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ABSTRACT Cancer immunotherapy harness the body’s immune system to eliminate cancer, by using a broad panel of soluble and membrane
proteins as therapeutic targets. Immunosuppression signaling mediated by ligand-receptor interaction may be blocked by
monoclonal antibodies, but because of repopulation of the membrane via intracellular organelles, targets must be eliminated in
whole cells. Targeted protein degradation, as exemplified in proteolysis targeting chimera (PROTAC) studies, is a promising strategy
for selective inhibition of target proteins. The recently reported use of lysosomal targeting molecules to eliminate immune checkpoint
proteins has paved the way for targeted degradation of membrane proteins as crucial anti-cancer targets. Further studies on these
molecules’ modes of action, target-binding “warheads”, lysosomal sorting signals, and linker design should facilitate their rational
design. Modifications and derivatives may improve their cell-penetrating ability and the in vivo stability of these pro-drugs. These
studies suggest the promise of alternative strategies for cancer immunotherapy, with the aim of achieving more potent and durable
suppression of tumor growth. Here, the successes and limitations of antibody inhibitors in cancer immunotherapy, as well as research
progress on PROTAC- and lysosomal-dependent degradation of target proteins, are reviewed.
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Introduction molecule that is commonly expressed on the surfaces of cancer
cells® and is encoded by the Pdcd1 gene. The promoter region

) . of Pdcd1 has 2 transcription-factor binding sites (termed con-
Immune checkpoint blockade therapy has shown promise in . . . .
. . . o served regions B and C), which are critical for regulating PD-1
restoring the antitumor immune response through activating . . . .
. . . . expression. Pdcd1 regulation occurs partly via the recruitment
the immune system!2. Multiple immunocheckpoint path- .
. ) . . of nuclear factor of activated T cells 1 (NFATc1) to a novel
ways have been described, such as those involving cytotoxic .
) ) . regulatory element at the Pdcdl locus, and it is part of the
T-lymphocyte-associated protein 4 (CTLA-4), V domain- . . . ) .
o o molecular mechanism underlying the induction of PD-1 in
containing Ig suppressor of T-cell activation (VISTA), CD47, . . . .
. . . . response to T cell stimulation. The interaction between PD-1
0X40, and T cell immunoglobulin and mucin domain 3

(TIM-3)3. The programed cell death 1 (PD-1)/programed
cell death ligand 1 (PD-L1) axis is the most important pathway

on T cells and PD-L1 on cancer cells results in the suppression
of tumor-Kkilling activity of T cells, and is a crucial mechanism

) . i of tumor immune escape’. In addition, tumor-intrinsic onco-
in terms of clinical therapeutic effects. PD-L1, a type I trans- . ) ..

. o ] . genic PD-1 promotes tumor cell proliferation independently
membrane protein containing a short cytoplasmic domain and L e
. . . . of adaptive immunity®.
2 extracellular domains, is an important immune checkpoint L . )
Checkpoint inhibitors promote the anti-tumor immune

response by antagonizing suppressive immune checkpoint reg-

ulatory pathways. PD-1/PD-L1 blockade therapy restores the
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targeting these pathways!®. Multiple anti-PD-1/PD-L1 mono-
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treat many types of cancer!!. However, PD-L1 expression var-
ies significantly among tumor types and stages, and its level
changes during therapy!'2. Moreover, the relatively low response
rate, acquired resistance, and occasional fatal adverse effects
also pose substantial challenges to use of this therapy'®. The
molecular mechanism regulating PD-1/PD-L1 remains largely
unknown!®. Small molecule-mediated inhibition of protein
function is a canonical paradigm that enhances the efficacy of
most clinical agents!>!®. However, most small molecule inhib-
itors of the PD-1/PD-L1 pathway are not yet ready for wide-
spread clinical use, and further preclinical work is required to
optimize their formulation and application. Moreover, these
small molecule inhibitors can achieve substantial inhibitory
effects only when more than 90% of targets are engaged!’.
The high dosing level required can lead to on-target off-tumor
effects. Gene knockdown methods based on RNA interference
and CRISPR/Cas9 or related strategies have been applied to
decrease cellular protein levels and have shown clear therapeutic
potential'®!®. Nevertheless, attaining sufficient concentrations
of related agents at the target site is difficult. Safety concerns
also arise from off-target effects. Moreover, these agents’ poor
metabolic stability causes many adverse effects?.

