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Comparing N‑mixture models 
and GLMMs for relative abundance 
estimation in a citizen science 
dataset
Benjamin R. Goldstein* & Perry de Valpine

To analyze species count data when detection is imperfect, ecologists need models to estimate 
relative abundance in the presence of unknown sources of heterogeneity. Two candidate models 
are generalized linear mixed models (GLMMs) and hierarchical N-mixture models. GLMMs are 
computationally robust but do not explicitly separate detection from abundance patterns. N-mixture 
models separately estimate detection and abundance via a latent state but are sensitive to violations 
in assumptions and subject to practical estimation issues. When one can assume that detection is not 
systematically confounded with ecological patterns of interest, these two models can be viewed as 
sharing a heuristic framework for relative abundance estimation. Model selection can then determine 
which predicts observed counts best, for example by AIC. We compared four N-mixture model variants 
and two GLMM variants for predicting bird counts in local subsets of a citizen science dataset, eBird, 
based on model selection and goodness-of-fit measures. We found that both GLMMs and N-mixture 
models—especially N-mixtures with beta-binomial detection submodels—were supported in a 
moderate number of datasets, suggesting that both tools are useful and that relative fit is context-
dependent. We provide faster software implementations of N-mixture likelihood calculations and a 
reparameterization to interpret unstable estimates for N-mixture models.

Understanding how species’ abundances are associated with covariates of interest is a primary goal of species 
distribution modeling1. Often the best one can hope to estimate are patterns of relative abundance, sometimes 
referred to as an index of abundance. Relative abundance values are equal to absolute abundance—the number 
of individuals in a known area—multiplied by an unknown constant such as a detection rate and/or the inverse 
of effective area sampled. When the unknown constant can be assumed to be the same between two areas, the 
ratio of relative abundances is the same as the ratio of absolute abundances, allowing comparison of sites relative 
to each other. Relative abundance can sometimes be estimated from data when absolute abundance cannot, but 
doing so can be challenging when data are collected with heterogeneous sampling protocols because variation 
in the data collection process can obscure or confound patterns in abundance. Large, heterogeneous datasets 
are becoming more prominent in ecology, such as those produced by citizen science2,3, autonomous recorders4,5, 
and camera traps6. Analyzing these data requires statistical models that fit the data well, account for details of 
study design and sampling if possible, and can be estimated efficiently.

Two existing model types can satisfy this requirement: generalized linear mixed models (GLMMs) and 
N-mixture models. The GLMM is a linear model extension that models relationships between non-Gaussian (e.g. 
count) response data while allowing hierarchical structure via random effects. To estimate relative abundance, 
count data are modeled as Poisson-distributed with an expected value defined by a log-linked linear combination 
of important covariate data, and a link-scale random effect is added to account for relatedness between replicate 
observations at a site7. The GLMM is a heuristic model developed to explain patterns but does not correspond 
to a data generating process for repeated counts of unknown, finite numbers of individuals.

In contrast to the GLMM, the N-mixture model’s development was motivated by process-based thinking, and 
its architecture corresponds to an idealized data generating process8. In the N-mixture model, a latent state N 
represents the absolute abundance of a species at a sampling site. N varies between sites according to a Poisson 
distribution with expected value log-linked to linear covariates and is assumed to be constant across replicate 
observations at a site (the “closure” assumption). The observed data are binomial distributed with size N and 
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probability p, representing the detection process, such that variation in counts within a site is due only to observer 
error8–10. While all within-site variation is considered observation error and all between-site variation stems from 
the underlying abundance process, in practice heterogeneous observation error and movement of animals can 
lead to detection-driven variation between sites and abundance-driven variation within sites.

Though mathematically distinct, both GLMMs and N-mixture models partition variation into between- and 
within-site components using hierarchical relationships. Between sites, the N-mixture has a Poisson random 
latent abundance at each site, while the GLMM has a log-scale normal random effect at each site. Within sites, 
the N-mixture model uses binomial counts, while the GLMM uses Poisson counts. Each model has variants 
that accommodate overdispersion in counts: in the GLMM, a negative binomial distribution may replace the 
Poisson, while in the N-mixture model both the Poisson and binomial may be replaced with a negative binomial 
or beta-binomial distribution, respectively, to account for overdispersion in the within- and/or between-site 
submodel8,11. However, in the N-mixture model, the latter variants can be highly computationally demanding, 
so one contribution here is a set of more efficient ways to calculate likelihoods for these variants. More detailed 
descriptions of both models are presented in the “Model implementation and selection” section of the Methods.

