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Abstract: Soil salinity is a growing problem in world production agriculture. Continued improvement
in crop salt tolerance will require the implementation of innovative breeding strategies such as
marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor
traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was
assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data
were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS
identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping
SNPs markers against the Medicago truncatula reference genome revealed several putative candidate
genes based on their roles in response to salt stress. Additionally, eight GS models were used to
estimate breeding values of the training population under salt stress. Highest prediction accuracies
and root mean square errors were used to determine the best prediction model. The machine
learning methods (support vector machine and random forest) performance best with the prediction
accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS
prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance.
DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in
efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive
modern-day alfalfa cultivars.
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1. Introduction

The impacts of soil salinization on world agriculture will become more pervasive and severe in the
future. Quadir et al. [1] estimated that global soil salinity costs $27 B in lost agricultural productivity
per year, and the extent of saline soils are increasing. Salinization of soils can occur as a result of natural
processes (primary salinization) or as a result of human activities (secondary salinization). In areas
where the water table is near the surface, a continuous column of water can form between the surface
and the (saline) water table. When this occurs, evapotranspiration at the surface creates a “wicking”
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effect that continuously draws more water to the surface. As surface water is lost, salts precipitate
and remain in the topsoil layers. Irrigated agriculture can also cause salt levels to increase over time,
mainly from use of high-salt irrigation water. This problem is exacerbated in areas with poor drainage.
High soil salt levels can be managed by leaching, which involves the application of excess irrigation
water to dissolve salt and carry it away via leaching [2]. The required leaching fraction (proportion of
excess water) decreases with more salt-tolerant plants. Therefore, increasing a crops’ salt tolerance can
potentially reduce water usage, irrigation costs, and environmental impacts.

Salt affects plant growth indirectly by its negative effect on soil water potential and by direct
toxicity when it is taken up by the plant. In the former, the increased ion concentration in the soil
decreases the soil water potential, which makes it more difficult for the plant to access water. Therefore,
salt stress affects plants in a similar manner to drought stress with shared physiological mechanism.
These mechanisms include stomatal closure, decreased rates of photosynthesis, formation of reactive
oxygen species (ROS), decreased water content in plant cell and attendant problems with protein
folding [3]. Consequently, mechanisms of plant resistance to this form of salt stress are similar to
those in drought tolerance. Both salt and drought stress resistances involve production of compatible
osmolytes to decrease cell water potential and draw in more water, increased production of heat-shock
proteins (HSPs) and other chaperones to improve the correct protein folding, and production of
antioxidants to quench ROS [4,5].

The second salt stress mechanism, direct toxicity, is thought to be a result of sodium (Na+)
accumulation within the cell and the homeostasis between Na+ and potassium (K+) [2]. Sodium
toxicity interferes with the uptake of other cations such as calcium (Ca++) and potassium (K+)
ultimately resulting in reduced growth, leaf chlorosis, and early leaf senescence. Cross talk between
gene regulatory networks attributed to drought and salt stresses has been found. It has been suggested
that a combined effect of dehydration and osmotic stress may cause greater regulation in plant response
to salt stress (see review [3]). Functional genomics provides a new tool to address the genetic bases
and physiological mechanisms of plant salinity tolerance.

Cultivated alfalfa is an outcrossing autotetraploid (2n = 4x = 32) species with a genome size of
800−1000 Mb [6]. Alfalfa genetic improvement to salt tolerance has been limited in part due to the
genetic complexity of the trait which is under polygenic control and interacted with environmental
factors [4]. Breeding of alfalfa is complicated by its tetraploid genome and by its out-crossing pollination
which prevents the creation of inbred lines.

Alfalfa cultivar development efforts have largely focused on the phenotypic selection in field
environments. Recurrent selection is used for improving traits of interest in a quantitative manner.
The strategy is to gradually increase the frequency of favorable alleles and maintain genetic variability
for future selection. Progress on the improvement of the traits under recurrent selection are made,
but it takes long periods to successfully develop new varieties. Recurrent selection methods would
be most effective when integrated with marker-assisted selection (MAS) [7]. MAS is a procedure for
selecting traits of interest based on DNA markers linked to quantitative trait loci (QTL). QTLs are
detected through genetic mapping or genome-wide association studies (GWAS) where the QTL signals
above specific thresholds are declared statistically significant. However, in complex traits (e.g., stress
tolerance or yield) it is often not possible to clearly identify QTL or multiple loci distributed throughout
the genome and work in concert to control the trait.

Genomic selection (GS) is a promising alternative to phenotype-based selection of crops in
breeding programs. The objective of GS is to determine the genetic potential of an individual based
on whole genome markers, instead of focusing of specific QTL. Therefore, GS does not depend on
prior knowledge about QTL effects. This technique is based on the association of phenotypic traits
with genome-wide markers to obtain the genomic estimated breeding values (GEBV) [8]. GEVB are
obtained by training statistical or machine learning methods. Predictive trained models are then
applied to identify the best individuals in testing populations, based solely on their genotypic profiles.
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GS is used to intensify the selection process by increased selection efficiency or by reducing selection
cycles. In this way GS reduces the cost per cycle and the time required for variety development [9].

In GS, several statistic models have been used for predicting breeding values. Support vector
machines (SVM) and random forest (RF) are supervised machine learning methods used to predict
the target phenotype (yi) in which training datasets with large number of predictors (Markers or
g(xi)) (yi ∼ µ+ g(xi) + e) are used. These methods are based on the identification of an objective
function and its optimization [10]. The objective function has two parts: (1) training loss function and
(2) regularization term. The first part tests how well a model fits on a training dataset (presented as
root mean square error (RMSE)), while the second part measures the complexity of the model as more
complex models produce more unstable results [11]. These supervised machine learning methods can
handle high dimensionality problems (p� n) where the p : n ratio exceeds 50–100 [12] and they do
not assume a priori linear and additive action of markers.

The objectives of this work were to use GWAS and GS methods to identify loci associated with salt
tolerance and to predict breeding values using single nucleotide poplymorphism (SNP) markers with
allele dosage in breeding populations of autoteraploid alfalfa. Agronomic traits such as biomass yield
and plant growth vigor under salt stress were evaluated in the field. Genome-wide DNA markers
were developed using genotype-by-sequencing (GBS) and used for GWAS and GS. Six statistic models
were used in GWASpoly to identify loci associated salt tolerance and eight genomic prediction models
were tested on the prediction accuracy for GEBV in the breeding populations toward improving salt
tolerance in alfalfa.

