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Background: To identify differently expressed circular RNA (circRNA) in oral squamous cell carcinoma 
(OSCC) and adjacent normal tissue, construct a hsa_circ_0112879-related microRNAs (miRNAs) prognostic 
model, and discuss the circRNA as a biomarker for early diagnosis of OSCC.
Methods: The expression of hsa_circ_0112879 in OSCC cell lines and tissues was detected by quantitative 
real-time polymerase chain reaction (qRT-PCR). A receiver operating characteristic (ROC) curve was 
plotted to estimate its clinical significance. The potential miRNA and messenger RNA (mRNA) binding to 
hsa_circ_009755 were predicted by R software edgeR package. Based on the median value of the risk score in 
the all-sample cohort, all the included patients with OSCC were divided into either high- or low-risk groups, 
and Kaplan-Meier analysis was performed. The ROC curve was used to verify the accuracy of the risk 
signature in predicting the prognosis of OSCC. By univariable Cox, least absolute shrinkage and selection 
operator (LASSO), and multivariable Cox analyses, we constructed a hsa_circ_0112879-related miRNAs risk 
model to forecast the prognosis of OSCC.
Results: The expression of hsa_circ_0112879 was significantly downregulated in the OSCC tissues and cell 
lines. The expression level was statistically correlated with the pathological differentiation of OSCC tumors 
(P=0.0285). Furthermore, 141 differentially expressed hsa_circ_0112879-related miRNAs were obtained 
[|log2FC| >1, false discovery rate (FDR) <0.05], of which 70 miRNAs were up-regulated in OSCC tissues, 
whereas 71 miRNAs were down-regulated in OSCC tissues. The area under the ROC curve (AUC) at 1-, 3-, 
and 5-year in the all-sample cohort was 0.591, 0.689, and 0.618, respectively. The toll-like receptor signaling 
pathway, Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) signaling 
pathway, nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway, and T-cell 
receptor (TCR) signaling pathway were mainly enriched in the high-risk group.
Conclusions: The model and nomogram constructed herein has the ability to discriminate the prognosis 
of OSCC patients. Hsa_circ_0112879 may serve as a novel biomarker in the diagnosis and prognosis of 
OSCC.
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Introduction

There are close to 370,000 new oral cancer cases diagnosed 
every year, 2/3 of which are diagnosed in developing 
countries (1). Approximately over 90% of oral malignancies 
are of oral squamous cell carcinoma (OSCC) (2). The 5-year 
survival rate of OSCC patients remains below 65% (3), 
and the prognosis for patients that have advanced OSCC is 
often particularly poor (4). When tumors are detected at an 
early-stage, the 5-year overall survival (OS) can be notably 
improved to 85% or above (5). Under these circumstances, 
it is imperative to seek out novel biomarkers to support 
early tumor detection and treatments for OSCC.

Circular RNA (circRNA) is a newly identified class of 
non-coding RNA molecules with a closed loop structure (6).  
CircRNAs, initially reported to be the product of 
endogenous RNA splicing errors, are considered a non-
functional product (7). Recently, numerous findings have 
revealed that the expression of circRNAs varies greatly 
across species (8,9). A growing number of studies have 
shown that circRNAs have multiple biological activities 
which are extensively involved in binding of RNA and 
proteins (10), acting as microRNA (miRNA) sponges (11), 
enabling RNA transport, and regulating translation (12). 
However, many functions of circRNAs in OSCC currently 
remain unknown.

This analysis identified hsa_circ_0112879 as distinctly 
downregulated in OSCC cell lines and tissues. Furthermore, 
it also suggested that the expression of hsa_circ_0112879 
could be statistically associated with the clinicopathologic 
differentiation and diagnosis of patients with OSCC. Our 
team utilized univariable Cox, least absolute shrinkage 
and selection operator (LASSO), and multivariable Cox 

analyses to construct a hsa_circ_0112879-related miRNAs 
risk signature which can forecast the prognosis of OSCC 
patients. The analysis indicated that hsa_circ_0112879 
has the potential to be a biomarker for diagnosis and 
prediction of prognosis of OSCC. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
140/rc).