Therefore, PD-1/PD-L1 blockade therapy still faces great
challenges that must be overcome. In-depth understanding
of the control of PD-L1 expression in tumor cells is required
for further improvement of checkpoint blockade therapy.
PROTAC, a bifunctional small molecule compound, has been
widely studied in the field of anti-cancer drugs and is used as a
new therapeutic method?!?2, The recently reported lysosomal
targeting molecules for eliminating immune checkpoint pro-
teins have provided a new direction for targeted degradation
of target proteins as crucial anti-cancer targets®>?%. Here, we
primarily review the progress that has been made in degrada-
tion strategies for immunotherapeutic targets. These strategies
have shown promise in providing an alternative strategy for
cancer immunotherapy to achieve more potent and durable

suppression of tumor growth.

Blockade of PD-1/PD-L1 function in
cancer immunotherapy

Monoclonal antibodies

Monoclonal antibodies are a promising strategy for the block-
ade of PD-1/PD-L1 function. Humanized mAb targeting

PD-1/PD-L1 relieves T cell immunosuppression and induces
T cell activation, thus restoring the body’s ability to moni-
tor and attack tumor cells. Atezolizumab is the first licensed
anti-PD-L1 mAbD. Atezolizumab is designed to target PD-L1
through binding to the front beta-sheet of PD-L12%2°,
Atezolizumab restores the anti-tumor activity of T cells by
inhibiting the interaction of PD-L1 with PD-1 on the surfaces
of T cells?”. Pembrolizumab, another humanized anti-PD-L1
mAb, has low affinity for Fc receptors and Clq, and a low
likelihood of host immunity stimulation?®. Pembrolizumab
has shown strong anti-tumor activity in phase I clinical tri-
als and is widely used in patients with advanced malignant
tumors?>-3L. Nivolumab, a humanized anti-PD-1 IgG4 mAb,
binds an N-terminal loop outside the IgV domain of PD-132.
Nivolumab has been approved for application in combination
with platinum-based chemotherapy™>34.

With the extensive development of clinical treatments, new
problems have arisen in the practical use of mAb preparations.
Monoclonal antibodies induce the production of anti-mAbs,
thus leading to immune-related adverse events (irAEs), such
as interstitial pneumonitis, colitis with gastrointestinal perfo-
ration, and severe skin reactions®>*. In fact, PD-L1 is trans-
ported from the plasma membrane into the cytosol and actively
redistributed to the plasma membrane, thereby decreasing
mAb efficacy, although mAbs can effectively block PD-L1 on

the surfaces of tumor cells®*7 (

Figure 1). Emerging evidence
indicates that exosomal PD-L1 mediates resistance to immuno-
therapy by facilitating PD-L1 evasion of the anti-PD1/PD-L1
mAbs®8, Tumor-derived exosomes carry bioactive PD-L1 mole-
cules on their surfaces that suppress the anti-tumor immune
response. This exosomal PD-L1 can enter the blood circulation
and inhibit T cells outside the primary tumor tissue, thus caus-
ing T cells to lose their anti-tumor ability before reaching the
tumor®4, Studies have also revealed the functions of PD-1
and PD-L1 independently of immunosuppression. The intra-
cellular domain of PD-LI regulates the malignant behaviors of
cancer cells and mediates chemoresistance’. PD-1 is expressed
in a broad range of tumor cells. The cancer-intrinsic PD-1 pro-
motes malignant proliferation by upregulating mammalian
target of rapamycin (mTOR) signaling®. These functions may

explain the unexpected effects of mAbs.
Small molecule peptide inhibitors

The disadvantages of mAbs limit their application. Although

much progress has been made in the development of antibodies
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Figure 1 Subcellular transportation of PD-L1 and actions of anti-PD-L1 antibody. The antibody drug binds PD-L1 expressed on the tumor
cell surface, thereby blocking its interaction with PD-1. PD-L1 is degraded in the lysosome, in a process relying on several subcellular trans-

port steps from the cell membrane to the endosome, and finally to the lysosome. PD-L1 can also be transported to recycling endosomes,

thus decreasing the distribution to late endosomes and lysosomes. PD-L1 is delivered to late endosomes and then sorted to lysosomes via

multivesicular bodies (MVBs) for degradation.