2. Results

2.1. Coverage and Marker Density

Of the 240,444,007 raw reads obtained from the population via GBS, Bowtie2 successfully aligned
91,360,439 reads one time (38.0%) and 100,635,037 reads multiple times (41.8%) to the M. truncatula
genome v5.0. After filtering, 6862 high quality biallelic single nucleotide variants (SNVs) were
obtained and annotated using the functional annotation of variants module of Next Generation
Sequencing Experience Platform (NGSEP). The biallelic SNVs were annotated as follows: 5234 markers
as protein-coding loci (76.8%) and 1628 markers as non-coding loci (23.7%) (Table 1). The distributions
of allele frequency were 40.0% between 0.05 and 0.1; 23.2% between 0.1 and 0.2; 14.76% between 0.2
and 0.3; 11.8% between 0.3 and 0.4; and 10.2% between 0.4 and 0.5 (Figure 1A). The distributions of
markers by chromosomes were as follows: Chr. 1 = 1056 markers, Chr. 2 = 900 markers, Chr. 3 = 1145
markers, Chr. 5 = 822 markers, Chr. 6 = 505 markers, Chr. 7 = 783 markers, Chr. 8 = 788 markers, and
36 markers located into contigs without chromosome assignment. The high-quality GBS markers were
plotted according to their position in the chromosomes of M. truncatula v5.0. The distribution of the
markers across the chromosomes was not uniform and presented gaps in coverage towards the inner
part of some chromosomes due to possible centromeric regions (Figure 1B). Finally, biallelic SNVs were
transformed into GWASpoly format with NGSEP software v 3.3.3 and were subjected to GWAS and
GS analysis. The GWASpoly allowed identifying the allele dosage in tetraploid genotypes with up
to five alleles at each locus [5]. The allele frequency was plotted against the allele type in Figure 2.
The frequencies of five major alleles were AAAA = 0.42, AAAB = 0.15, AABB = 0.19, ABBB = 0.08, and
BBBB = 0.14 (Figure 2).
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Figure 1. Single nucleotide polymorphism variants (SNVs) identified in alfalfa (Medicago sativa) populations 
developed in Logan, Utah (A) Histogram of filtered variants called by Next Generation Sequencing 
Experience Platform (NGSEP) showing distribution by minor allele frequency and classified by function 
after annotation. (B) Distribution of GBS SNP markers across eight Medicago truncatula chromosomes using 
1 Mb window. The colored lines represent the marker density as showing on the right color legends. 

Figure 1. Single nucleotide polymorphism variants (SNVs) identified in alfalfa (Medicago sativa)
populations developed in Logan, Utah (A) Histogram of filtered variants called by Next Generation
Sequencing Experience Platform (NGSEP) showing distribution by minor allele frequency and classified
by function after annotation. (B) Distribution of GBS SNP markers across eight Medicago truncatula
chromosomes using 1 Mb window. The colored lines represent the marker density as showing on the
right color legends.
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Figure 2. Frequency of allele dosage in autotetraploid alfalfa (Medicago sativa) for 6862 high-quality biallelic 
SNVs obtained from NGSEP pipeline in the Logan dataset. A represents dosage of the major allele and B is 
for the minor allele dosage. 
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loci identified, 14 were targeted to the coding regions of protein loci (Table 2). The protein-coding loci were 
annotated as follows: MtrunA17_Chr1g0205221 was annotated to folate-biopterin transporter, major 
facilitator superfamily domain-containing protein; MtrunA17_Chr2g0324021 to oxidoreductase; 
MtrunA17_Chr3R0014140 to RLX_singleton_family134; MtrunA17_Chr4g0048811 to 
aminoacyltransferase, E1 ubiquitin-activating enzyme; MtrunA17_Chr5g0410771 to HSP20-like chaperone, 
P-loop containing nucleoside triphosphate hydrolase; MtrunA17_Chr5g0435221 to putative 23S rRNA 
(adenine(2503)-C(2))-methyltransferase; MtrunA17_Chr5g0444321 to leucine-rich repeat domain, L 
domain-containing protein; MtrunA17_Chr6R0226110 to RLG_singleton_family376; 
MtrunA17_Chr6g0486011 to zinc finger, RanBP2-type; MtrunA17_Chr7g0235641 to putative RIN4, 
pathogenic type III effector avirulence factor Avr cleavage; MtrunA17_Chr7g0259771 to small GTPase 
superfamily, EF-hand domain pair. 

Figure 2. Frequency of allele dosage in autotetraploid alfalfa (Medicago sativa) for 6862 high-quality
biallelic SNVs obtained from NGSEP pipeline in the Logan dataset. A represents dosage of the major
allele and B is for the minor allele dosage.

Table 1. A summary of single nucleotide polymorphism (SNP) markers developed by genotype-by-
sequencing (GBS) and their categories of gene annotations based on the Medicago truncatula reference
genome (Mt.v5.0).

