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Abstract: Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention
from scientists due to their unique morphologies, facile synthetic methods, and physicochemical
properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility,
and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or
organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical
applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on
inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all
the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review
some important inorganic nanoflowers, which have applications in antibacterial treatment, wound
healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions
such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent
advances in their biomedical applications and preparation methods. Finally, we provide a perspective
on the current trends and potential future directions in nanoflower research. The development of
inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse
range of nanoflowers comprising inorganic elements and materials with composite structures must
be synthesized using ecofriendly synthetic strategies.

Keywords: inorganic nanoflowers; biomedical application; drug delivery; wound healing; antibacterial
treatment; combinatorial cancer therapy; amyloidosis; H2O2; biosensors

1. Introduction

Flower-shaped nanomaterials called nanoflowers [1] have attracted the attention of
researchers worldwide due to the multilayered structural characteristics of their petals.
These nanoflowers have a higher surface-to-volume ratio than solid spherical nanoparticles,
exhibit enhanced charge transfer and carrier immobility, and are highly efficient in surface
reactions [2]. The syntheses and applications of nanoflowers have been widely investigated
thus far. The flowerlike nanostructures are constructed using inorganic or organic mate-
rials, or a combination of both materials (called a hybrid), and are used in catalysts [3–5],
dye-sensitized solar cells [6–8], lithium-ion batteries [9–11], supercapacitors [12,13], water
splitting [14,15], and biomedical applications [16–20]. New materials with high therapeutic
efficiencies that are inexpensive to synthesize with simple, robust, and eco-friendly synthe-
sis routes are essential in biomedical science. Nanoflowers with branched structures satisfy
all these requirements.

Nanoflowers can be classified on the basis of their composition: inorganic, organic,
and hybrid (both organic and inorganic components); see Figure 1. Inorganic nanoflow-
ers are composed of exclusively inorganic materials such as metals, metal oxides, alloys,
and metalloids, or the inorganic materials are coated or doped using metalloids, carbon,
nitride, sulfide, phosphide, selenide, and telluride [21–32]. Vesicles made from gemini
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amphiphiles that directed synthesis of Au nanoflowers were reported [33]. NiO nanoflow-
ers are synthesized via a simple surfactant-free hydrothermal route employing Ni(NO3)2
and triethylamine followed by calcination. On the other hand, the NiO morphologies
formed by synthesis with urea instead of triethylamine varied depending on the calcina-
tion temperature and produced nanoparticles or nanoslices at calcination temperatures
of 400 and 600 ◦C, respectively [34]. Imura et al. introduced the preparation method of
silica-coated Au nanoflowers on alumina to prevent the aggregation of the nanoflowers
and precipitation [26]. Carbon-coated Fe3O4 nanoflowers were synthesized via a one-pot
solvothermal route for biosensors in lateral flow immunoassays [27].
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Organic nanoflowers are composed of organic molecules only or contain inorganic
elements as part of the medium in which the organic molecules are the main compo-
nents [35–39]. For instance, carbon nanoflowers synthesized using an electric arc discharge
method in water were reported; the obtained carbon nanoflowers were composed of
highly crystalline graphene nanosheets that were arranged like flowers [40]. Zheng’s
group introduced nitrogen-, phosphorous-, and fluorine-doped carbon nanoflowers using
ultrasound-induced polycondensation and pyrolysis [41]. In addition, organic nanoflowers
have been constructed from a variety of molecules (guests) using fixed supramolecular
hacky sacks, which are hierarchically structured particles, as templates [42]. Nanoflowers
with spiky and wide petals have been produced by using small/rigid molecules (e.g.,
doxorubicin) and large/flexible biomacromolecules (e.g., proteins and plasmid DNA),
respectively, as guests [42].