against the PD-1/PD-L1 pathway, there is an increasing desire
to use small molecules to block the PD-1/PD-L1 axis through
dissociating the PD-1/PD-L1 complex. The benefits of using
small molecules instead of antibodies include better oral bio-
availability, fewer irAEs, better tumor permeability, and lower
production costs. The long half-life is a major limitation of
mAbs. Small molecule drugs are based primarily on using dif-
ferent therapeutic methods to target the PD-1/PD-L1 pathway.
Small molecule inhibitors are more suitable for oral adminis-
tration and can decrease the target occupancy time by regulat-
ing the half-life of the drug, thereby avoiding serious irAEs*142,
Tripeptidyl peptidase 1 (TPP1), an active small-molecule

peptide, has high affinity for human PD-L1*. In a mouse
model, TPP-1 has been found to reactivate T cells through
blocking the PD-1/PD-L1 interaction and to inhibit tumor
growth*’, Nonylphenol ethoxylate (NP-12), a polypeptide
antagonist of the PD-1 signaling pathway, is used as an immu-
nomodulator for cancer treatment*4. In mouse models of colon
cancer and melanoma, NP-12 inhibits PD-1/PD-L1 interaction
and suppresses tumor growth and metastasis*>. CA-170, a small
molecule that has been tested in clinical trials, inhibits both the
PD-L1 pathway and the VISTA pathway*®. Sulfamethazine and
sulfamethoxazole are small molecules originally produced to
inhibit the PD-1/PD-L pathway, and they have been found to
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rescue PD-1-mediated suppression of IFN-y secretion?’. Several
other small molecule compounds that inhibit the PD-L1 path-
way have been patented*®. Notably, peptide inhibitors remain
in an early stage of development, although they are promising
in suppressing immune checkpoints. Furthermore, high drug
doses are generally required, thus often leading to undesired
adverse effects because of the off-target binding associated with

higher drug concentrations*#>4,

Targeted protein degradation as
a promising strategy for drug
development

Small molecule protein proteolysis-targeting
chimeras as antitumor agents

Small molecule inhibitors have been used to control cellular

protein levels through occupancy-driven pharmacology as
PROTAC

Target Q
protein

Target
binding

Ub
'ase \

the mode of action. However, this strategy only temporarily
inhibits the functions of regulatory proteins®®>!. Finding new
models is essential to control cellular protein levels.

PROTACS, an attractive new approach for removing pro-
teins by using cellular protein degradation systems to hijack
the ubiquitin proteasome system, are playing an increasingly
important role in drug discovery®>*>. PROTACs are activa-
tors of ubiquitin ligase whose catalytic properties can be pro-
grammed (Figure 2)>%. The heterobifunctional molecules of
PROTAGC:S recruit specific target proteins to E3 ubiquitin ligase
and then reprogram the enzyme to ubiquitinate the selected
target proteins, thus leading to target ubiquitination and deg-
radation. PROTACs also activate ubiquitin ligase through
mediating the formation of target protein-PROTAC-E3 ligase
catalytic ternary complexes, thus providing a framework for
more robust PROTAC designs®>°.