Methods

Patients and tissue samples

Tissue samples were obtained from patients undergoing 
surgery in the Oral and Maxillofacial Surgery Department of 
Peking University Shenzhen Hospital. All tissues and their 
paired para-cancerous histologically normal tissues were 
collected and pathologically confirmed during surgery. After 
resection, the tissues were quickly transferred to −80 ℃  
for freezing and storage. The research protocol was 
approved by the Ethics Committee of Peking University 
Shenzhen Hospital (approval No. 2022-117). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). All the included patients had given written 
informed consent.

Cell culture

The human OSCC cell lines SCC9, SCC15, SCC25, and 
CAL27 were purchased from the American Type Culture 
Collection (ATCC; Manassas, VA, USA). The human 
oral keratinocyte (HOK) cell line was acquired from the 
Chinese Academy of Sciences (Shanghai, China). The 
human oral squamous carcinoma SCC9 cell line was 
cultured in Dulbecco’s modified Eagle medium (DMEM)/
F12 medium with 10% fetal bovine serum (FBS; Gibco, 
Waltham, MA, USA). Other cells were cultured in DMEM 
(Gibco, Shanghai, China) also supplemented with FBS to 
a final concentration of 10%. The cells were grown in an 
incubator at 37 ℃ with 5% CO2.

Quantitative real-time polymerase chain reaction  
(qRT-PCR)

RNA was extracted from tissue samples and cells using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according 
to manufacturer’s instructions. The concentration 
and purity of the RNA was then determined using a 
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Figure 1 Hsa_circ_0112879 is encoded by the chromosomal region 1q44. Three exons form hsa_circ_0112879 from exon1 to exon3.
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spectrophotometer (NanoDrop; Thermo Fisher Scientific, 
Waltham, MA, USA). Total RNA was reverse-transcribed 
into complementary DNA using PrimeScript RT Master 
Mix (Takara Bio, Shiga, Japan). The qRT-PCR was 
performed with SYBR-Green Premix Ex Taq (Takara Bio, 
Japan). Reaction was first performed at 95 ℃ for 5 seconds, 
60 ℃ for 30 seconds, and 72 ℃ for 20 seconds, which 
was then repeated for a total of 40 cycles. The relative 
expression levels of hsa_circ_0112879 were measured using 
ACTB as an internal reference gene. The sequences of the 
hsa_circ_0112879 primers were as follows: forward primer 
5'-GAGAGAAACTGTGAATGTAAGGTGT-3' and 
reverse primer 5'-CAACAAAGCCCACTCCTCCT-3'. 
The primer sequences used for ACTB forward primer 
were 5'-AAACTGGAACGTTGAGAGTG-3' and reverse 
primer were 5'-AGTGGTCTGGCTTTTAGGT-3'. 
The ΔCt or the 2-ΔΔCt method were used for comparative 
quantification (13). The test for each sample was repeated 
more than 3 times independently.

Construction and analysis of Hsa_circ_0112879-related 
miRNA prognostic model

Transcriptome data and clinical data used in this study 
come from The Cancer Genome Atlas database (TCGA; 
https://portal.gdc.cancer.gov/repository). Our team utilized 
univariable Cox, LASSO, and multivariable Cox analyses 
to construct a hsa_circ_0112879-related miRNAs risk 
signature that can predict the prognosis of OSCC patients.

Statistical analysis

GraphPad Prism software (version 5.0; GraphPad Software, 
San Diego, CA, USA) was used for statistical analysis and 
drawing. Paired t-test was used to correlate the expression 
levels of hsa_circ_0112879 between OSCC cell lines and 
normal cells or between patient samples and adjacent 
normal samples. The correlation between the expression of 
hsa_circ_0112879 and the clinicopathological factors were 
analyzed using unpaired t-test and Bartlett’s test for equal 
variances. Also, the diagnostic values were obtained from 
the receiver operating characteristic (ROC) curve. Statistical 
significance was considered when P<0.05.

Results

Expression of hsa_circ_0112879 in OSCC tissues

Hsa_circ_0112879, one of the circRNAs primarily identified 
in the mammalian brain, has a splice length of 1,168 base 
pairs (bp) (14) and is located within the ZNF124 gene at the 
chromosomal position chr1:247319707-247323115 (Figure 1).  
Based on our qRT-PCR and ROC analysis, we observed that 
the expression of hsa_circ_0112879 was markedly down-
regulated in OSCC samples as compared to expression of 
their adjacent normal tissues (P<0.001) (Figure 2).