These models exist within a shared heuristic framework in that both models have parameters that predict 
“number of individuals observed” at a standardized location and primarily differ in their assumptions of between- 
and within-site variation in observed counts. It is important to distinguish between estimation of parameters and 
estimation of latent states, such as the latent state N in the N-mixture model. Parameter estimation and model 
selection arise from making a model do as well as possible as a probability distribution for observed data, not 
latent states. In other words, both models predict “how many individuals will I see.” Users of N-mixture models 
are often interested in the follow-on question of “how many individuals are there, adjusted for imperfect detec-
tion,” but that is an interpretation of parameters and latent states outside of fitting criteria. Hence, the models 
can be compared based on their fit to observed data. Although “all models are wrong,” knowing which model 
fits the data best is useful for characterizing patterns.

Within this heuristic framework, both the GLMM and N-mixture model come with advantages and disadvan-
tages. The main advantage in using a GLMM is that it is robust to unmodeled heterogeneity in data generation 
due to its relatively simple structure. Robustness to unmodeled variation is a useful quality when analyzing count 
data with unobserved heterogeneity in sampling protocol or skill, unknown and heterogeneous sampling areas, 
or complicated non-independence between observations. The primary drawback to using the GLMM is that this 
model does not explicitly account for the detection process. In fact, GLMMs only estimate relative abundance 
under the assumption that the pattern of interest is not confounded with detection after accounting for other 
modeled variables12. When this assumption is unreasonable, the GLMM may not be useful for understanding 
biological patterns, even when it fits the data best.

The N-mixture model, in contrast, explicitly separates abundance from imperfect detection, but at the cost 
of strong sensitivity to violations in model assumptions, especially those assumptions related to an absence of 
unmodeled heterogeneity (see Supplemental Section 1 for an enumeration of N-mixture modeling assumptions). 
In recent years, simulation studies have characterized the degree to which N-mixture models produce biased 
or nonsensical estimates of abundance in the presence of unmodeled heterogeneity11,13–17. Additionally, Kéry19 
identified estimation instability, likely attributable to a likelihood maximum in the limit of zero detection18, 
but recommended the use of N-mixture models when estimation instability does not occur19. Several studies 
have found that the N-mixture model produces estimates of absolute abundance that agree with more rigorous 
sampling methods20–23 though this finding is not universal24. Still, established sensitivities and computational 
pathologies are grounds for caution in recommending N-mixture models when data do not strictly conform to 
modeling assumptions.

In this paper, we provide guidance for choosing between the GLMM and N-mixture model for relative 
abundance estimation in an empirical context. We ask which of a set of GLMM and N-mixture model variants 
best fits single-species subsets of eBird point-count data on a small spatial scale. eBird, the largest and most sys-
tematic citizen science data repository of its kind, is increasingly used to estimate bird species’ spatiotemporal 
distributions25,26. Because eBird data inherently contain unobserved heterogeneity, they present an interesting 
challenge for both GLMMs and N-mixture models (see Supplement 1).

eBird citizen scientists report their observations in the form of “checklists”, lists of detected species associ-
ated with sampling metadata. Almost 90% of eBird checklists are “complete checklists”, which imply zero counts 
for all unreported species. While much statistical modeling of eBird data has addressed estimation over large 
spatial extents27–29, a simpler yet still challenging goal is to estimate local abundance patterns using data from 
regions with concentrated replicate observations. We select 396 species-subregion (SSR) subsets of eBird across 
gradients of space, checklist density, and species abundance. Within each SSR, we use only eBird checklists from 
stationary sampling locations (i.e. checklists obtained from a single spatial point) to have the highest chance of 
satisfying N-mixture model assumptions.

We consider four variants of the N-mixture model and two of the GLMM. Each N-mixture variant is defined 
by the two distributions in the within- and between-site submodels, and we consider four variants: the classic 
binomial-Poisson (B-P), binomial-negative binomial (B-NB), beta-binomial-Poisson (BB-P) and beta-binomial-
negative binomial (BB-NB). In the GLMM, we consider the traditional Poisson distribution for counts alongside 
the negative binomial to allow for overdispersion. We fit each model variant to each dataset with step-wise vari-
able selection. To characterize relative fit across models, we use the Akaike information criterion (AIC) because 
it is derived to select the model with lowest out-of-sample prediction error30. We explore patterns in selection 
across levels of abundance and sampling intensity and apply a suite of goodness-of-fit and estimation checks to 
characterize known issues with both the N-mixture and GLMM. We investigate the special issue of estimation 
instability with a reparameterization of the N-mixture abundance and detection intercepts. We also implement 
new, fast algorithms for calculating N-mixture likelihoods for variants accommodating overdispersion.
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Results
Species‑subregion (SSR) datasets.  Our procedure for aggregating “subregions” yielded 20 circular sub-
regions of 10 km radii containing the highest density of eBird activity in California during the 2019 breeding 
season. (Supplemental Fig. 1; see Supplemental Section 2 for the full SSR selection algorithm). Subregions cor-
responded to human population centers with access to natural habitat such as large parks or coastal areas. Sub-
regions contained between 140 and 1000 high quality checklists distributed across 12 to 140 unique locations. 
In each subregion, we selected 10 species with high detection rates and 10 species with intermediate detection 
rates. We further selected 10 species overall with sufficient data in the most total subregions to compare model 
selection for individual species across space. In all, we compared models of interest across 396 species-subregion 
(SSR) subsets of eBird.