Organic–inorganic hybrid nanoflowers, also called hybrid nanoflowers, are defined as
all components of inorganic nanostructures being associated with organic materials [43].
Generally, organic components include enzymes, proteins, amino acids, biopolymers, DNA,
and peptides containing amide or amine groups to form complexes with metal ions via
coordination interaction. Inorganic materials are mostly composed of divalent metals
such as Cu2+, Zn2+, Ca2+, Fe2+, and Mn2+ [44]. Ge and coworkers [45] discovered the first
hybrid nanoflowers, confirming that Cu2+ ions and proteins could be used to construct
novel types of nanoparticles. The four types of hybrid nanoflowers were prepared using
α-lactalbumin, laccase, carbonic anhydrase, and lipase, respectively. The formation of dual-
enzyme inorganic hybrid nanoflowers was reported by using glucose oxidase and lipase
as the organic materials and Cu3(PO4)2·3H2O as the inorganic components [46]. Li et al.
synthesized carbon-nanotube-embedded lipase–Ca/Fe/Cu nanoflowers as a biocatalysts
of the chiral resolution reaction [47].
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Since the early 2000s, inorganic nanoflowers; i.e., nanoflowers synthesized from
inorganic elements, have attracted the attention of researchers due to their unique nanos-
tructural characteristics, as well as their excellent catalytic efficiency and optical properties,
depending on their composition, crystal structure, and localized surface plasmon resonance
(LSPR). In particular, inorganic nanoflowers have been widely used in photocatalysis appli-
cations such as plasmon-enhanced hydrogen evolution and alcohol oxidation [48,49]. The
maximum absorption wavelength of LSPR in surface-enhanced Raman scattering (SERS)
can be controlled by the nanoflower size for qualitative and quantitative analysis [50,51].
Nanoflowers are also widely used in energy applications and catalysis. Despite these
advantages, fewer studies on inorganic nanoflowers for biomedical applications have been
published than those on hybrid nanoflowers. In particular, the scope of inorganic materials
used to synthesize nanoflowers requires expansion. To the best of our knowledge, this
article is the first review of inorganic nanoflowers and their biomedical applications in
the literature.

In this review, we will summarize the preparation, properties, and recent advances in
inorganic nanoflowers in biomedical applications. First, we present some popular synthetic
strategies for nanoflowers suitable for use in biomedical applications. Next, we provide
a brief overview of the biomedical applications of the flowerlike nanostructures: their
antibacterial effects in wound healing; medical devices and implants; biosensors to detect
diseased conditions such as diabetes, food poisoning, and amyloidosis; drug delivery;
and combinational treatment. Finally, we review the properties and efficiency of three-
dimensional (3D) flower-shaped nanomaterials. Further, we discuss the current and future
research trends in nanoflower research.

2. Synthesis and Characterization of Nanoflowers

In 2008, Xie et al. [52] reported on the three popular synthetic strategies of nanoflowers:
soft-template-based synthesis (e.g., using liposomes as soft templates to guide the forma-
tion of flowerlike nanostructures) [53,54], anisotropic growth using capping agents such as
poly (polyvinylpyrrolidone) (PVP) and cetyltrimethylammonium bromide (CTAB) [55–58],
and oriented attachment of primary nanoparticles (e.g., synthesis of dendritic PtRu nanopar-
ticles from faceted PtRu primary nanoparticles) [59]. Since then, various other methods have
been applied to synthesize inorganic nanoflowers based on the previously reported nano-
material synthesis technologies: physical, chemical, biological, and hybrid methods [60].

The first technology is the physical method, which is mainly represented by vapor
technology. For instance, Bi2S3 nanoflowers grown on silicon substrate via a simple vapor
deposition method were reported [61]. The morphology of the Bi2S3 nanostructure was
controlled from flowers to bundles of nanorods by controlling the partial pressure of the
reactant as the experimental parameter. The second synthesis method is the chemical syn-
thesis strategy, which has been most widely applied to form inorganic nanoflowers. The col-
loidal [62], sol-gel [63], inverse micelles [64,65], hydrothermal [6,66], solvothermal [67–69],
electrodeposition [70,71], and microwave synthesis [72,73] methods have been studied in
the formation of inorganic nanoflowers. Mo1−xWxSe2 alloy nanomaterials with nanoflower
morphologies were synthesized using the controlled colloidal synthesis of composition
and morphology [62]. The similar morphologies were maintained while changing the com-
position. As the content of W(x→1) increased, the size and thickness of the sheet slightly
increased. The Fe3O4@MnO2 core–shell nanoflowers were fabricated via a solvothermal
method [68]. Further, the 3D ultrafine Pt nanoflower was directly deposited on the carbon-
coated gas diffusion layer electrode by the electrodeposition method [70]. The microwave
synthesis strategy was used to hierarchically structure NiCo2O4 nanoflowers [73]. Third,
among other biological nanomaterial synthesis methods, the biological synthesis approach
known as green synthesis that uses plant extracts (e.g., Azadirachta indica leaves [74], Dodon-
aea angustifolia [75], Kalanchoe daigremontiana [16], Ocimum sanctum (Tulsi) leaves [76], and
Withania coagulans [77]) has been mainly studied. Bioinspired synthesis of ZnO nanoflowers
was introduced using a Withania coagulans extract as the reducing agent [77]. The last
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example of synthesis technology for flower-shaped inorganic nanomaterials is the hybrid
nanomaterial synthesis method, which is a multistep synthesis method that combines vari-
ous physical, chemical, and biological methods such as electrochemical deposition [78,79],
chemical vapor deposition [80], high-energy ball-milling hydrothermal treatment [81], and
the solution-immersion RF-sputtering method [82]. MoSe2 nanoflowers on a 3D carbon
cloth surface were fabricated using chemical vapor deposition by controlling the tempera-
ture and growth time in order to manipulate the morphology, thickness, and formation of
both Mo and Se active edge sites [80]. Ag@NiO core–shell nanoflower arrays were prepared
using the one-step solution-immersion process and subsequent RF-sputtering method [82].