Expression levels of hsa_circ_0112879 in OSCC cell lines

Next, we analyzed the expression levels of hsa_circ_0112879 
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Figure 3 Expression of hsa_circ_0112879 in OSCC cell lines. 
Expression levels of hsa_circ_0112879 in four OSCC cell lines 
(SCC9, SCC15, SCC25, and CAL27) and HOK cells were 
determined by qRT-PCR. Data are expressed as mean ± SD of 
three independent experiments. *, P<0.05; ***, P<0.001. HOK, 
human oral keratinocyte; OSCC, oral squamous cell carcinoma; 
qRT-PCR, quantitative real-time polymerase chain reaction; SD, 
standard deviation.

Figure 2 Expression of hsa_circ_0112879 in OSCC tissues and 
adjacent normal tissues. The expression of hsa_circ_0112879 is 
significantly down-regulated in OSCC tissues as compared to 
adjacent normal tissues (n=42, ***, P<0.001). Higher value indicates 
lower expression. The cutoff for expression of hsa_circ_0112879 
was 11.45 and the sensitivity and specificity values were 0.524 and 
0.976, respectively. Data are represented as mean ± SD of three 
independent experiments. OSCC, oral squamous cell carcinoma; 
SD, standard deviation.
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in the oral normal cell HOK and different OSCC cell 
lines—SCC9, SCC15, SCC25, and CAL27. We found that 
in the OSCC cell lines, the expression of hsa_circ_0112879 
was obviously reduced Compared to HOK cells (Figure 3).

Clinicopathological characteristics of OSCC patients

The 42 OSCC patients (12 women and 30 men) were aged 
29–78 years (median 54 years). These 42 cases included 
13 well-differentiated tumors (31%), 23 moderately-
differentiated tumors (54.8%), and 6 poorly-differentiated 
cases (14.2%). The tumor staging analysis suggested 2 
that 4 cases were in the T1–T2 stage (57.1%), whereas 18 
cases were in the T3–T4 stage (42.9%). Moreover, patients 
were diagnosed with differential lymph-node involvement:  
25 cases presented with lymph-node negative (N0) tumors 
(60%), whereas 17 cases presented lymph-node positive 
(40%) tumors (N1–N3). The other clinicopathological 
information about the patients has been summarized and 
organized in Table 1.

The role of hsa_circ_0112879 in the diagnosis of OSCC

We investigated the correlation between hsa_circ_0112879 
expression level and clinicopathological data (Table 2). 
The analysis suggested that the expression level of hsa_
circ_0112879 was statistically associated with pathological 
differentiation of OSCC tumors (P=0.0285). However, we 
could not observe correlation between the expression levels 
of hsa_circ_0112879 and age, gender, tumor size, T stage, 
tumor-node-metastasis (TNM) stage, and lymph node 
metastasis. Also, the area under the ROC curve (AUC) 
analysis used to distinguish OSCC tissues from their paired 
adjacent normal tissues provided a value of 0.798 [95% 
confidence interval (CI): 0.705–0.891; P<0.001; Figure 4]. 
The cutoff of hsa_circ_0112879 expression was 11.45, with a 
sensitivity of 0.524 and a specificity value of 0.976 (Figure 2).

Predicting and screening of circRNA related miRNA

A total of 1,126 miRNAs targeting hsa_circ_0112879 were 
predicted by using the online database. The 1,126 hsa_
circ_0112879-related miRNAs in 247 OSCC samples and 
17 normal samples were analyzed by R software edgeR 
package (R Foundation for Statistical Computing, Vienna, 
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Austria). From the results, 141 differentially expressed hsa_
circ_0112879-related miRNAs were obtained [|log2FC| 
>1, false discovery rate (FDR) <0.05], of which 70 
miRNAs were up-regulated in OSCC tissues, whereas 71 
miRNAs were down-regulated in OSCC tissues (Figure 5).  
Altogether, 34 hsa_circ_0112879-related miRNAs with 
prognostic values were obtained (Figure 6A). Then, in 

order to optimize our model, we used LASSO regression 
analysis and cross-validation to further filter, and 21 most 
representative candidate miRNAs were found (Figure 6B).  
Among these 21 candidate miRNAs, we selected 3 miRNAs 
of interest: hsa-miR-654-3p, hsa-miR-338-3p, and hsa-
miR-155-3p, and clarified their binding sites to hsa_
circ_0112879 (Figure 6B). Multivariable Cox regression 
analyses were performed on these 3 candidate miRNAs, and 
their corresponding coefficients were finally obtained and 
then utilized to construct the prognostic model (Table 3).