Model selection.  We fit each of six N-mixture and GLMM variations to each SSR dataset. Across SSRs, 
the six models we considered were chosen by AIC at the following rates: Poisson GLMMs were selected in 88 
datasets (22%), negative binomial GLMMs in 61 datasets (15%), BB-NB N-mixture models in 79 datasets (20%), 
BB-P N-mixture models in 74 datasets (19%), B-NB N-mixtures in 46 datasets (12%) and B-P N-mixtures in 48 
datasets (12%) (Fig. 1). AIC clearly selected ( �AIC > 2) the best GLMM over the best N-mixture model in 102 
(26%) datasets, while the best N-mixture model was selected in 199 (50%). AIC rankings indicated overall sup-
port for models incorporating overdispersion.

Negative binomial GLMMs outperformed Poisson GLMMs in 308 of 396 datasets. However, they were largely 
superseded in those cases by N-mixture models, especially those that included a beta-binomial-distributed 
detection submodel (BB-P and BB-NB N-mixture models). Among N-mixture variants, the best N-mixture 
model by AIC used a beta-binomial distribution in 223 datasets (56%), and these cases largely corresponded to 
cases where GLMMs also outperformed binomial-submodel N-mixture models (B-P and B-NB). When beta-
binomial N-mixtures were excluded from the analysis, GLMMs were dominant, being selected clearly by AIC 
( �AIC > 2) in 237 (60%) datasets.

Subregions with more checklists were associated with higher rates of selection of the most complicated model 
(by number of overdispersion parameters), the BB-NB N-mixture model (Fig. 2). We attribute this to the phe-
nomenon that more data contains more information to be explained by additional model structure.

We did not detect patterns in model selection related to whether a species was overall highly detected or 
detected at intermediate rates (Fig. 1). We did not identify patterns in model selection varying by species identity 
among widespread species (Supplemental Fig. 3).

Eleven SSR datasets were removed from the analysis after modeling due to computational issues with GLMM 
estimation (see Supplemental Section 5).

Fit, estimation, and computation.  Goodness‑of‑fit.  We tested goodness-of-fit (GOF) from residu-
als for each model and assessed systematic patterns of fit by examining the distributions of GOF p-values for 
each model type. Among N-mixture models, distributions of goodness-of-fit p-values did not deviate from the 
uniform, meaning that most N-mixture models selected by AIC fit well for this metric. Both sets of selected 
GLMMs showed deviation from a uniform distribution of p-values, indicating that these models’ residuals de-
viated meaningfully from modeling assumptions for some datasets (Fig. 3). GLMMs were selected for several 
datasets where GOF checks for GLMMs failed, despite those same datasets passing goodness-of-fit checks for 
N-mixture models, indicating that AIC model selection did not correspond exactly to goodness-of-fit metrics 
(Supplemental Fig. 4).

None of the models considered incorporated spatial autocorrelation. We tested that assumption using Moran’s 
I tests on residuals for all models. Nine percent of model-dataset combinations had p-values less than 0.05 from 
Moran’s I test, indicating more cases of nonrandom spatial structure in residuals than expected by chance. This 
suggested the presence of spatial autocorrelation in some datasets, but at a low rate we considered acceptable 
for this study’s conclusions.

Parameter estimation.  Point estimates of the log expected count at the mean site (i.e. with all centered covari-
ates set to 0), adjusted for the log-normal random effects of the GLMM, were similar for GLMMs and N-mixture 
models (Fig. 4). Within model type, N-mixture models agreed closely with one another, as did GLMMs. Differ-
ences in a point estimate of a coefficient, site elevation, were centered around zero for all model combinations, 
indicating no systematic differences between or within model types.