SNPs Count

Coding

Synonymous variant 2843
Missense variant 2014

Stop lost 3
Stop gained 22

Start lost 0
Splice donor variant 2

Splice acceptor variant 4
Exonic splice region variant 7

Splice region variant 83
5 prime UTR variant 82
3 prime UTR variant 174

Non-coding

Upstream transcript variant 61
Downstream transcript variant 32

Intron variant 956
Intergenic variant 579

2.2. Genome-Wide Association Studies

GWAS were performed using the combination of phenotypic data on vigor and yield from
the 2018 and 2019 field evaluations and genotypic data with allele dosage. GWAS analysis of
vigor identified 21 markers at 16 loci in evaluations from the two fields sites using general and
diplo-general models. Six of these markers (chr. 1 50528093 and 50528125, chr. 2 35034036, chr.
4 44369334, chr. 5 41782228, and chr. 7 26012100) were identified in populations evaluated at
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the Castle Dale, Utah site (Figure 3A,B). A total of 15 markers were identified (chr. 1 19123928,
chr. 2 44365722, chr. 3 2641319, 2641320, 49957218, and 49957253, chr. 5 12453276, 12453319,
12453328, and 35355162, chr. 6 7243498, 35426314, and 40502777, and chr. 7 43123906 and 44707092)
for the Othello, Washington site (Figure 3C,D). The loci identified by GWASpoly were aligned to
the corresponding genomic region using the M. truncatula genome v5.0 as reference. Of 16 loci
identified, 14 were targeted to the coding regions of protein loci (Table 2). The protein-coding
loci were annotated as follows: MtrunA17_Chr1g0205221 was annotated to folate-biopterin
transporter, major facilitator superfamily domain-containing protein; MtrunA17_Chr2g0324021 to
oxidoreductase; MtrunA17_Chr3R0014140 to RLX_singleton_family134; MtrunA17_Chr4g0048811
to aminoacyltransferase, E1 ubiquitin-activating enzyme; MtrunA17_Chr5g0410771 to HSP20-like
chaperone, P-loop containing nucleoside triphosphate hydrolase; MtrunA17_Chr5g0435221 to
putative 23S rRNA (adenine(2503)-C(2))-methyltransferase; MtrunA17_Chr5g0444321 to leucine-rich
repeat domain, L domain-containing protein; MtrunA17_Chr6R0226110 to RLG_singleton_family376;
MtrunA17_Chr6g0486011 to zinc finger, RanBP2-type; MtrunA17_Chr7g0235641 to putative RIN4,
pathogenic type III effector avirulence factor Avr cleavage; MtrunA17_Chr7g0259771 to small GTPase
superfamily, EF-hand domain pair.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 27 

 
Figure 3. Manhattan plots showing marker–trait association for vigor (V) in alfalfa populations at Othello 
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was used for significant markers according to the Bonferroni method. 

Figure 3. Manhattan plots showing marker–trait association for vigor (V) in alfalfa populations at
Othello Washington (WA) and Castle Dale Utah (UT). (A) Markers identified by general model in the
UT dataset. (B) Markers identified by diplo-general model in the UT dataset. (C) Markers identified by
general model in the WA dataset. (D) Markers identified by diplo-general model in the WA dataset.
The threshold of 0.05 was used for significant markers according to the Bonferroni method.
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Table 2. SNP marker, trait, model, chromosome, position, allele, − log p, locus tag, and putative gene function associated with alfalfa (Medicago sativa) yield (Y) under
salt stress in Othello, WA, and vigor (V) in Othello, Washington (V_WA), and Castle Dale, Utah (V_UT) fields.

M. Trait Model Chr. Position SNP −logp Locus tag Annotation

283 V_WA 1 1 19123928 A/G 5.34 MtrunA17_Chr1g0170381 Hypothetical protein
860 V_UT 1, 2 1 50528093 C/T 5.59, 6.08
861 V_UT 1, 2 1 50528125 C/T 5.7, 6.08

MtrunA17_Chr1g0205221 Putative folate-biopterin transporter, major facilitator
superfamily domain-containing protein

1561 V_UT 1 2 35034036 A/G 6.08 MtrunA17_Chr2g0312131 Hypothetical protein

1644 Y_Jun_19,
Y_Jul_19 2, 3, 5 2 38865320 A/G 5.19, 6.02 MtrunA17_Chr2g0316741 Hypothetical protein

1744 V_WA 2 2 44365722 A/G 5.54 MtrunA17_Chr2g0324021 Putative oxidoreductase
1992 V_WA 2 3 2641319 C/G 5.55
1993 V_WA 1, 2 3 2641320 C/T 5.28, 5.53 MtrunA17_Chr3R0014140 RLX_singleton_family134 PWWP domain

2033 Y_All_18 4 3 5484686 C/G 4.95 MtrunA17_Chr3g0083861 Putative Serpin family protein

2195 Y_Jul_18 2 3 17906891 C/T 6.2 MtrunA17_Chr3g0094791 Putative tetratricopeptide-like helical domain, DYW
domain-containing protein

2711 V_WA 2 3 49957218 A/T 5.65
2712 V_WA 2 3 49957253 C/T 5.55 NA NA

3515 V_UT 1 4 44369334 C/T 5.46 MtrunA17_Chr4g0048811 Putative aminoacyltransferase, E1 ubiquitin-activating
enzyme

3708 Y_Sep_19 4 4 54035230 A/G 5.04 MtrunA17_Chr4g0062111 Putative protein CHAPERONE-LIKE PROTEIN OF
POR1

4154 V_WA 2 5 12453276 A/G 5.55
4155 V_WA 2 5 12453319 G/T 5.55
4156 V_WA 2 5 12453328 C/G 5.54

MtrunA17_Chr5g0410771 Putative HSP20-like chaperone, P-loop containing
nucleoside triphosphate hydrolase

4463 V_WA 2 5 35355162 G/T 5.91 MtrunA17_Chr5g0435221 Putative 23S rRNA
(adenine(2503)-C(2))-methyltransferase

4633 V_UT 1, 2 5 41782228 A/T 5.53, 6.4 MtrunA17_Chr5g0444321 Putative leucine-rich repeat domain, L
domain-containing protein

4775
Y_All_18,

Y_Aug_18,
Y_Sep_18

1 6 1909362 C/T 6.74, 5.7, 5.61 MtrunA17_Chr6g0451341 Putative transcription regulator IWS1 family

4868 V_WA 1 6 7243498 A/G 5.48 MtrunA17_Chr6g0457561 Hypothetical protein
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Table 2. Cont.

M. Trait Model Chr. Position SNP −logp Locus tag Annotation

5146 V_WA 2 6 35426314 C/G 5.86 MtrunA17_Chr6R0226110 Putative potassium channel, voltage-dependent, ERG
5241 V_WA 1 6 40502777 A/G 5.34 MtrunA17_Chr6g0486011 Putative zinc finger, RanBP2-type

5558 V_UT 1 7 26012100 C/T 5.45 MtrunA17_Chr7g0235641 Putative RIN4, pathogenic type III effector avirulence
factor Avr cleavage

5834 V_WA 2 7 43123906 A/G 5.71 NA NA
5858 V_WA 1 7 44707092 C/T 5.6 MtrunA17_Chr7g0259771 Putative small GTPase superfamily, EF-hand domain pair

6478 Y_Jun_19 2 8 32682521 A/T 5.18 MtrunA17_Chr8g0369441 Putative brevis radix (BRX) domain, transcription factor
BREVIS RADIX domain-containing protein