Organic nanoflowers were synthesized using similar synthesis technologies to those
of inorganic nanoflowers. The electric arc discharge method [40], ultrasound-induced poly-
condensation and pyrolysis [41], reduction–pyrolysis–catalysis route [83], chemical vapor
deposition [84], and microwave-assisted high-temperature/hydrothermal carbonization
etching method [85,86] were reported.

In the case of the organic–inorganic hybrid nanoflower first reported in 2012, the mild
and direct coprecipitation method was developed to synthesize hybrid protein–copper
phosphate nanoflowers [45]. Since then, various hybrid nanoflowers have been synthesized
based on the coprecipitation method, which was carried out by mixing the organic elements
(e.g., enzymes, protein, amino acids, and so on) and metal ions (Cu2+, Zn2+, Mn2+, Fe2+,
and Co2+) in the presence of phosphate-buffered saline or directly using metal phosphate.
The mixture was then incubated or sonicated [87–91].

Herein, we introduce some specific synthesis strategies, especially for biomedical
applications.

Flowerlike nanomaterials with a hollow morphology, for drug delivery, can be synthe-
sized using challenging template-based synthesis. For example, hollow Au nanoflowers
(H–AuNFs) were synthesized using polyacrylic acid (PAA) nanospheres as templates
(Figure 2a) [20]. Briefly, small Au nanoparticles were formed on a PAA nanosphere surface
by the addition of chloroauric acid. The seed-mediated growth of the as-synthesized Au
nanoparticles through the reduction by L-ascorbic acid led to the formation of the nanoflow-
ers with a hollow morphology. After the reaction, PAA nanosphere templates were easily
removed by washing with deionized water. As shown in Figure 2c,e, the H–AuNFs pre-
pared using the template-mediated method exhibited a flowerlike and hollow morphology
with a 450 nm diameter.

As shown in Figure 3, Cu2O nanocubes have been used as challenging templates for
synthesizing hierarchical CuO nanoflowers [92]. The addition of H2O2 gradually oxidized
the Cu2O nanocubes, resulting in the formation of ultrathin CuO nanosheets on their sur-
face. As the reaction time was increased, the inner Cu2O nanocubes gradually disappeared
and the nanosheets increased in size, thus generating hierarchical CuO nanoflowers with
ultrathin nanosheets. As shown in Figure 3b,c, the CuO nanoflowers were composed
of numerous crooked nanosheets with a thickness of <10 nm and a large surface area
(78.35 m2 g−1). As shown in the HR-TEM image (Figure 3d), the measured lattice spacings
of 0.234 nm and 0.236 nm were ascribed to the (111) plane of CuO. The XRD pattern and
XPS spectra in Figure 3e–g indicate that the CuO had a monoclinic geometry [93,94].

