to a Dunnett correction

for multiple comparisons [49]. For completeness, we also performed the full set of pairwise

comparisons between all models (see S2 Table) subject to a Tukey correction for multiple com-

parisons [50]. All tests employed an alpha criterion of 0.05 for determining significance.

Projection along discriminant dimension. To identify the facial features underlying dis-

crimination of emotional valence, we additionally projected samples along the within-subject

discriminant dimensions identified within the McGM-PCA spaces. As this does not require

cross-validation, we re-fit the LDA algorithm to the full dataset (including all 10 phrases in

each class). Again, data were normalised by z-scoring along each feature prior to classification.

The discriminant dimension was identified as the line orthogonal to the decision boundary

and which passes through the centroids of both classes. We quantified distance along this line

by taking the projection of all data samples onto the discriminant dimension then measuring

their variance along it. We then generated a series of samples ranging between ±3 standard

deviations along the dimension and back-projected them to the image space for visualisation.

For each sample, we reversed the z-scoring operation to return to the McGM-PCA space,

inverted the PCA to return to the McGM space, then inverted the warp components to unwarp

the image back to the image space. To aid visualisation, the visual contrast of the images was

enhanced via unsharp masking.

We extracted FACS-based features for the projected images using the OpenFace tool-

box [26,27]. For each subject and for both prefix and suffix clips, we generated images for 13

samples evenly spaced between ±3 standard deviations along the discriminant dimension in

0.5 standard deviation steps. We extracted 6 head pose features (3D position and orientation)

and 17 action unit intensity features–see methods on facial action coding models for full

details. For each of the 23 features, we then plotted the feature intensities against the position

along the discriminant dimension (Figs 5 and 6).

Behavioural experiment

We conducted a behavioural experiment to determine human perception of the emotional

valence of images back-projected from the McGM-PCA LDA discriminant dimension. Five
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participants took part in the experiment (3 females, 2 males, age range 23–35). The study was

approved by the ethics committee of the School of Psychology at the University of Nottingham

(ethics approval number: F1249) and conducted in accordance with the guidelines and regula-

tions of this committee and the Declaration of Helsinki. Participants provided informed con-

sent via an electronic form before participating in the study. To distinguish from the

participants used in the original video recordings, participants in this behavioural experiment

are referred to as raters.
For each of the three recording participants and for both prefix and suffix clips, we gener-

ated 13 images between ±3 standard deviations along the discriminant dimension in 0.5 stan-

dard deviation steps, yielding 78 images total. The experiment employed a block design, with

each of the images presented once in every block in a randomised order. Each image was dis-

played for 1 second, followed by a sliding scale marked with “negative”, “neutral”, and “posi-

tive” at the ends and midpoint. Raters indicated their perception of the emotional valence of

the preceding face by clicking along the slider. Raters were allowed unlimited time to enter

their response. Each rater completed 4 blocks in total. Raters were not provided with any feed-

back or other cues as to how their ratings compared to the position along the discriminant

dimension. The experiment was run online using PsychoPy3 and Pavlovia (https://pavlovia.

org/) [51].

Ratings along the scale were coded by a numerical range between -1 (most negative

valence), 0 (neutral), and +1 (most positive valence). For each rater, responses were averaged

over the 4 blocks, ultimately yielding one sample per image. Ratings were then correlated

against the discriminant dimension position (in standard deviations) for each clip type and

each recording participant independently. We also measured inter-rater reliability by

concatenating each rater’s responses over recording subjects and then correlating between rat-

ers. A Holm-Bonferroni correction for multiple comparisons [46] was applied over raters. An

alpha criterion of 0.05 was used for determining significance.
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S1 Table. List of the ten positive and negative phrases delivered by each subject.
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S2 Table. Full post-hoc contrasts of classification accuracies between models. Significant

contrasts are highlighted in bold.
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