M. = Marker consecutive. Chr. = chromosome; Y = BLUEs values for yield in the indicated harvest; HS = health score of plants under salt stress. Models: 1 = general, 2 = diplo-general,
3 = diplo-additive, 4 = 2-dominant-reference, 5 = 1-dominant-reference. Locus tag annotation based on [13]. Orange colored cells indicate the same marker in different traits. Grey colored
cells indicate several markers associated to same loci.
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The GWAS identified six markers significantly associated with yield under salt stress.
These markers were chr2_8865320, chr3_5484686 and 17906891, chr4_54035230, chr6_1909362, chr
8_32682521. Two of these markers were associated with the yield in 2018 field evaluations. Among
them, marker chr3_5484686 was identified by 2-dominant reference model and chr6_1909362 was
identified by general model (Figure 4A,B). One marker (chr3_17906891) was identified for yield from
the July 2018 harvest by the diplo-general model (Figure 4C). Marker chr6_1909362 was identified by
the general model in both August and September 2018 harvests (Figure 4D,E). Two yield markers were
identified from the June 2019 harvest. Among them, marker chr. 2 38865320 was identified by the
diplo-general, diplo-additive, and 1-dominant reference models while marker chr. 8 32682521 was
identify by diplo-general model (Figure 4F–H). Yield marker chr. 2 38865320 was identified in the
July 2019 harvest by the diplo-general, diplo-additive, and 1-dominant reference model (Figure 4I–K).
Marker chr. 4 54035230 was identified from yield data for the September 2019 harvest by 2-domimant
reference model (Figure 4L). It is noteworthy that marker chr. 2 38865320 was associated in both the
June and July 2019 harvests and marker chr. 6 1909362 was associated to harvests in August and
September along with the total yield of 2018. However, May 2019 yield and total yield during 2019 did
not show any associated markers with the six models tested.

The six markers identified were annotated to their genomic regions using the M. truncatula genome
v5.0 as reference and all markers were targeted to protein-coding loci (Table 2). The protein-coding locus
MtrunA17_Chr2g0316741 was annotated to hypothetical protein; Chr3g0083861 to serpin family protein;
MtrunA17_Chr3g0094791 to tetratricopeptide-like helical domain, DYW domain-containing protein;
MtrunA17_Chr4g0062111 to chaperone-like protein of POR1; MtrunA17_Chr6g0451341 to transcription
regulator IWS1 family; MtrunA17_Chr8g0369441 to brevis radix (BRX) domain, transcription factor
BREVIS RADIX domain-containing protein (Table 2).

2.3. Linkage Disequilibrium Analysis

Linkage disequilibrium (LD) analysis was performed with all markers associated with yield and
vigor under salt stress and their adjacent markers in a 10 kb window by Haploview v4.2 [14]. Among
27 markers identified for yield and vigor, six blocks were identified to harbor multiple markers at the
same locus including block 1 on chromosome 1 at the positions 50527909, 50528082, 50528093 and
50528125; block 2 on chromosome 2 at positions 44365722, 44365739, 44365748, and 44365762; block
3 chromosome 3 at positions 5484625, 5484632, 5484637, and 5484686; block 4 on chromosome 4 at
positions 44369328, 44369331, and 44369334; block 5 on chromosome 5 on positions 12453276, 12453319,
and 12453328; and Block 6 on chromosome 8 at positions 32682474 and 32682521 (Figure 5).

2.4. Genomic Selection

The growth vigor under salt stress collected in Othello and Castle Dale and yield collected in
Othello were used for GS using eight different models: rrBLUP, BayesA, BayesB, BayesC, BRR, BL,
SVM, and RF. GS used 10-fold cross validation between a training population of 90% and a testing
population of 10% to predict breeding values. The accuracy of Pearson’s correlation between predicted
GEVB and phenotypic values was used in all datasets. Mean accuracies for the eight models tested
were 0.264 (SD ± 0.015) in Castle Dale and 0.337 (SD ± 0.011) in Othello, and mean RMSE values were
0.889 (SD ± 0.005) in Castle Dale and 0.6962 (SD ± 0.005) in Othello. The best fitting model was SVM in
both datasets with accuracies of 0.287 in Castle Dale and 0.361 in Othello (Table 3).
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2-dominant reference model in September 2019 dataset. Markers threshold was set using Bonferroni > 0.05. 

Figure 4. Manhattan plots showing marker–trait associations for yield datasets in alfalfa (Medicago sativa)
at Othello, Washington over two years. (A) Markers identified by general model in All 2018. (B) Markers
identified by 2-dominant reference model in All 2018. (C) Markers identified by diplo-general model in
July 2018 dataset. (D) Markers identified by general model in August 2018. (E) Markers identified
by general model in September 2018. (F) Markers identified by diplo-general model in June 2019.
(G) Markers identified by diplo-additive model in June 2019. (H) Markers identified by 1-dominant
reference model in June 2019. (I) Markers identified by diplo-general model in July 2019. (J) Markers
identified by diplo-additive model in July 2019. (K) Markers identified by 1-dominant reference model
in July 2019. (L) Markers identified by 2-dominant reference model in September 2019 dataset. Markers
threshold was set using Bonferroni > 0.05.
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Table 3. Genomic selection (GS) metrics for alfalfa (Medicago sativa) plant vigor under salt stress at
Castle Dale, Utah (HS_UT), and Othello, Washington (HS_WA). Eight GS models were tested using
10-fold cross-validation and the metrics of accuracies as Pearson’s correlation values (Pearson) and root
mean squared error (RMSE) are shown by model.

Dataset Metric rrBLUP BayesA BayesB BayesC BL BRR RF SVM

V_UT
Pearson 0.267 0.274 0.250 0.275 0.272 0.245 0.244 0.287
RMSE 0.894 0.885 0.896 0.890 0.887 0.894 0.890 0.880

V_WA
Pearson 0.336 0.336 0.327 0.342 0.329 0.343 0.324 0.361
RMSE 0.696 0.693 0.698 0.692 0.696 0.696 0.708 0.691

Notes: BL, Bayesian LASSO; BRR, Bayesian ridge regression; RF, random forest; SVM, support vector machine.