To synthesize nanoflowers, PVP and CTAB were used as capping agents and sur-
factants for structural control, but they were difficult to remove from the surface of the
nanomaterial, requiring severe conditions or multiple washings [95]. Nanoflowers can also
be synthesized via anisotropic growth by using biocompatible Good’s buffers such as 3-[4-
(2-hydroxyethyl)piperazin-1-yl]propane-1-sulfonic acid (EPPS) and 2-[4-(2-hydroxyethyl)-
1-piperazinyl]ethanesulfonic acid (HEPES) as reducing and shape-directing agents [96].
HEPES has good biocompatibility and environmental and cost advantages, and also pro-
vides a clean surface where postsynthesis surface modifications can be easily performed
for biological applications [52].
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Figure 2. (a) Schematic of the synthetic strategy for H–AuNFs as pH/near-infrared (NIR) dual-
responsive drug vehicles for in vitro and in vivo synergistic chemo-photothermal cancer therapy.
IPA = isopropyl alcohol, LAA = L-ascorbic acid, DOX = doxorubicin hydrochloride. Transmission
electron microscopy (TEM) images of (b) polyacrylic acid nanospheres and (c) H–AuNFs. (d) High-
resolution transmission electron microscopy (HR-TEM) image of a single H–AuNF. Inset: magnifica-
tion of the area marked with a square. (e) Scanning electron microscopy (SEM) image of H–AuNFs.
Inset: SEM image of a broken H–AuNF (scale bar: 100 nm). Reprinted with permission from Ref. [20].
Copyright 2015, The Royal Society of Chemistry.

Size-controlled metallic Au nanocrystals with flowerlike structures were synthesized
in high yields with excellent monodispersity via a modified HEPES reduction method
without seeds or surfactants [52,95]. Increasing the HEPES concentration to 15 and 20 mM
induced the formation of smaller nanoflowers with diameters of 65 ± 8 nm (Figure 4a,b)
and 48 ± 6 nm, respectively (Figure 4c,d). A further increase in the HEPES concentration to
40 mM resulted in the formation of spherical and irregular-shaped nanoparticles with an
approximately 5 ± 35 nm diameter (Figure 4e,f). After a reaction period of 8 min, the solid
product consisted of primary Au nanocrystals with diameters of 2± 20 nm (Figure 5b). This
reaction period of nanoflower formation; i.e., nucleation of the primary Au nanocrystals,
was called Stage 1. These primary nanocrystals were unstable and agglomerated to reduce
the overall surface energy for the next 4 min of reaction, which was the beginning of
Stage 2. The morphology of the product was studied at 12 min when the agglomerates
comprised tens of primary crystals, as shown in the TEM image (Figure 5b). The reduction
rate decreased after a long period depending on the consumption of the Au precursor,
which was the limiting reactant; at this point, Au was deposited in energetically favorable
directions, causing anisotropic growth of the agglomerates. Flowerlike nanostructures
grew from the branches protruding from the surfaces of the agglomerates, which was
labeled Stage 3. TEM images showed the formation of highly branched Au nanostructures
through the anisotropic growth of agglomerates from Stage 2 until 24 min of reaction time
(Figure 5b).
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of reaction time. All scale bars are 20 nm. (c) Schematic of the proposed mechanism for the formation
of Au nanoflowers in HEPES solution. Reprinted with permission from Ref. [52]. Copyright 2008,
American Chemical Society.

Another approach to synthesizing nanoflowers involves a core nanoparticle and
flower-shaped shells of different compositions encapsulating the surface of the core nanopar-
ticle. For instance, highly bioactive and low-cytotoxic Si-based NiOOH nanoflowers were
synthesized using a modified chemical bath deposition method [24,97]. As shown in
Figure 6, plasma-synthesized silicon nanoparticles of a 50–100 nm particle size were encap-
sulated in porous flowerlike NiOOH shells so that the diameters of the Si-based nanoflowers
were in the range of 500 nm–1 µm and thickness of the porous NiOOH shell layers was
200–450 nm (Figure 7a). As shown in Figure 7b, the highly intense diffraction peaks in
the XRD patterns corresponded to Si and the peaks at 2θ = 12◦ and 24◦ were attributed
to the NiOOH coated on the Si nanoparticles. The formation of the Si@NiOOH was also
confirmed using UV–vis spectroscopy.
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To put it shortly, inorganic nanoflowers are prepared in general using four types of
synthesis technologies (e.g., physical, chemical, biological, and hybrid methods), based
on previously reported synthesis strategies of nanomaterials. As the shape and particle
size of nanoflowers and the thickness of the petals are influenced by the synthesis method,
experimental parameters, composition ratio, and structures [34,62,77,98–100], the develop-
ment of new synthesis methods is essential. Moreover, the specific synthesis strategies for
biomedical applications have been described. The first example is a colloidal method (with
the challenging template) of synthesizing hollow-shaped nanoflowers designed for drug
transport. The next example is the seedless synthesis method using HEPES, a zwitter-ionic
organic buffering agent that has minimal salt and temperature effects and high water
solubility. The final example is the encapsulation of the surface of the core nanoparticle
using different components. Various surface components can be applied that can be easily
utilized in wider biomedical applications. Therefore, in order to develop biomedically
applied nanoflowers, it is important to develop synthesis methods using reactants with
high biocompatibility and simple postsynthesis purification processes. It is also necessary
to develop synthesis methods that can easily apply various components to the surface
of nanoflowers.