Construction of a hsa_circ_0112879-related miRNA 
prognostic model

Formula: 
4

Risk score a bi i i= ∗∑  (a: coefficients, b: gene 
expression level). According to the median value of the 
risk score in the all-sample cohort described above, all 
patients with OSCC were grouped as either high- or low-
risk and were subjected to Kaplan-Meier analysis. In the 
results, OS was significantly lower in the high-risk group 
than in the low-risk group (Figure 6C). The ROC curve 

Table 1 Primer sequences

Primer set Forward primer Reverse primer

hsa_circ_0112879 GAGAGAAACTGTGAATGTAAGGTGT CAACAAAGCCCACTCCTCCT

β-Actin AAACTGGAACGTTGAGAGTG AGTGGTCTGGCTTTTAGGT

Table 2 Relationship of hsa_circ_0112879 expression levels (ΔCt) 
in OSCC tissues with clinicopathological factors of OSCC patients

Characteristics No. of patients (%) P value

Gender 0.929

Male 30 (71.4)

Female 12 (28.6)

Age (years) 0.152

≥60 15 (35.7)

<60 27 (64.3)

Tumor size (cm) 0.298

≥5 7 (16.7)

<5 35 (83.3)

Differentiation grade 0.0285*

Well 13 (31.0)

Moderately 23 (54.8)

Poorly 6 (14.2)

T stage 0.486

T1–2 24 (57.1)

T3–4 18 (42.9)

TNM 0.317

I & II 17 (40.0)

III & IV 25 (60.0)

Lymphatic metastasis 0.642

N0 25 (60.0)

N1–3 17 (40.0)

*, significant association. OSCC, oral squamous cell carcinoma; 
TNM, tumor-node-metastasis.

Figure 4 The diagnostic value of hsa_circ_0112879 in OSCC. 
AUC was 0.798 (95% CI: 0.705–0.891, P<0.001). OSCC, oral 
squamous cell carcinoma; AUC, area under the ROC curve; CI, 
confidence interval; ROC, receiver operating characteristic.
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was used to verify the accuracy of the risk signature in 
forecasting the prognosis of OSCC (Figure 6D). The AUC 
of 1-, 3-, and 5-year survival in the all-sample cohort was 
0.591, 0.689, and 0.618, respectively. We also evaluated 
the relationship between risk score and OSCC patients by 
univariate and multivariate Cox regression analysis, and 
the results showed that risk score could be an independent 
factor af fect ing the prognosis  of  OSCC patients  
(Figure 6E). Moreover, we established a nomogram based on 
4 clinical factors (age, gender, grade, stage) and risk scoring 
for the quantitative prediction of 1-, 3-, and 5-year survival 
in OSCC patients (Figure 7A). Both risk score and stage 
may be the independent prognostic indicators for OSCC 
patients. Subsequently, the prediction ability and accuracy 
of nomograph model were verified by calibration curve 
(Figure 7B). By performing gene set enrichment analysis 
(GSEA), filtered by q-value <0.05, the result showed that 
Toll-like receptor signaling pathway, Janus tyrosine kinase-
signal transducer and activator of transcription (JAK-STAT) 
signaling pathway, nucleotide-binding and oligomerization 
domain (NOD)-like receptor signaling pathway, and T-cell 
receptor (TCR) signaling pathway were mainly enriched 

in the high-risk group (Figure 8). However, the low-risk 
group’s pathways with P<0.05 were not enriched.

Discussion

OSCC is a commonly occurring malignancy of the head and 
neck (15). In recent decades, there has been considerable 
progress in the diagnosis and treatment of OSCC, but 
the mortality rate is maintained at a high level, generally 
due to its high recurrence rate and strong propensity to 
metastasize (16). Patients with OSCC are usually treated 
with surgical resection, radiotherapy, chemotherapy, and 
targeted therapy aiming to improve their quality of life, 
but still face difficulty in surviving (17). It is thus extremely 
important to discover molecular biomarkers that have a role 
to play for the treatment of OSCC.