Estimated standard errors of covariates were systematically different between models (Fig. 5). Both GLMMs 
estimated standard errors systematically larger than all N-mixture models, while more complex N-mixture 
models estimated larger standard errors (as expected within a model family).

Stability of parameter estimates.  We investigated rates of instability in N-mixture estimation by monitoring 
whether estimated AIC and two intercept parameters changed as the upper bound of the truncated infinite 
sum, K, was increased19. Across 396 species-region datasets, 6% of B-P N-mixture models, 7% of BB-P models, 
37% of B-NB models, and 11% of BB-NB models were found to be unstable in AIC for a tolerance of �AIC = 
0.1. While the B-NB models showed by far the highest rate of instability, agreeing with previous findings by 
Kéry19, some instability was detected across all N-mixture models. To illustrate that instability could be attrib-
uted to indeterminate tradeoff between detection and abundance, we reparameterized the two intercepts with 
one parameter for (intercept of) log observed count (abundance × detection) and another for (intercept of) log 
ratio between detection and abundance (abundance / detection). The log observed count intercept was stable in 
93–98% of datasets in each of the four N-mixture models. The log ratio intercept, representing tradeoff between 
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detection and abundance, was unstable in patterns mirroring those of AIC. This suggested that instability with 
increasing K was due to ridged likelihoods in a single parameter direction that was a combination of the original 
parameters.

Performance of the fast N‑mixture calculation.  We extended previous work by Meehan et al.45 to implement 
an algorithm for fast N-mixture likelihood calculations (see Supplemental Section 3). Fast N-mixture calcula-
tions led to 20- to 90-fold improvements in computation time compared to the naive method for calculating 
the truncated infinite sum for 100 ≤ K ≤ 2000 and 5 ≤ length (yi) ≤ 20 , where yi was the vector of detection-
nondetection observations at a site (Supplemental Fig. 5). These gains increased with length (yi) , such that the 
contribution of the fast algorithm was more important when more replicate visits were made to a simulated site. 
In eBird, sites are clustered such that a small number of locations contain many replicate observations, making 
this improvement per replicate particularly relevant. Improvements in absolute computation time were largest 
for the beta-binomial and negative binomial N-mixture variants, which take orders of magnitude longer than the 
traditional B-P N-mixture due to their higher computational costs.
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Figure 1.   (a) Model rankings by species reporting rate category (1 = best). (b) Magnitude of AIC difference 
between the best N-mixture model and the best GLMM for each dataset. Each stripe-point pair represents one 
SSR dataset. Bar color indicates AIC model choice; point position on the y-axis indicates the difference in AIC 
( �AIC) between the best N-mixture model and the best GLMM.
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Discussion
When estimating relative abundance from count data, ecologists can consider both N-mixture models and 
GLMMs alongside one another in a model selection context. Both N-mixture models and GLMMs act as predic-
tors of counts that vary between and within sites and can be compared via standard model comparison tools. By 
adopting a heuristic perspective towards models based on predictive fit, we let the data speak about which model 
is better rather than guessing a priori based on assumptions about the data-generating process. Put another way, 
we accept that all models under consideration are “wrong” in that assumptions are bound not to be perfectly 
satisfied. By selecting among the candidate models with AIC, we learn which model approximately minimizes 
out-of-sample prediction error.

Across 396 species-subregion data subsets of eBird, we found that it was usually possible to distinguish 
between N-mixture and GLMM fit and that N-mixture models outperformed GLMMs somewhat more often 
than the reverse. This pattern was contingent on the inclusion of beta-binomial N-mixtures, which greatly 
outperformed binomial N-mixture variants. All four N-mixture model variants also more consistently passed 
goodness-of-fit checks. Consideration of only one model type across all these data would produce worse overall 
fit than dataset-by-dataset selection.

We identified no patterns in model selection across species characteristics or site identity, indicating that 
relative fit was highly context-dependent. We observed one pattern in model selection: datasets containing more 