3. Biomedical Applications of Nanoflowers

Inorganic nanoflowers have demonstrated promising results in a variety of biomedical
applications such as antibacterial treatment, biosensors, drug delivery, and combinational
therapy. To the best of our knowledge, the scope of biomedical applications of organic
nanoflowers is relatively very limited and the research is still in its early stages [42]. On the
other hand, organic–inorganic nanoflowers have been widely applied in biomedical applica-
tions as biosensors to identify pathogens [101], cholesterol [102], dopamine [103], DNA [104],
and micro RNA [105]; and as biomedicines such as drug and gene carriers [106,107] and for
spinal cord injury treatment [108] and hemostasis [109]. Research on the biological applica-
tion of inorganic nanoflowers has been actively attempted, but more diverse studies are still
needed. This section will introduce several key studies. Several inorganic elements, such as
Ag, Au, Pt, Si, Cu, CuO, and ZnO, have been applied as the main materials in the field of
biomedical applications using nanoflowers due to their unique characteristics. Ag has been
used in medicine for many years and is known as a potent antibacterial agent [110,111]
Ag ions punch holes in bacterial membranes and create havoc once inside. Ag nanoscale
materials have a greater inhibitory effect than bulk metallic forms or ionic forms [112]. For
example, Ag nanoparticles have a higher antimicrobial activity against a wide range of bac-
teria, fungi, and viruses due to their high specific surface area and large surface-to-volume
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ratio [113,114]. In addition, nanoparticles are of particular interest due to their local surface
plasmon resonance properties. These properties create other unique properties that are use-
ful in such applications as antibacterial agents, chemical/biological sensors, biomedicine
materials, SERS, and so on [115–118]. Au nanostructures have a high chemical stability,
biocompatibility, plasmon tunability, and versatility in chemical modification [119,120]. Au
nanoparticles showed potential in bioimaging and biosensing [121] and were proposed as
therapeutic carriers for cancer treatment [122]. Pt exhibits high stability and is not easily
oxidized [123]. In addition, Pt-based materials have been extensively studied due to Pt’s ex-
cellent catalytic ability in many applications such as organic catalysts [124], fuel cells [125],
sensors [126], and cancer chemotherapy [127]. Pt nanostructures with a high electrocatalytic
efficiency, sensitivity, and selectivity have been used in the manufacture of electrochemical
sensors and biosensors [128–130]. Bulk Si is nontoxic, inexpensive, and the second most
abundant element in the earth’s crust [131]. Si nanocrystals, which have advantages such
as a low toxicity, high biocompatibility, and unique size and surface-dependent optical
properties, have been utilized for bioimaging applications [132]. Noble metal nanoparti-
cles, including Ag, Au, and Pt, have been intensively studied for biomedical applications;
however, due to their high associated costs, various metals and metal oxides such as Cu,
CuO, ZnO, and NiO have been studied as alternatives [76,133–138].

3.1. Antibacterial Treatment

The antibacterial properties of flower-shaped nanostructures bearing various ele-
ments have been extensively studied in the literature. Due to the small size and large
surface-to-volume ratio of nanoflowers, they can directly interact with and disrupt mem-
branes in biological systems with high efficiency [139]. Nanoflowers, which can improve
antibacterial effects such as wound healing, have been used in the development of med-
ical devices and implants. Ag nanoflowers synthesized using Kalanchoe daigremontiana
extracts and CuO nanoflowered surfaces exhibited a high antibacterial activity against
the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococ-
cus aureus [16,100]. Perineum ZnO nanoflowers exhibited greater antibacterial activity
against the Gram-positive bacteria Staphylococcus aureus than against the Gram-negative
bacteria Pseudomonas aeruginosa [77]. The bactericidal rate of Si@NiOOH at 200 mg mL−1