The prediction accuracy, based on Pearson’s correlations, varied across harvest dates for the yield
trait. The highest prediction accuracy was obtained for the September 2018 harvest data with mean
accuracy of 0.457 (SD ± 0.021) for all models (data not shown). The lowest prediction accuracy was
found in harvest data for All 2019 with a mean accuracy of 0.087 (SD ± 0.031) for all models. Harvests in
August 2018, All 2018, July 2019 and September 2019 had similar mean accuracies of 0.262 (SD ± 0.011),
0.239 (SD ± 0.030), 0.254 (SD ± 0.021), respectively (Table 4). The range of means by models in all yield
datasets were from 0.224 (SD ± 0.112) for BayesA to 0.275 (SD ± 0.095) for RF.
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Table 4. Description of best linear unbiased estimates (BLUEs) yield values and genomic selection (GS) results for alfalfa (Medicago sativa) grown under salt stress.
Broad sense heritability (H2), residual SD (Res_SD), R2, and coefficient of variation (Coef_Var) of phenotypic data were calculated using the package Mr.Bean [15] with
genotype as random effect. Eight GS models were tested using 10-fold cross-validation and the metrics of accuracies as Pearson’s correlation values (Pearson) and root
mean squared error (RMSE) are shown by model.

Dataset H2 Res_SD R2 Coef_Var Metric rrBLUP BayesA BayesB BayesC BL BRR RF SVM

Jul_18 0.47 0.55 0.479 0.23
Pearson 0.305 0.305 0.303 0.307 0.303 0.299 0.343 0.324
RMSE 0.509 0.506 0.51 0.508 0.508 0.509 0.508 0.503

Aug_18 0.51 0.46 0.51 0.25
Pearson 0.27 0.259 0.275 0.272 0.253 0.265 0.268 0.24
RMSE 0.409 0.411 0.407 0.408 0.408 0.408 0.414 0.414

Sep_18 0.69 0.24 0.629 0.38
Pearson 0.444 0.445 0.448 0.447 0.454 0.45 0.464 0.509
RMSE 0.255 0.254 0.254 0.255 0.254 0.254 0.256 0.244

All_18 0.8 0.38 0.717 0.3
Pearson 0.234 0.216 0.227 0.226 0.209 0.236 0.302 0.268
RMSE 0.377 0.38 0.376 0.379 0.375 0.377 0.37 0.371

May_19 0.43 0.55 0.506 0.28
Pearson 0.116 0.108 0.107 0.121 0.119 0.115 0.182 0.113
RMSE 0.551 0.558 0.556 0.552 0.552 0.553 0.541 0.548

Jun_19 0.33 0.5 0.502 0.28
Pearson 0.173 0.147 0.155 0.146 0.184 0.154 0.219 0.201
RMSE 0.477 0.481 0.478 0.478 0.474 0.478 0.467 0.469

Jul_19 0.43 0.49 0.555 0.33
Pearson 0.258 0.242 0.238 0.266 0.231 0.235 0.287 0.281
RMSE 0.51 0.513 0.509 0.507 0.51 0.51 0.514 0.51

Sep_19 0.54 0.29 0.553 0.39
Pearson 0.249 0.231 0.257 0.24 0.247 0.236 0.276 0.301
RMSE 0.31 0.312 0.309 0.311 0.309 0.31 0.312 0.308

All_19 0.83 0.37 0.716 0.45
Pearson 0.072 0.065 0.083 0.064 0.06 0.083 0.137 0.138
RMSE 0.464 0.467 0.466 0.466 0.463 0.462 0.456 0.455

Notes: BL, Bayesian LASSO; BRR, Bayesian ridge regression; RF, random forest; SVM, support vector machine.
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To analyze the variation in the errors in a set of forecasts, the mean absolute error (MAE) and
the root mean squared error (RMSE) were used to measure the average magnitude in the continuous
variable errors (i.e., yield). Comparisons between the models and datasets by MAE and RMSE
identified high correlations (Figure S1) therefore only RMSE was used to test the models. Comparisons
of accuracy (Pearson’s correlation) and RMSE indicated that SVM was the best fitting model for yield
data in September for both 2018 and 2019, while the RF model fit the data best for yield in July 2018,
May 2019, June 2019, and July 2019 (Table 4). Different parameter tunings were tested to achieve
the lowest RMSE value (Table S1). The costs (C) of parameter tuning SVM {0.25,0.5,1.0} were used
to control the trade-off between smooth decision boundary (hyperplane) that classifies the training
predictors correctly and sigma (σ) that defines how far training predictors influence regression. High σ

values only consider the closest predictors to the hyperplane while low values consider the influences
of all predictors. SVM had common cost of 1 in almost all datasets and σ values were between 0.000098
and 0.00012. Parameters adjusted in RF were randomly chosen subset of M (predictor variables SNPs)
for determining a decision tree and split rule which defines the kernel (“variance” or “extra-trees”) to
split the candidate variables (predictor variables) that minimizes the sum of squared estimate of errors
(SSE). Parameter “variance” was used for splitting rule for the yields of July 2018, September 2018, May
2019, and September 2019 while “extra-trees” were used for August 2018, June 2019, and July 2019.
The most frequent mtry value was 6832, which correspond to the complete set of SNPs (Table S1).

Finally, in order to test machine learning models, 10% of the dataset was left-out during the
model’s training by 10-fold cross-validation. Finally, the model trained was used to predict yield of
the 10% dataset left-out comparing the goodness of fit of the models by accuracy and RMSE values of
model trained and model with future data (Table 5). This approach allowed to increase the accuracy in
eight of nine datasets. By this approach the accuracy in the July 2018, August 2018, May 2019, June
2019, July 2019, September 2019, and All 2019 datasets was increased for the SVM model. Maximum
values were found in September 2018 with and accuracy of 0.771 for the RF model and in July 2018
with an accuracy of 0.793 for the SVM model (Table 5).

Table 5. Comparison of genomic selection (GS) models in phenotypic data collected for alfalfa (Medicago
sativa) yield under salt stress. Random forest (RF) and support vector machine (SVM) models were
trained by 10-fold cross validation (RF_10CV or SVM_10%). Pearson’s correlation (Pearson) and root
mean squared error (RMSE) values were calculated.