GLMM_Nbin − Nmix_BBP

Nmix_BNB − Nmix_BP

GLMM_Nbin − Nmix_BP

GLMM_Nbin − Nmix_BBNB

GLMM_Pois − Nmix_BBNB

GLMM_Pois − Nmix_BP

GLMM_Pois − Nmix_BBP

GLMM_Nbin − GLMM_Pois

GLMM_Nbin − Nmix_BNB

Nmix_BBNB − Nmix_BBP

GLMM_Pois − Nmix_BNB

Nmix_BBNB − Nmix_BP

Nmix_BBP − Nmix_BP

Nmix_BBP − Nmix_BNB

Nmix_BBNB − Nmix_BNB

−1 0 1

(a) Elevation

GLMM_Nbin − GLMM_Pois

Nmix_BBP − Nmix_BNB

Nmix_BBNB − Nmix_BBP

Nmix_BBNB − Nmix_BNB

Nmix_BNB − Nmix_BP

Nmix_BBP − Nmix_BP

Nmix_BBNB − Nmix_BP

GLMM_Nbin − Nmix_BBP

GLMM_Nbin − Nmix_BNB

GLMM_Nbin − Nmix_BP

GLMM_Nbin − Nmix_BBNB

GLMM_Pois − Nmix_BBP

GLMM_Pois − Nmix_BNB

GLMM_Pois − Nmix_BP

GLMM_Pois − Nmix_BBNB

−2 −1 0 1 2

(b) Log expected count

Difference in estimates

Figure 4.   Distributions of the absolute differences between models in (a) log-scale effect of elevation and (b) 
log expected count. Model pairs are ordered by median difference. Outliers are excluded for legibility. Log 
expected count is the log-scale intercept plus 0.5 times the random effects variance for the GLMMs and simply 
the log-scale expected count intercept for N-mixture models. The latter is defined in our parameterization as a 
combination of abundance and detection intercepts.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12276  | https://doi.org/10.1038/s41598-022-16368-z

www.nature.com/scientificreports/

checklists (and therefore more information) were more likely to select more complex models. This trend does 
not suggest that more complex models like the BB-NB N-mixture model were “true” for our data, and that it was 
therefore wrong to use a simpler model for low-information datasets, since in fact simpler models minimize out-
of-sample prediction error in lower-information contexts. The overall lack of patterning suggests that ecologists 
should not assume that a particular model will fit better for a given dataset.

Point estimates of a parameter of interest, effect of elevation on count, agreed between N-mixture models 
and GLMMs, but GLMMs estimated systematically larger standard errors than N-mixture models. In general, 
lower standard errors are not reason for recommending a model, because lower standard errors can result 
from either correctly characterized improvements in precision, or overconfidence (and increased Type I error); 
without access to true data generating parameters these are indistinguishable without additional fit metrics. If 
both models fit reasonably well, then agreement between parameters may indicate support for the assumption 
that elevation was not confounded with detection. While most selected N-mixture models passed goodness-
of-fit checks, a substantial portion of GLMMs chosen by AIC failed them, indicating that GLMMs fit the data 
somewhat more poorly overall. A simulation study targeting goodness-of-fit and model selection patterns across 
known data-generating conditions could clarify whether this relatively poorer fit is due to actual better corre-
spondence between N-mixture models and the eBird data generating process, or whether N-mixture models are 
more flexible when data are heterogeneous in general. Comparing intercepts between the models (expected log 
count at a “typical” site) is more complicated due to their different structures. Specifically, the expected count 
from the GLMM’s log-normal intercept distribution needs adjustment by the random effects variance to be 
comparable to the corresponding N-mixture parameter. After this adjustment, we see that log expected counts 
are not systematically higher or lower for one kind of model (see Supplemental Section 6).

Estimation instabilities in N-mixture models were largely attributable to a single dimension representing 
the decomposition between abundance and detection, while parameter estimates of relative abundance driv-
ers were estimated stably. These instabilities correspond to a boundary estimate of detection probability being 
nearly zero. Although this is implausible in the mechanistic motivation of N-mixture models, from a statistical 
perspective a boundary estimate is not necessarily a pathological estimation outcome, so these unstable cases 
can still be compared alongside other models. We found a high rate of instability in the B-NB N-mixture model 
in agreement with Kéry19, but found that this high rate did not extend to the BB-NB and BB-P N-mixture model 
variants, which showed rates of instability comparable to the traditional B-P N-mixture. Still, instability was 
present at low rates in all four N-mixture variants. Future theoretical work may clarify how to interpret this 
phenomenon when it occurs.

We analyzed datasets from a single important database (eBird), during a single year, and at modest spatial 
scales, so the particular patterns we observed in model selection are limited. We also chose an aggressive data 
filtering approach that brought the data closer into alignment with N-mixture modeling assumptions. It is pos-
sible that N-mixture models would be less successful on less aggressively filtered data. For feasibility, we chose to 
only consider two model families of interest. One relevant linear model extension, the generalized additive mixed 
model (GAMM), was excluded from this analysis. GAMMs can be used to introduce flexibility into parameters 
which are allowed to vary over space and/or time31,32. Because of the potential for estimating spatially variable 
covariate effects, ecologists working at larger spatial scales may want to consider GAMMs alongside N-mixture 
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models and GLMMs where appropriate. In this application, we expected that this flexibility would not be rel-
evant at the spatial scale considered. Neither GLMMs nor N-mixture models overwhelmingly outperformed one 
another by AIC, but it is conceivable that new models could be developed to extend or bridge these approaches.