CircRNAs are a novel form of endogenous non-coding 
RNA molecule formed by back-splicing with either exon or 
intron circularization, unlike other forms (18,19). Moreover, 
circRNAs are characterized by highly stable and highly 
conserved sequences (20). Also, the circRNAs exhibit tissue 
specificity, making them potential biomarkers for diagnosis 
of cancers (21).

There is growing evidence that circRNA is involved 
in many types of cancers, for example papillary thyroid 
carcinoma (22), glioma (23), breast cancer (24), and non-
small cell lung cancer (25). Fan et al. found that circSPATA6 
inhibited cell migration and invasion and could act as a 
sponge for miR-182, increasing TRAF6 expression and 
thus promoting OSCC progression (26). Meanwhile, hsa_
circRNA_0009128 has been found to be upregulated in 
both OSCC tissues and cell lines, with its high expression 
associated with TNM stage and lymph node metastasis (27).  
Hsa_circRNA_100533 has been shown to regulate 
G-protein αs (GNAS) affecting cell proliferation, migration, 
and cell apoptosis in OSCC by sponging the activity of hsa_
miR_933 (28). Moreover, Li et al. identified that compared 
with the adjacent healthy tissues and normal cells, hsa_
circ_0086414 is downregulated (29).

Here, we first identified hsa_circ_0112879 to be 
downregulated in OSCC tissues and cell lines. Additionally, 
we were able to statistically correlate the expression levels of 
hsa_circ_0112879 with pathological differentiation of OSCC 
tumors. Moreover, hsa_circ_0112879 might possess tumor-
suppressive effects in OSCC, which needs to be confirmed 
via in vitro and in vivo studies using larger sample sets. Taken 
together, our findings emphasize the potential and valuable 
of hsa_circ_0112879 in the prognosis of OSCC.

Figure 5 The volcanic plot of differentially expressed hsa_
circ_0112879-related miRNAs between OSCC tissue and normal 
tissue. 141 differentially expressed hsa_circ_0112879-related 
miRNAs were obtained (|log2FC| >1, FDR <0.05), of which 70 
miRNAs were up-regulated in OSCC tissues, while 71 miRNAs 
were down-regulated in OSCC tissues (blue: down-regulated 
miRNAs; red: up-regulated miRNAs). FDR, false discovery rate; 
FC, fold change; OSCC, oral squamous cell carcinoma; miRNAs, 
microRNAs.
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Figure 6 Construction of a hsa_circ_0112879-related miRNA prognostic model. (A) In the all-sample cohort, 141 differentially expressed 
hsa_circ_0112879-related miRNAs were analyzed by univariate Cox regression, and altogether 34 hsa_circ_0112879-related miRNAs with 
prognostic values were obtained. (B) 21 most representative candidate miRNAs were found and we selected three miRNAs of interest: hsa-
miR-654-3p, hsa-miR-338-3p and hsa-miR-155-3p, and clarified their binding sites to hsa_circ_0112879. (C) OS was significantly lower in 
the high-risk group than in the low-risk group. (D) ROC curve was used to verify the accurateness of the risk signature in forecasting the 
prognoses of patients with OSCC. (E) The relationship between risk score and OSCC patients by univariate and multivariate Cox regression 
analysis, and the results showed that risk score could be an independent factor affecting the prognosis of OSCC patients. AUC, area under 
the ROC curve; ROC, receiver operating characteristic; miRNAs, microRNAs; OS, overall survival; ROC, receiver operating characteristic; 
OSCC, oral squamous cell carcinoma.
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Table 3 Three candidate miRNAs by multivariate Cox regression analysis

Candidate miRNAs Coefficient HR HR.95L HR.95H P value

hsa-miR-654-3p 0.0024 1.0025 1.0005 1.0046 0.0166

hsa-miR-338-3p 0.0001 1.0001 1.0000 1.0003 0.0675

hsa-miR-155-3p 0.0376 1.0393 1.0077 1.0719 0.0143

miRNA, microRNA; HR, hazard ratio; L, low; H, high.
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Figure 7 Construction of a nomogram based on risk scores. (A) A nomogram was established on the foundation of 4 clinical factors (age, 
gender, grade, stage) and risk scoring for the quantitative prediction of 1-, 3-, and 5-year survival in OSCC patients. Both risk score and 
stage can be used as independent prognostic indicators for OSCC patients. **, P<0.01. (B) The calibration curve was employed to verify the 
predictive ability and accurateness of the nomograph model. OSCC, oral squamous cell carcinoma.