Harvest Metric RF_10CV RF_10% SVM_10CV SVM_10%

July_2018 Pearson 0.343 0.728 0.324 0.793
RMSE 0.508 0.389 0.503 0.353

August_2018 Pearson 0.268 0.225 0.240 0.279
RMSE 0.414 0.468 0.414 0.459

September_2018 Pearson 0.464 0.771 0.509 0.729
RMSE 0.256 0.222 0.244 0.205

All_2018
Pearson 0.302 0.259 0.268 -0.073
RMSE 0.370 0.399 0.371 0.657

May_2019 Pearson 0.182 0.135 0.113 0.282
RMSE 0.541 0.511 0.548 0.491

June_2019 Pearson 0.219 0.226 0.201 0.353
RMSE 0.467 0.479 0.469 0.464

July_2019 Pearson 0.287 0.365 0.281 0.479
RMSE 0.514 0.471 0.510 0.450

September_2019 Pearson 0.276 0.410 0.301 0.627
RMSE 0.312 0.302 0.308 0.275

All_2019
Pearson 0.137 0.275 0.138 0.229
RMSE 0.456 0.469 0.455 0.472
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3. Discussion

3.1. GBS and Allele Dosage

Estimation of allele dosage is crucial for precise GWAS and GS analyses in polyploid species.
Pipelines using diploidization of polyploid makers could affect GWAS [16] or GS [17] results. Therefore,
using a pipeline that accurately includes allele dosage can improve genotyping accuracy and reduce
errors in polyploid species. In this study the software NGSEP v4.0.0 was used to analyze allele dosage
and to obtain 6862 meaningful variants. The number of markers in this study was similar to previous
reports using the diploidization pipelines in alfalfa [18]. Markers with allele dosage in the present
study allowed performing GWAS with the GWASpoly software which was originally designed for
association mapping in the autotetraploid species potato [5].

3.2. Association Mapping

Using GWASpoly, we identified 27 SNPs associated with salt stress tolerance. Among them, six
were associated with yield and 21 were associated with vigor under salt stress. Of the 27 markers
identified, three were found to be in non-coding regions and four were associated with hypothetical
proteins. The 20 remaining markers were associated with 16 protein-coding loci annotated with known
functions. Locus MtrunA17_Chr1g0205221 was associated to a putative folate-biopterin transporter.
The folate-biopterin transporter (FBT) belongs to the major facilitator superfamily (MFS). Some
members of this family are Zinc-Induced Facilitator-Like 1 (ZIFL1) proteins that have reported activity
as polar auxin transport modulators and alternative splicing for drought tolerance [19]. FBT has been
involved in transport of organic molecules (e.g., folate) containing nitrogen [20]. In the present study,
four SNPs were associated with the gene MtrunA17_Chr1g0205221 which showed 84% similarity to the
FBT protein At2g32040.2 in Arabidopsis thaliana (https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/).
Mutation of At2g32040.2 in A. thaliana increased the total chloroplast folate content and decreased
the proportion of 5-methyl-tetrahydrofolate [21]. Increased folate levels have been associated with
germination and vigor in barley under salt stress [22]. Kılıç and Aca (2016) found that exogenous
application of folic acid was involved in mitigation of salt-induced inhibition, and reduced the negative
effects of salt on barley germination. These observations agree with current findings where the
SNPs 50527909, 50528082, 50528093, and 50528125 located at the MtrunA17_Chr1g0205221 locus were
associated with plant vigor under salt stress.

Locus MtrunA17_Chr2g0324021 was annotated as putative oxidoreductase in the short-chain
dehydrogenase reductase (SDR) class. SDR proteins are involved in oxidative reduction affecting
multiple metabolic processes. According to M. truncatula genome browser [13] MtrunA17_Chr2g0324021
has 61.1% identity with SDR5 in A. thaliana and 78.3% and 80.3% similarity to 3-beta-hydroxy-
Delta(5)-steroid-dehydrogenase in green bean (Phaseolus vulgaris) and soybean (Glycine max) proteomes,
respectively. SDR5 belongs to a NAD(P)-binding Rossmann-fold superfamily protein which have been
shown to be induced with Methyl jasmonate and reduce the effects of abiotic stresses in plants [23].

Locus MtrunA17_Chr3R0014140, associated with 2641319 and 2641320 SNPs, was annotated
to an RLX_singleton_family134 and a domain search in interproscan [24] predicted a PWWP
domain-containing protein which is a structural module characteristic of chromatin regulators.
Proteins with PWWP domain are involved in histone interactions affecting development and flowering
time of A. thaliana [25]. Additionally, Waidmann et al. [26] reported DEK3, a protein with a PWWP
domain downregulated by salt stress in roots and shoots in A. thaliana. The process of acetylation
and methylation of histones in response to salt stress control the ABA signaling process which play
an essential role in organ to organ communication [27]. Similarly, locus MtrunA17_Chr3g0094791
associated with SNP 17906891 that was associated with a putative tetratricopeptide-like helical domain,
DYW domain-containing protein. This protein has been shown to be involved in abscisic acid responses
and osmotic stress tolerance [28]. Furthermore, domain DYW has a role in RNA editing in plant
mitochondria in A. thaliana [29] rice (Oryza sativa) [30] and soybean [31]. Interestingly, in soybean the

https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/


Int. J. Mol. Sci. 2020, 21, 3361 15 of 25

GmPPR4 a DYW subgroup of pentatricopeptide-repeat (PPR) proteins was induced under salt and
drought stresses [31].

Locus MtrunA17_Chr3g0083861 annotated to putative serpin family protein. Serpins act as
protease inhibitors of serine proteases with other described roles in plant pathogen interactions [32],
grain development in wheat (Triticum aestivum) [33], transport of RNA through phloem in response to
biotic and abiotic stress [34] and drought stress tolerance [35]. The involvement of serpin in salt stress
was also shown in proteomic analyses of wheat, where it was found that the overexpression of the
protein Serpin Z1A in plants subjected to salt stress promoted plant growth through rhizobacterium
Enterobacter cloacae SBP-8 [36]. The role of serpins in salt stress have been shown to limit protein
degradation and reduced membrane degradation, ion leakage, senescence, and reactive oxygen species
(ROS) induction by abiotic stresses [37].

Locus MtrunA17_Chr5g0410771 with three SNPs 12453276, 12453319, and 12453328 was annotated
to a HSP20-like chaperone, P-loop containing nucleoside triphosphate hydrolase. HSP20-like chaperone
is a stress responsive protein which is considered an early indicator of oxidative stress and ER stress.
Previous reports has found HSP20-like chaperone upregulated by high salinity in Arabidopsis [38,39],
rice (OsHSP20) [38], potato (StHsp20) [40], and poplar [41]. Abiotic stresses can cause protein
aggregation or misfolding, therefore protective function of HSP20-like chaperone is crucial in plant
response to salt stress.