When choosing between GLMMs and N-mixture models for relative abundance estimation, practitioners may 
weigh trade-offs beyond the models’ different abilities to explain the data (as characterized by an information 
criterion and goodness-of-fit checks). When an abundance covariate of interest is confounded with detection, 
using an N-mixture model may disentangle these two components, while using a GLMM will not. If estimating 
absolute abundance is of interest, the GLMM will similarly not satisfy this need, while the N-mixture model 
could if effective area sampled is known and standard assumptions are satisfied. Practitioners interested in either 
of these two approaches should consider modeling assumptions during study design and data collection. On the 
other hand, the GLMM may be preferred when computational efficiency is important, such as when the num-
ber of observations is very large. The marginalized likelihoods for N-mixture variants presented in this paper 
reduce the computational costs of N-mixture model fitting. Fast implementations of the N-mixture likelihood 
calculation reduced computation times 20- to 90-fold (see Supplemental Section 3, Supplemental Fig. 5). These 
implementations are available in the R package nimbleEcology33.

We found that observed instability with increasing K14,19 was not prohibitive for interpreting relative abun-
dance estimates. We used a parameterization that suggests such instability arises from a parameter estimate on 
the boundary of the parameter space, which is a manageable and not uncommon problem in other kinds of 
models. Relative abundance point estimates agreed between N-mixture models and equivalently constructed 
GLMMs. This suggests that practitioners should not reject the N-mixture model in the presence of this form of 
estimation instability, and can consider both N-mixture models and GLMMs when estimating relative abundance 
with count data. Without access to known truth, we could not investigate whether the estimates produced reflect 
true relationships between covariates and species abundance, so we cannot say whether either N-mixture models 
or GLMMs estimated parameters accurately in that sense. We suggest that practitioners interested in modeling 
relative abundance from count data consider the assumptions of both models, including known features of 
N-mixture model robustness in practice and theory10,11,13,14,16–18,20–23, along with other practical trade-offs. If both 
GLMMs and N-mixture models are potentially appropriate, we recommend the model selection and goodness-
of-fit checking procedure outlined in this paper for choosing the most parsimonious model with adequate fit.

To estimate species’ relative abundance patterns from increasingly common heterogeneous datasets, ecologists 
will find both N-mixture models and GLMMs useful on a context-dependent basis. Despite their distinct origins 
in heuristic and process-based thinking, these two models are structurally analogous tools for predicting counts 
that vary both across and within sampling units. We have presented results to indicate that selecting between 
these models for a particular dataset is possible on a context-dependent basis. We encourage ecologists to adopt 
a holistic approach to model selection, considering different models alongside one another and bearing in mind 
that statistical models, whether or not they are process-motivated by design, are ultimately tools for fitting data.

Methods
All figures were produced using the R package ggplot2 v3.3.534.

eBird and covariate data.  eBird data are structured as follows. Birders submit observations as species 
checklists with counts of each species they identify. They report associated metadata, such as location, date and 
time, duration of the observation period, number of observers, and sampling protocol25,26,31. The birder indicates 
whether their checklist is “complete”; complete checklists yield inferred zeroes for all species not reported on a 
checklist.

We retrieved the eBird Basic Dataset containing all eBird observations and sampling metadata. We extracted 
all complete checklists that occurred within the U.S. state of California between April 1 and June 30, 2019. Four 
survey-level covariates were retrieved from eBird checklist metadata as detection covariates: number of observers, 
checklist duration, date of year, and time of day; any checklist that failed to report one or more of these variables 
was dropped. Corresponding to best practices for use of eBird data, we filtered the data for quality according 
to the following criteria: we discarded checklists other than those following the “Stationary” survey protocol 
(observations made at a single spatial location) with duration shorter than 4 hours and at most 10 observers in 
the group31,35.

We selected twenty circular regions of high sampling intensity with 10 km radii across California (Supplemen-
tal Fig. 1). These spanned the state’s many habitats including coastal, agricultural, wetland, and mountain areas, 
and contained active birding areas such as parks and human population centers. In each subregion, we selected 
10 species with the highest reporting rate (proportion of checklists including that species) and 10 representing an 
intermediate reporting rate. An additional 10 species were selected that were detected in many regions to enable 
cross-region comparisons, yielding 407 species-subregion (SSR) datasets (with overlaps between the two species 
selection protocols; see Supplemental Section 2 for the full algorithm). Across 20 subregions, we accepted 6094 
eBird checklists for analysis, each with an associated count (potentially zero) for each species. Observations were 
aggregated to sampling sites defined by a 50 m spatial grid. The 50 m grid was chosen to conservatively identify 
related surveys and was not motivated by biological processes, nor does it represent the sampling area of each 
survey. In this context, the concept of “closure” in the latent state is already suspect due to the fact that eBird 
checklist sampling areas are inconsistent. Data were processed in R using the ‘auk’ package36,37.