In 2001, the first PROTAC was reported to recruit SCFp-
TRCP E3 and subsequently induce degradation of methionine
aminopeptidase 2 (MetAp-2)*2. In 2008, small molecule-based
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Figure 2 The modes of action of PROTACs and lysosomal targeting molecules. (A) PROTACs can bind target proteins and E3 ligase, thus

forming a target protein-PROTAC-E3 ligase ternary complex, which places the target protein and E3 ligase in proximity. Ubiquitin is then trans-

ferred from E3 ligase to the target protein. Finally, the target protein is completely degraded through the action of protease. (B) The lysosomal

targeting construct contains 2 functional regions: one binds with the target protein, and the other anchors to ALIX and ESCRT for delivery to

multivesicular bodies (MVB) and lysosomes.
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E3 recruitment ligands were invented, and great progress was
made in PROTAC technology®’. Studies indicated the feasibility
of developing PROTAC:s that can enter cells relatively easily>’.
In 2013, mouse experiments provided the first demonstra-
tion that phospho-dependent PROTACs (PhosphoPROTACsS)
inhibit tumor growth in vivo®®. Nonetheless, the peptidic E3
ligase ligands used in PROTACs have hindered their develop-
ment into more mature chemical probes or therapeutic regi-
mens, because peptidic E3 ligase ligands lead to high molecular
weight of the entire PROTAC molecule, thus resulting in poor
cell permeability®®. In 2015, the novel PROTAC HaloPROTAC
with incorporated small molecule VHL ligands was reported
to successfully degrade HaloTag7 fusion proteins®®. HaloTag7
is a modified bacterial dehalogenase that covalently reacts with
hexyl chloride tags; HaloTag fusion proteins have been widely
used to bioorthogonally label proteins in vivo. HalloPROTACs
resulted in a 90% maximum degradation of GFP-HT7 with a
low nanomolar half-maximum degradation concentration®.
HaloPROTAC:s inspired the development of future PROTACs
with more drug-like properties and have become useful chem-
ical genetic tools®! as small molecule proteasome modula-
tors. PROTAC is chimeric with these small molecules, and it
forms a bifunctional small molecule compound that can link
target proteins and E3 ubiquitin ligase in a ternary complex,
thus resulting in target protein degradation through the ubiq-
uitin-protease system?"?2, Furthermore the development of
small molecule-based PROTAC compounds with more drug-
like properties has allowed for potent permeable PROTACs to
be generated®>%. Studies have shown that a PROTAC against
P300/CBP-associated factor (PCAF) and general control non-
derepressible 5 (GCN5) effectively regulates the expression of
multiple inflammatory mediators in macrophages and den-
dritic cells®. To date, a variety of PROTAC variants have been
developed, thus laying a foundation for drug advancement.
Homo-PROTACs have been developed for auto-targeting of
both von Hippel-Lindau (VHL) and cereblon (CRBN)%>-°,
Additional insights have been gained in the structural basis
and target selectivity of PROTACs. PROTACs can be designed
to target various proteins of interest, because they are pro-
grammable®”%8, Moreover, the PROTAC technology can escape
the resistance mechanisms of inhibitors, including overexpres-
sion of target proteins and resistance mutations, by enabling
modulation of both the enzymatic and non-enzymatic roles
of proteins®. PROTAC technology has many advantages, such
as low manufacturing cost, low drug dosage, excellent cell

permeability, broad tissue distribution, and a strong ability to
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regulate intracellular targets’’. PROTACs have already been
applied for the degradation of various notable targets, includ-
ing abelson murine leukemia viral oncogene homolog 1
(ABL)-breakpoint cluster region (BCR) in chronic myeloid
leukemia, bromodomain proteins in multiple cancers, and
androgen receptor in prostate cancer (details in Table 1)*71:72,
PD1/PD-LI have not been selected as target proteins for study,
although multiple protein targets have successfully been mod-
ulated with PROTAC technology. A study has reported that
J22352, a highly selective HDAC6 inhibitor with PROTAC-
like properties, decreases the immunosuppressive activity of

PD-L1, thus restoring anti-tumor activity in glioblastoma'!”.