The SNP 1909362 associated with yield in three different harvest was identified in the protein-coding
loci MtrunA17_Chr6g0451341 annotated as Putative transcription regulator IWS1 family. IWS1 is a
transcriptional regulator involved in brassinosteroid induced gene expression after its recruitment
by BES1 in Arabidopsis thaliana [42]. These results agree with the role of brassinisteroids in reduce the
deleterious effects caused by multiple abiotic stresses including salt stress [43–45]. This finding is
significant because IWS1 TF affects the histone methylation to repress bassinosteroid induced gene
expression. Additionally, IWS1 can repress transcription of NITRITE TRANSPORTER 2.1 in response
to high nitrogen supply controlling the nutrient acquisition in plants and it has been proposed that this
TF might affect distinct signaling pathways [46].

Locus MtrunA17_Chr6R0226110 was annotated as Putative potassium channel, voltage-dependent
ERG. In mammalian Erg family voltage-gated K+ channels are specialized in repolarization of plateau
potentials such as cardiac action potentials [47].

However, in plants, K+ channels have a fundamental role in homeostatic balance of the K+ [48].
In barley, better retention of K+ is related with salt-tolerant varieties because it helps to maintain the
optimal cytosolic K+/Na+ homeostasis [49]. Additionally, MtrunA17_Chr6R0226110 has 51.2% with
the protein AT3G17700.1 annotated as cyclic nucleotide-binding transporter 1 with a proved role in
salt stress [50].

Locus MtrunA17_Chr6g0486011 was annotated as Putative RanBP2-type zinc finger protein.
Zinc finger proteins are involved with the interaction with DNA, RNA, or proteins regulating in
different plant processes like development and programmed death cell. The RanBP2-type zinc finger
proteins are ssRNA-binding proteins with high affinity to RNA sequences containing a GGU motif [51].
Although, there are no reports of this class of zinc finger associated with salt stress, other classes of
zinc finger such as CCCH-type or RR-type zinc finger proteins have been reported with significant
roles in response to salt stress. The CCCH-type zinc finger proteins play important roles in regulation
salt stress responses in Arabidopsis and mutations in the genes atszf1-1/atszf2-1 causes plants more
susceptible to salt stress [52]. Finally the gene AtTZF3 classified as RR-TZF acts a negative regulator of
seed germination under conditions of salt stress in wheat and Arabidopsis [53].

Locus MtrunA17_Chr8g0369441 was annotated as Putative brevis radix (BRX) domain,
transcription factor. BRX domain-containing protein has been identified as a modulator of root
growth in a dosage-dependent dominant negative effect [54] and it has been reported that this protein
is involved in lateral root initiation which can be affected negatively by brassinosteroids and positively
by auxins and cytokinins [55,56]. Root growth is a crucial factor for plant surviving under salt stress.
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Additionally, OsBRXL1, OsBRXL3 and OsBRXL4 homologous genes were expressed differentially
under salt stress in rice [57].

Locus MtrunA17_Chr7g0235641 was annotated as Putative RIN4, pathogenic type III effector for
the avirulence factor Avr cleavage. RIN4 has been described as one of the most important and best
studied hubs involved in the regulation of two branches of plant immunity: PAMP triggered immunity
and effector trigger immunity (reviewed in [58]). Additionally, it is known that RIN4 regulates stomata
aperture by the interaction with plasma membrane H+-ATPases AHA1 and AHA2 in response to
biotic stress [59] and with GENERAL CONTROL NONREPRESSIBLE4 (GCN4), an AAA+-ATPase
family protein involving in regulation of stomatal aperture during abiotic stress by the degradation of
RIN4 and 14-3-3 proteins to inhibit H+-ATPase activity [60]. Additionally, RIN4 also interacts with
remorin protein, which increasese its transcription during salt stress [61]. This information shows the
role of RIN4 in control of stomata aperture in biotic and abiotic stress.

Finally, locus MtrunA17_Chr4g0062111 annotated as Putative protein chaperone-like protein of
POR1 (CPP1) (previously known as Cell growth defect factor 1), shows localization in mitochondria [62]
and in plastids [63]. CPP1 has been found in a QTL associated with flowering date in Barley [64].
In plastids, CPP1 has an essential role in chloroplast development in A. thaliana and Nicotiana benthamiana
regulating and stabilizing the function of light-dependent protochlorophyllide oxidoreductase
(POR) [65]. CPP1 has a role controlling photo-oxidative stress caused by heat or ROS in chloroplasts and
CPP1 deficiency produced etiolated seedlings. Additionally, it has been reported that downregulation
of POR activity under salt stress affects the chloroplast biogenesis in rice [66].

The different markers associated in this study highlights the complexity of salt stress response
and the multiple mechanisms of response to salt stress, which include control of protein degradation,
chromatin modification, chaperon and TF gene activations, plant hormones signaling or homeostasis
Na+/K+. However, there were some loci without a clear role in response to salt stress according to
literature search. For example, locus MtrunA17_Chr7g0259771 annotated as Putative small GTPase
superfamily, EF-hand domain pair, locus MtrunA17_Chr5g0435221 annotated as Putative 23S rRNA
(adenine(2503)-C(2))-methyltransferase, or locus MtrunA17_Chr5g0444321 annotated as Putative
leucine-rich repeat domain, L domain-containing protein.

3.3. Genomic Selection

Genomic selection has been significantly used in animal breeding over the past 15 years and has
been applied to different crops as well (reviewed by Lin et al. [67]). Usually, Pearson’s correlation
has been used to estimate prediction accuracy in GS in crops. However, Pearson’s correlation may
not be the best choice when machine learning methods are used. In this work, we tested eight
GS models according to accuracy, RMSE, and MAE and identified the correlation with different
phenotypic parameters.

The RMSE approach is useful in GS when continuous variations of phenotypic values were used.
It was used in genomic selection to avoid misselection of an appropriate prediction model [68]. In the
present work we found a negative correlation between accuracy and RMSE (R = -0.64), which allowed
to identify SVM and RF as the best models for predicting the breeding value using the high accuracies
and low RMSE values. Other models such as rrBLUP or Bayesian methods (BayesA, BayesB, BayesC,
Bayesian LASSO, and Bayesian ridge regression) did not show a significant performance among the
traits tested. These results agree with previous reports where machine learning methods showed
higher accuracies than those of other methods such as rBLUP or Bayes alphabet [69]. A previous
report in alfalfa has also demonstrated that SVM was the best model in GS [18]. Additionally, the Caret
package allows parameter tuning for machine learning methods based on a reduction of RMSE values
and therefore finds the best parameters of the model (Table S1).