An elevation surface for the state of California was retrieved from WorldClim at 8.3× 10−3 decimal degrees 
resolution using the R package raster38,39. This commonly used covariate was included as a baseline spatial covari-
ate to enable comparison of estimation properties across sites, but its biological relevance to abundance is not 
crucial to our analysis31. Land cover data were retrieved from the LandFire GIS database’s Existing Vegetation 
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Type layer40. For each unique survey location, a 500 m buffer was calculated around the reported location, and 
the percent of the buffer which was water, tree cover, agriculture or other vegetation (shrub or grassland) was 
calculated. We used the following five site-level covariates: elevation, and percent of the landscape within a 500 
m buffer of the site that was water, trees, agricultural land, or other vegetation. We included six checklist-level 
covariates: duration, number of observers, time of day, time of day squared, Julian date, and Julian date squared. 
Covariates were dropped in datasets where only a single unique value was observed for that covariate.

Model implementation and selection.  We considered four variants of the N-mixture model and two 
variants of the GLMM comprising a total of 6 distinct models, defined by the distributions used in the model 
or sub-model.

The GLMM for count data that we considered is defined as

where yij is th jth observation at site i, D is a probability distribution (which may contain an extra parameter 
θ to account for overdispersion), µij represents the mean expected count and is a logit-linear combination of 
observed site- and observation-level covariates xij , β are coefficients representing the effect of those covariates, β0 
is a log-scale intercept corresponding to the expected log count at the mean site (i.e. with all centered covariates 
set to 0), and αi is the random effect of site i following a normal distribution. Due to the right skew of exp(yij) , 
by log-normal distribution theory the log of the expected count at the mean site is β0 + 0.5σ 2

α . We considered 
two forms of this model, where D was either a Poisson or a negative binomial distribution, in the latter case with 
the extra parameter θ.

The N-mixture model is defined as

where Db and Dw are probability distributions representing between- and within-site variation, respectively; Ni 
is a site-level latent variable normally representing the “true” abundance at site i; pij is the detection probability 
of each individual on the jth observation event at site i; �i is the mean abundance at site i; and x(w) and x(b) are 
covariate vectors for detection and abundance, respectively, with corresponding coefficients βw and βb . For 
reasons described below, we reparameterize the intercept parameters of the N-mixture submodels, log(�0) and 
logit (p0) , in terms of two orthogonal parameters φ1 = log(�0p0) and φ2 = log(p0/�0) . Now φ1 and φ2 represent 
the expected log count and the contrast between detection and abundance, respectively, at the mean site. This 
parameterization allows us to investigate stability of parameter estimation. The log-scale expected count of the 
N-mixture model is φ1 = log(�0p0) , analogous to β0 + 0.5σ 2

α in the GLMM (see Supplemental Section 6). Each 
submodel distribution D could include or not include an overdispersion parameter ( θw and θb ), yielding four 
possible N-mixture model variants: binomial-Poisson (B-P), binomial-negative binomial (B-NB), beta-binomial-
Poisson (BB-P), and beta-binomial-negative binomial (BB-NB)8,11.

We chose to fit models with maximum likelihood estimation (MLE) for computational feasibility and because 
key diagnostic tools, such as AIC and methods for checking goodness-of-fit and autocorrelation, were best 
suited to MLE estimation15. We fit N-mixture models with the nimble and nimbleEcology R packages starting 
with a conservatively large choice of K, the truncation value of the infinite sum in the N-mixture likelihood 
calculation33,41 (see Supplemental Section 4 for a discussion of maximum likelihood estimation with NIMBLE). 
We fit GLMMs with the R package glmmTMB42. We applied forward AIC selection to choose the best covari-
ates for each model with each dataset (illustrated in Fig. S1). One spatial covariate (elevation) and two checklist 
metadata covariates (duration and number of observers) were treated as a priori important and were included 
in all models. In the N-mixture model, checklist-specific sampling metadata were only allowed in the detection 
submodel, while land cover covariates and the interactions between them were allowed in both the detection 
and abundance submodels. Interactions were dropped in datasets when interaction values showed a correlation 
of > 0.8 with one of their first-order terms. In N-mixture models, additions to both submodels were considered 
simultaneously during forward AIC selection.