was 99.9% against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant
Staphylococcus aureus, whereas it exhibited negligible cytotoxicity toward mouse embryonic
fibroblasts [24]. Notably, the morphology of Si@NiOOH was maintained even after its
bactericidal activity [24]. Yan et al. engineered Au cores with AgAu shell alloy nanoflowers
(Au@AgAu ANFs) [140]. Due to the rough surface morphology of the alloy, the Au@AgAu
ANFs firmly adhered to bacteria and damaged their cell membranes. The ANFs showed
highly stable (30 days) and long-lasting (48 h) antibacterial activity against Escherichia coli
and remarkable biocompatibility with human neuroblastoma cells (SH–SY5Y) at a high con-
centration of 40 µg mL−1. The antibacterial efficacy of Au@AgAu ANFs was investigated
in mouse intestine (Figure 8a). Four groups of the bacterially infected mice were treated
with PBS (control group), Au@AgAu ANFs, Ag nanoparticles (Ag NPs), and kanamycin
(Figure 8b,c). The antibacterial activity of the ANFs was similar to that of the kanamycin
antibiotic in in vivo experiments; the ANFs demonstrated no cytotoxicity.
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Au@AgAu ANFs for three days. (c) Surviving E. coli in the small intestine, cecum, and colon on the
fourth day after treatment with PBS, Au@AgAu ANFs, kanamycin, and Ag NPs. Reprinted with
permission from Ref. [140]. Copyright 2018, The Royal Society of Chemistry.

3.2. Biosensors

Biosensors are biologically derived from analytical devices that convert a biological
response into an electrical signal [141–145]; they are typically composed of transducers for
biological recognition units and signal-converting systems. Researchers have developed
highly selective and sensitive biosensors for a wide range of applications such as disease
diagnosis and monitoring food quality.

3.2.1. Glucose Monitoring

Diabetes mellitus is a metabolism disorder that elevates blood sugar (glucose) levels
to ≥6.9 mM on an empty stomach; it can lead to death and disability [146]. Therefore,
developing sensors to monitor glucose has attracted considerable attention from researchers
worldwide.

For the diagnosis and management of diabetes mellitus, nonenzymatic glucose sen-
sors were developed by fabricating Pt nanoflowers on Au electrodes via a template-free
ultrasonic electrodeposition method [147]. The differential pulse voltammograms showed
that the Pt nanoflower electrodes for glucose determination exhibited a sensitivity of
2217 µA mM−1 cm−2 (+0.3 V), a linear calibration range of 1–16 mM, and a detection limit
of 48 µM at a signal-to-noise ratio (S/N) of 3.
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Ag nanoflowers fabricated via the cyclic scanning electrodeposition method exhib-
ited excellent electrocatalytic activity with a low detection limit of 0.1 nM (S/N = 3)
and a high sensitivity of ~4230 mA cm−2 mM−1 [148,149]. The electrocatalytic activ-
ity was attributed to the curved nanopetals with a high density of atomic steps [150],
effective area of the Ag(OH)ad layer, good electron transport by the continuous 3D in-
tercrossed Ag petals due to their high surface-to-volume ratios, and excellent interfacial
contact between the flowerlike Ag nanoparticles and substrate via the bridge linker 3-
mercaptopropyltrimethoxysilane [151].

Kong et al. synthesized hierarchical CuO nanoflowers using Cu2O nanocubes as
templates. The CuO nanoflower-modified electrodes exhibited a higher sensitivity (2217 µA
mM−1 cm−2), lower detection limit (0.96 µM), and broader linear range (up to 6 mM) for
nonenzymatic glucose sensing than those of the other reported sensors (Table 1) [92].
These electrodes demonstrated a fast response time, long-term stability, and good practical
applicability in determining glucose levels in human blood serum samples.

Table 1. Comparison of the performance of the CuO-nanoflower-modified electrode with those of the
other reported glucose sensors. Reprinted with permission from Ref. [92]. Copyright 2018, Elsevier.

Electrode Materials Sensitivity
(µA·mM−e·cm−c) Linear Range (up to mM) Detection Limit (µM) References

CuO/Cu2O/Cu 1541 4 0.57 [152]
CuO/Au 1101 13.3 50 [153]

Nanoporous CuO/Cu 1066 2.04 ~ [154]
CuO nanowire/Cu 1420.3 2.05 5.1 [155]

CuO/Gox 47.19 10.0 1.37 [156]
CuO nanoflowers 2217 6 0.96 [92]