 0.0 0.2 0.4 0.6 0.8 1.0

Nomogram-predicted overall survival

1-year
3-year
5-year

0.96 0.94 0.92 0.85 0.75 0.65 0.55 0.45

0.92 0.88 0.84 0.7 0.5 0.3 0.1

0.9 0.7 0.5 0.3 0.14 0.06

 200 250 300 350 400 450

303

0.58

0.658

0.851

 0.0 0.2 0.4 0.6 0.8

 0.0 0.2 0.4 0.6 0.8 1.0

10 20 30 40 50 60 70 80 90

0 20 40 60 80 100

Nomcox coxph

Grade 

Gender 

Age 

Riskscore** 

Stage** 

Total points

Pr(survival_time >5)

Pr(survival_time >3)

Pr(survival_time >1)

Points

1.0 0.6 0.0 1.0

0.8

0.6

0.4

0.2

0.0

O
bs

er
ve

d 
ov

er
al

l s
ur

vi
va

l

BA

CircRNAs possesses miRNA binding sites and have 
been reported to regulate gene expression through 
sponging. There are mounting studies reporting this type 
of regulation. Our current study also made predictions on 
whether hsa_circ_0112879 could affect the miRNAs in 
OSCC. Based on bioinformatics analysis, we found that has_
circ_0112879 may have strong interactions with hsa-miR-
654-3p, hsa-miR-338-3p, and hsa-miR-155-3p. Hsa-miR-
654-3p, hsa-miR-338-3p, and hsa-miR-155-3p have been 
shown to play an important role in cancer. Hsa-miR-654-3p 
has been validated as an antitumor gene targeting CREB1 
to hamper malignant progression of sinonasal squamous 
cell carcinoma through miR-654-3p/CREB1/PSEN1 
axis (30). Hsa-miR-338-3p, which has been shown to be 
downregulated in glioblastoma, may affect the biogenesis 
and rapid proliferation of glioma cells (31). Hsa-miR-155-
3p, as a proto-oncogene which is upregulated in OSCC, is 
responsible for intricate regulation of the progression of 
oral submucous fibrosis (OSMF) to OSCC via deregulated 
expression of c-Fos (32). In our study, multivariable Cox 
regression analyses were completed on those 3 candidate 
miRNAs, and finally, their corresponding coefficients were 
obtained, which were utilized to construct the prognostic 
model. The results show that the model has the ability to 
discriminate the prognosis of OSCC patients and risk score 
could be an independent factor affecting the prognosis of 

OSCC patients. The nomogram constructed based on risk 
scores also has the ability to accurately estimate the OS of 
OSCC patients. Interestingly, GSEA revealed that Toll-like 
receptor signaling pathway, JAK-STAT signaling pathway, 
NOD-like receptor signaling pathway, and TCR signaling 
pathway were mainly enriched in the high-risk group. 
These all indicate that the model and nomogram based on 
hsa_circ_0112879 has the ability to accurately estimate the 
OS of OSCC patients. Of course, a further step for hsa_
circ_0112879 research is to exam the interaction between 
hsa_circ_0112879 and miRNAs in OSCC and to clarify the 
downstream molecular mechanism of hsa_circ_0112879 
in OSCC and whether it is similarly expressed in other 
cancers.

Conclusions

Our research shows that hsa_circ_0112879 is significantly 
downregulated in OSCC as compared to adjacent normal 
tissue, and that it associates with clinicopathological 
implications of this tumor type. The hsa_circ_0112879-
related miRNA prognostic model shows the important role 
of hsa_circ_0112879 in OSCC. A thorough investigation 
of its mechanism of action and genomic interactions during 
progression of the disease should aid in use as a diagnostic 
and prognostic tumor marker.



Wang et al. Clinicopathological implications of Hsa_circ_0112879 in OSCC2884

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2875-2886 | https://dx.doi.org/10.21037/tcr-23-140

Figure 8 Gene set enrichment analysis results. Filtered by q-value <0.05, Toll-like receptor signaling pathway, JAK-STAT signaling pathway, 
NOD-like receptor signaling pathway, and TCR signaling pathway were mainly enriched in the high-risk group. JAK-STAT, Janus tyrosine 
kinase-signal transducer and activator of transcription; NOD, nucleotide-binding and oligomerization domain; TCR, T-cell receptor.
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