For comparisons between models, we selected a heuristic threshold of �AIC > 2 to say that one model is 
supported over another30.

Fit, estimation, and computation.  Goodness‑of‑fit.  We used the Kolmogorov-Smirnov (KS) test, a p-
value based metric, to evaluate goodness-of-fit on each selected model. For GLMMs, residuals were obtained 
using the DHARMa R package’s ‘simulateResiduals’ and the KS test was applied using the ‘testUniformity’ 
function43. For N-mixture models, we considered the site-sum randomized quantile (SSRQ) residuals described 
by Knape et al.15, computing these for each N-mixture model and running a KS test against the normal CDF. 
We assumed that covariate effects did not vary by space within subregions and chose not to use spatially explicit 
models31,44. To test this assumption, we applied Moran’s I test to the SSRQ or DHARMa-generated residuals for 
each site or observation.

yij ∼ D(µij , [θ])

log(µij) = β0 + x
T
ij β + αi

αi ∼ N (0, σα)

yij ∼ Dw(Ni , pij , [θw])
Ni ∼ Db(�i , [θb])
logit(pij) = logit(p0)+ xij(w)βw
log(�i) = log(�0)+ xi(b)βb

p0 = e
φ1+φ2

2

�0 = e
φ1−φ2

2
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Parameter estimation.  We compared two abundance parameters of interest across models: coefficients for ele-
vation and log expected count at a standard site (in the GLMM, β0 + 0.5σ 2

α ; in the N-mixture model, log(�0p0) ). 
We examined absolute differences in point estimates and the log-scale ratios between their standard errors.

Stability of estimated parameters.  Attempting to decompose the expected value of observed data into within- 
and between-site components can lead to ridged likelihood surfaces with difficult-to-estimate optima. Kéry 
found that instability of model estimates with increasing K occurred when there was a likelihood tradeoff 
between detection and abundance, resulting in a tendency in abundance toward positive infinity restrained 
only by K10. Dennis et al. showed that N-mixture models could in fact yield estimates of absolute abundance 
at infinity18. We interpreted this as a case of a boundary parameter estimate rather than non-identifiability and 
explored it by reparametrizing as follows. We estimated the intercepts for detection and abundance with two 
orthogonal parameters (rotated in log space) φ1 = log(�0p0) and φ2 = log(p0/�0) , where �0 and p0 are real-scale 
abundance and detection probability at the mean site. We hypothesized that in unstable cases, φ1 , log expected 
count, is well-informed by the data, but φ2 , the contrast between abundance and detection, is not well-informed, 
corresponding to a likelihood ridge as φ2 → −∞ due to detection probability approaching 0 and abundance 
approaching infinity. This reparameterization isolates the likelihood ridge to one parameter direction, similar 
to a boundary estimate as exp(φ2) → 0 . Boundary estimates occur in many models and are distinct from non-
identifiability in that they result from particular datasets. Confidence regions extending from a boundary esti-
mate may include reasonable parameters, reflecting that there is information in the data. We defined a practical 
lower bound for φ2 . When φ2 was estimated very near that bound, we conditioned on that boundary for φ2 when 
estimating confidence regions for other parameters.

In the N-mixture case, diagnosing a boundary estimate for φ2 is made more difficult by the need to increase 
K for large negative φ2 to calculate the likelihood accurately. We used an approach like that of Dennis et al.18 to 
numerically diagnose unstable cases. For each N-mixture variant in each SSR, the final model was refitted twice, 
using values of K 2000 and 4000 greater than the initial choice. Estimates were considered unstable if the abso-
lute value of the difference in AIC between these two large-K refits was above a tolerance of 0.1. We monitored 
whether MLE estimates of φ1 and φ2 also varied with increasing K.

Evaluating the fast N‑mixture calculation.  We extended previous work by Meehan et al. to drastically improve 
the efficiency of N-mixture models using negative binomial or beta-binomial distributions in submodels45 (see 
Supplemental Section 3).

We ran benchmarks of this likelihood calculation for a single site against the traditional algorithm, which 
involves iterating over values of N to compute a truncated infinite sum. We calculated the N-mixture likelihood 
at 5,000 sites and compared the computation time between the two methods for all four N-mixture model vari-
ations. We ran benchmarks along gradients of length(yi) (number of replicate observations at the simulated site) 
and K (the upper bound of the truncated infinite sum) for each variant.

Data availability
All analyses were performed using publicly available data.

Code availability
All code is available in a GitHub repository.
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