3.2.2. Hydrogen Peroxide (H2O2) Sensors

H2O2 is a strong oxidizing agent that is a catalytic byproduct of oxidases such as
glucose oxidase, cholesterol oxidase, and lactate oxidase [157] and a precursor in the
formation of hydroxyl radicals [158]. Therefore, the development of a sensitive, convenient,
and fast H2O2 sensor is highly desirable for disease diagnosis. The hierarchical, porous
CuO/Cu nanoflower-modified electrode materials for nonenzymatic H2O2 sensors were
synthesized via surfactant-free oxidation of a Cu powder in alkaline solution [17]. These
nanoflowers were characterized using cyclic voltammetry and amperometry under alkaline
conditions; they exhibited a high sensitivity (103 µA mM−1 cm−2), low detection limit
(2 µM/L), and broad concentration range (2 µmol L−1–19.4 mmol L−1). To determine
the effect of the oxidation of human serum on the amperometric response of H2O2, the
current-time responses at the CuO/Cu/glassy carbon electrode with added disruptors such
as H2O2, uric acid, ascorbic acid, and L-cysteine were investigated [159]. The effects of these
interferants were negligible, indicating that the CuO/C nanoflowers demonstrated good
selectivity for H2O2 detection. The long-term stability of the CuO/Cu nanoflower-modified
electrode was studied by measuring the current response to H2O2 for 30 days under alkaline
conditions and was observed to be 88.4%. These excellent features (stability, sensitivity,
anti-interference property, and wide concentration range) of the nonenzymatic H2O2 sensor
with the CuO/C nanoflower-modified electrode were attributed to the large specific surface
area and porosity of the nanoflowers, stable nanostructure, and enzyme-free detection.

3.2.3. H2O2 and Glucose Dual Sensors

CuO nanoflowers were fabricated on a glassy carbon (GC) electrode as a dual-function
amperometric sensor for H2O2 and glucose [18]. The CuO nanoflowers/GC electrode exhib-
ited an excellent response to H2O2 with a high sensitivity (956.69 µA mM−1 cm−2) and wide
linear range (0.005–14.07 mM). In addition, the experiment showed a high electrocatalytic
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activity for glucose oxidation with a high sensitivity (1086.34 µA mM−1 cm−2) and low
detection limit (0.12 µM, S/N = 3) [18].

3.2.4. Amyloid Detection

Amyloids are misfolded protein aggregates that have been linked to amyloidosis and
neurodegenerative diseases such as Alzheimer’s disease [160,161], Parkinson’s disease [162],
prion-related diseases [163], and type 2 diabetes [164]. A rapid, cost-effective, and sensitive
ZnO-nanoflower-based nano-biosensor was developed for amyloid detection [165]. Interest-
ingly, ZnO nanoflowers and nanoparticles were also used for amyloid degradation [19].
Fluorescence studies with Thioflavin T, atomic force microscopy, infrared spectroscopy,
and fibril size reduction using dynamic light scattering on a model human insulin amy-
loid indicated that ZnO nanoflowers had a higher anti-amyloid ability than that of ZnO
nanoparticles due to the higher surface-to-volume ratio of the nanopetals [19].

3.3. Drug Delivery and Combinatorial Treatment

Due to their structural features and physical properties, nanoflowers are suitable
for combinational therapies that include drug delivery. Li et al. synthesized H-AuNFs
and evaluated their drug-loading capacity and pH/near-infrared (NIR) controlled-release
properties using doxorubicin hydrochloride (DOX) as a model anticancer agent for syn-
ergistic chemo-photothermal cancer therapy [20]. The in vivo tumoricidal efficacy was
investigated in tumor-bearing Kunming mice (Figure 9a). A histological examination of
lung, liver, spleen, kidney, and heart was performed to monitor the toxicity of H–AuNFs in
the treated mice (Figure 9b). When the nanoflowers were synthesized from a plasmonic
metal element such as Au, they exhibited long-wavelength LSPR due to the protruding
petals. Moreover, the local temperature could be elevated through NIR laser irradiation and
photothermal conversion effect [166–168]. These results indicated that H–AuNFs exhibit
excellent biocompatibility, high photothermal conversion efficiency (η = 52%), pH/NIR
dual-responsive drug delivery, and synergistic chemo-photothermal efficacy.
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In summary, inorganic nanoflowers have shown promising results in biomedical appli-
cations such as antibacterial treatment; biosensors to detect glucose, H2O2, and amyloids;
drug delivery; and combinatorial therapy. Compared to the research results for hybrid
nanoflowers or other nanomaterials (e.g., gelatin nanofibrous scaffolds for engineering car-
diac tissues [169]; Ag nanoparticles for adhesives, wound closing, and hemostatic [170–172];
and hydrogel nanoparticles for drug release and delivery [173]), the application area is
relatively limited and the biomedical application research of inorganic flowerlike nanos-
tructures is still in its early stages.