Targeted lysosomal degradation of PD-L1 by
PD-LYSO

Although antibodies, small molecule inhibitors, and PROTACs
have effects on immunotherapeutic target inhibition, the rela-
tively low response rate and checkpoint blockade resistance have
necessitated exploration of the molecular regulatory mech-
anisms of PD-L1. Studies have revealed the mechanisms that
control PD-L1 transcriptional activation and post-translational
modifications'!®120, B transducin repeat containing protein
(B-TrCP), cullin 3, and COP9 signaling body 5 (CSN5) control
the degradation of PD-L1 through regulating PD-L1 ubiquiti-
nation!?1122, Moreover, targeted blockade of PD-L1 transport
from the endoplasmic reticulum to the Golgi apparatus trig-
gers endoplasmic reticulum-related degradation of PD-L1'%.
Studies have found that chemokine-like factor (CKLF)-like
MARVEL transmembrane domain-containing proteins 6 and
4 (CMTM6 and CMTM4) increase the stability of PD-L1
through downregulating ubiquitination-dependent degrada-
tion and lysosome-dependent proteolysis, thus enhancing the
ability of tumor cells to suppress immune responses, and pro-
viding a new target for combinatorial immunotherapy?”124123,
In fact, the transport between recycling endosomes and lyso-
somes controls the fate of the PD-L1 protein®”!2¢, although
the exact mechanism of lysosomal-dependent degradation of
PD-L1 is incompletely understood.

Antitumor immunity is enhanced by inhibiting PD-L1, on
the basis of the molecular regulation of PD-L1 in tumor cells.
Our previous studies have shown that depletion of hunting-
tin-interacting protein 1-related protein (HIPIR) in tumor
cells leads to significant upregulation of PD-L1, thus resulting
in the suppression of T cell cytotoxicity?’. Further research
has shown that HIPIR is a regulator of PD-L1 lysosomal
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Table 1 Continued

Sorting Evidence References
signal

E3 ligase

Molecule/drug

name

Disease

Linker

Target ligand

Target

Target

classification

SMARCA2/4- VHL Small Cultured 12

degrading
PROTACs

Polyethylene Multiple cancers

2-(6-aminopyridazin-3-

yl)phenols

SMARCA2/4  Catalytic subunit

cancer cells

molecule

glycol-based linkers

CRBN, VHL, Small Cultured 13
MDM?2

PARP1-PROTACs

BRCA1/2 mutant

cancers

Flexible linkers

Niraparib

Enzyme

PARP1

cancer cells

molecule

114

CRBN Small Cultured

SD-36

Multiple cancers

Optimized linker

SI-109

Transcription

factor

STAT3

cancer cells

molecule

115

Small Cultured

CRBN

MCL1-PROTACs

A-1210477 Various linkers Multiple cancers

Bcl-2 protein

MCL1

cancer cells

molecule

CRBN Small Preclinical/ 116
xenograft

MD-224

Multiple cancers

Optimized linker

Oncoprotein MI-1061

Murine

molecule

double

minute 2
protein
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degradation that controls PD-L1 homeostasis. HIP1R physi-
cally interacts with PD-L1 and transports PD-L1 to lysosomes
through a lysosomal targeting signal. HIP1R is an endocytic
adaptor protein that contains homology domains responsi-
ble for the binding of clathrin, inositol lipids and F-actin!?’.
HIPIR binds PD-L1 through its conserved C-terminal
domain and uses an intrinsic sorting signal to deliver PD-L1
to lysosomes for degradation!?®. HIPIR targets PD-L1 for
lysosomal degradation, thereby enhancing T cell-mediated
cytotoxicity, and it is a natural regulator of lysosomal degrada-
tion. On the basis of the ‘binding—sorting’ model derived from
the molecular roles of HIP1R, we have rationally designed
the peptide PD-LYSO, incorporating the lysosome-sorting
signal and the PD-L1-binding sequence of HIP1R, and used
it to successfully deplete PD-L1 expression in tumor cells'?.
Other researchers have identified SA-49 as a novel regulator
of PD-L1 expression from a series of novel aloperine deriva-
tives. They have found that SA-49-induced microphthalmia
transcription factor (MITF) translocation functions through
activation of PKCa and subsequent suppression of GSK3f3
activity, thus increasing lysosome biogenesis and promot-
ing translocation of PD-L1 to lysosomes for proteolysis!2°.
In breast cancer, another study has identified a disinteg-
rin and metalloproteinase 10 (ADAM10) and ADAM17 as
enzymes mediating PD-L1 cleavage. The cleavage generates
afree N-terminal fragment and a C-terminal fragment that
remains associated with cells but is efficiently eliminated by
lysosomal degradation'®®. Researchers are increasingly focus-
ing on exploring more techniques for targeting proteins for
lysosomal degradation, including endosome targeting chi-
meras (ENDTACs), lysosome targeting chimeras (LYTACs)**
(Table 2).