4. Summary

Herein, we presented a comprehensive review of the recent advances in inorganic-
element-based nanoflowers used in biomedical applications. The synthetic strategies for
nanoflowers that had biocompatibility, improved efficiency, and specific functions and
structures for biomedical applications were described. An eco- and biofriendly synthesis
method must be developed by minimizing the amounts of toxic residues and eliminating
seeds, surfactants, and templates as much as possible. The synthetic strategies of hollow-
structured nanoflowers and wrapping porous flowerlike shells around core nanoparticles
were designed for specific bioapplications, drug delivery, and combinational therapy.

These nanoflowers can be used for their antibacterial effects such as wound healing;
for manufacturing medical devices and implants as well as biosensors to detect diseases
such as diabetes, food poisoning, amyloidosis, and neurodegenerative diseases; and for
facilitating drug delivery.

Synthetic methods for inorganic flower-shaped nanoparticles consisting of metals
and metal oxides and their particle size distribution and applications are summarized in
Table 2.

Table 2. Inorganic hierarchical flowerlike nanomaterials and their biomedical applications.

Nanostructures Production Methods Size Application Refs.

Au nanoflowers Vesicle-directed generation 406 ± 89 nm SERS [33]

Au nanoflowers Seed-mediated method 55 nm SERS-mapping immunoassay [174]

Hollow-channel Au and
Ag nanoflowers Template method 193 ± 47 nm Catalysts and SERS [175]

Au nanoflowers,
nanostars, and

nanosnowflakes

Seedless and surfactant-free
approach

100 nm (nanoflowers)
60–70 nm (nanostars)

90 nm
(nanosnowflakes)

Catalyst and photothermal
therapy [121]

Pt nanoflowers Template-free synthesis –

Surface-assisted laser
desorption/ionization mass

spectrometry analysis of
biomolecules

[124]

Pt nanoflowers Sonoelectrodeposition
method – Electrocatalysts and

nonenzymatic sensors [176]

Branched Ag
nanoflowers Biosynthesis 40–60 nm SERS and antibacterial treatment [177]

Ag nanoflower Cyclic scanning
electrodeposition method ~5.5 µm

Catalysts of nonenzymatic
electrochemical glucose

biosensors
[148]

Multibranched AgPt
alloyed dendritic

nanoflowers

One-pot successive
coreduction aqueous method 332.7 nm SERS [178]

CuO nanoflowers Hydrothermal method 1 µm H2O2 sensor [179]
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Table 2. Cont.

Nanostructures Production Methods Size Application Refs.

Flower-shaped CuO
nanostructures Biosynthesis ~250 nm Photocatalysts and

antibacterial agents [76]

CuO nanospindles and
CuO nanoflowers Green synthesis – Antimicrobial agents [75]

ZnO nanoflowers Hydrothermal method – Antibacterial agents [180]

ZnO nanoflowers Solution method 316 nm Antiamyloid agents [19]

ZnO nanoflowers Hydrothermal method – Anticancer agents [181]

ZnO/Ag nanoflowers Hydrothermal method 1.5–3.5 µm SERS [182]

Fe3O4 nanoflowers Solvothermal route 70–80 nm
Theranostic applications, such in
for phototherapy and magnetic

resonance imaging
[183]

Fe0.6 Mn0.4O
nanoflowers

Thermal-decomposition
reaction 102.7 ± 11 nm

Diagnostic applications and
therapeutic interventions

through magnetic hyperthermia
[184]

γFe2O3@Au
core–shell-type

nanoflowers

Coprecipitation method [185]
and iterative growth 179 nm Theranostic applications [186]

5. Future Perspectives

Future research must focus on the development of 3D flowerlike nanomaterials with a
uniform size and shape as well as improved performance via existing ecofriendly synthesis
methods. As the development of inorganic-element-based nanoflowers for biomedical
applications is limited thus far, nanoflowers consisting of various inorganic components or
composite structures must be developed.

Nanoflowers have potential applications in other bioscience fields such as biomaterials,
medicine, and biotechnology. However, further research should focus on their applicability
and improvements in the design of structured or composite nanoflowers with significantly
attractive properties.
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