Thus, the discovery of HIP1R-mediated lysosomal degrada-
tion of PD-L1 has provided a potential new route for inhibit-
ing PD-L1. PD-LYSO should be beneficial in the development
and optimization of lysosomal targeting strategies as a crucial

target for combinatorial immunotherapy.

Palmitoylation blockade triggers
degradation of PD-L1 and PD-1

The intracellular storage and redistribution of PD-L1 to cell
membranes minimize the therapeutic benefits'?’. The cyto-
plasmic domain of PD-L1 is palmitoylated, and this lipid

modification stabilizes PD-L1 by preventing its ubiquitination,
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thereby inhibiting lysosomal degradation?*!138. Palmitoylation
of proteins through linkage to 16-carbon fatty acid palmitate
regulates protein localization and function'3*!%0, Palmitate
is usually associated with cysteine residues through thioester
bonds, in a process that may be catalyzed by aspartic acid-
histidine-histidine-cysteine (DHHC) palmitosyltransferase'!.
Palmitoylation is a reversible lipid modification of proteins
that controls a variety of protein functions, such as transport,
activity, stability, and membrane association'*2. Palmitoylation
has been shown to regulate the transportation and function

143,144 Research has indi-

of multiple cancer-related proteins
cated that palmitoylation plays an important role in the reg-
ulation of PD-L1 protein stability and trafficking and has
identified the palmitoyltransferase ZDHHC3 (DHHC3) as
the main acetyltransferase required for the palmitoylation of
PD-L1'%°. Palmitoylation decreases the lysosomal degradation
of PD-L1. The compound 2-bromopalmitate, a small-mole-
cule inhibitor of palmitoylation, blocks the palmitoylation
of PD-L1 and effectively induces lysosomal degradation
of PD-L1 in tumor cells, thus enhancing the cytotoxicity of
tumor-specific T cells?»!®8, The lack of specificity is a major
challenge in targeting palmitoylation with existing palmitoyl-
ation inhibitors. Apart from the PD-L1-related adverse effects,
2-bromopalmitate might cause adverse effects related to its
inhibitory effects on other palmitoylated proteins. PD-PALM,
a PD-L1 palmitoylation inhibitor, has been designed to com-
petitively inhibit PD-L1 palmitoylation. The application of
PD-PALM decreases PD-L1 expression in tumor cells and
enhances T cell activity?*. Hence, inhibiting palmitoylation
of PD-L1 may decrease PD-L1 expression on the cell mem-
brane and deplete its storage capacity in recycling endosomes.
Palmitoylation-based targeting methods may provide more
powerful and long-lasting inhibitory effects because they
inhibit PD-L1 protein levels throughout the cell and therefore
may represent a promising therapeutic avenue toward enhanc-

ing tumor-specific immunity.

Challenges and possibilities in future
studies

Because most targeted degradation mechanisms rely on intra-
cellular binding and sorting, the cell-penetration ability of
therapeutic molecules poses a major challenge. The peptidic
nature of PD-LYSO and PD-PALM also makes in vivo stabil-

ity an outstanding challenge, because peptides are generally
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prone to rapid degradation in the serum, through the action
of various enzymes. To achieve a longer half-life, commonly
used approaches, such as PEGylation, bovine serum albumin
fusion, and Fc fusion, may significantly increase the molecular
size and prohibit intracellular delivery. Moreover, potential
immunogenic effects should be considered, because peptides
may stimulate the generation of neutralizing antibodies
invivo. Because of these challenges, developing small molecules
to mimic the conformation and functions of peptides is highly
preferable and would represent a major step toward successful

drug development.
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