The best performance of machine learning methods in GS in this work was likely due to the
ability of these methods for identification of the top-ranking SNPs with major effects on the phenotypic
variation and hence explained the large proportion of the additive genetic variance. Additionally,
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machine learning methods can capture complex SNP–SNP interactions and nonlinear relationships
increasing the genetic variance and the heritability of the trait. Our results agree with the previous
reports where supervised machine learning methods performed better when traits had dominant and
epistatic effects [69].

The strategy of leave-out 10% of the individuals of cross-validation used in the present work
allowed to test goodness of fit of the model in predicting the phenotypic traits in new testing individuals.
In our analysis, the mean accuracy for all harvests increased from 0.275 to 0.377 with RF model and
from 0.264 to 0.411 with SVM. Additionally, the RMSE values decreased from 0.426 to 0.412 with RF
and there were no changes in SVM (0.425) (Table 5). The prediction accuracy increased in eight of nine
harvests tested, reaching accuracies to 0.793 with SVM in the yield of July 2018. This procedure (testing
error) is important because too flexible models could have overfitting, which means good predictions
with the training dataset but bad behavior with new datasets. In this work, SMV was the model which
produced better values after including new data in most of the yields, proving the goodness of the
model. Only the dataset of total yield 2018 had bad behavior after including new testing data with RF
and SVM models. The differences in the accuracy among different dataset tested is due to the testing
set’s (10% of the samples) unbiased facts of the probability of distribution: p(x, y). Compared with
previous studies in alfalfa, our work provided a methodology that notably increases the accuracy of
GS prediction and helps in making breeding decisions based on genotypic data.

Other works had described different factors affecting the accuracy in GS such as SNPs density,
prediction models or architecture and heritability of the traits [70,71]. In this work we found differences
in the accuracies and RMSE values among different harvesting datasets. These differences can be
explained as result of the phenotypic data variation during harvest time. To better understand, we
performed a multiple linear regression with the mean results of GS (Pearson’s correlation, RMSE,
or MAE) by harvest in parameters of broad sense heritability (H2), residual SD, R2, and coefficient
of variation of phenotypic values (Table 3). Pearson’s correlation values of GS were not explained
by the phenotypic H2, residual SD, R2, or coefficient of variation with a multiple R2 of 0.588 and
p-value: 0.069. However, we found that RMSE values of GS were correlated with residual SD, R2, and
coefficient of variation (multiple R2 of 0.998 and p-value: 3.675e-07) and MAE values were correlated
with residual SD, and coefficient of variation (multiple R2 of 0.9945 and p-value: 1.651e-07). In the
multiple correlations of RMSE and MAE residual SD was the most significant predictor variable with
the effects of 1.208 and 0.929, respectively.

Our GS approach with prediction accuracy reached up to 0.793 in yield data for two years. It can
be used to predict yields in the next cycles. Similarly Li et al. [72] found that total biomass yield reduces
the prediction accuracy because it is necessary to have high quality phenotypic data with low residual
SD in each harvest. The complex relationships among multiple traits or the same trait collected in
different seasons may affect predictivity. Based on the present results of GWAS and GS, it is possible
to infer that a non-additive effect may play a key role in controlling agronomic traits of alfalfa under
salt stress.

4. Materials and Methods

4.1. Plant Materials

Three hundred and four alfalfa individuals from 38 half-sib families were developed by polycross
with the original parents of cultivars Malone, Salado, Saranac, Alfagraze, P53V08, Renovator, Spreader
III, Wrangler 5, Archer II, Cimarron, Forager, Mesa Sirsa, and U2948 2, followed by four cycles of
recurrent selection for salt tolerance. Two populations, the SII and ChkSltn populations were selected
based on plant survival in a greenhouse following the method described by Peel et al. [73]. In 2009,
these two populations were established in a saline field nursery located near Castle Dale, UT and
irrigated with high saline water. An additional cycle of selection was completed based on survival and
agronomic performance, particularly forage yield under field conditions. Selected material from the
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two populations was then placed in a single greenhouse crossing block and combined into a single
population. This material was then subjected to greenhouse screening for salt resistance as described
by Peel et al. [73] and 38 plants were selected and recombined in a crossing block. The progeny from
these 38 plants represent 38 half-sib families tested.

4.2. Phenotyping and Data Analysis

Three hundred and four individual plants from the 38 half-sib families (eight plants/family) were
clonally propagated, maintaining six clones per plant in greenhouse under controlled environmental
conditions. Clones from the same original plants were used for the field trails. Prior to field
establishment, plot soil salinity was measured 24–48 h following a late June irrigation and averaged
7.4 dS m−1. Salinity of the irrigation water was also recorded and varied but was typically in
the range of 7–9 dS m−1. Historical average annual precipitation at the site has been 20.4 cm
(https://www.usclimatedata.com, 11 September 2019). In the establishment year and as part of field
preparation, 70 kg ha−1 mono-ammonium phosphate (11N-52P-0K) was applied prior to establishing
the trial providing 7.7 and 36.4 kg ha−1 each of N and P, respectively. Based on subsequent soil tests
no other amendments were needed. A randomized complete block design with three replications
was used in the field trial. One plant was grown per plot with plants on one meter spacings. Above
ground fresh weight biomass (yield) was collected from the field during July, August, and September
of 2018 and May, June, July, and September of 2019. Plant vigor under salt stress was scored for
each plant a 1–5 scale, where 1 = weak and 5 = vigorous. Susceptible (‘AZ-90NDC-ST) and tolerant
(‘AZ-88NDC’) standard checks from the Forage Production Under Salt Stress standard test were
included as references [74].

Phenotypic data were spatially corrected using splines to obtain the best linear unbiased estimates
(BLUEs) of fixed effects. BLUEs were estimated using a two-dimensional P-spline mixed model with
Mr.Bean web application [15] using the SpATS package [75] and mixed model was defined as [76]:

y = Xβ+ f (r, c) + Zuu + Zgg + ε

where the vector y = (y1, . . . , y304) contains the yield in grams per plot in 304 plants, β is a vector
of fixed effects including the intercept, and X is the association design matrix, f (r, c) is a smooth
bivariate function of rows r = (r1, . . . , r60) and columns c = (c1, . . . , c16) corresponding to the vector of
random spatial effects. u is a vector of random row and column effects accounting for discontinuous
field variation with the associated matrix Zu. g is the genotypic vector with Zg as the associated
design matrix treated as fixed effects, and ε is the random error vector ε = (ε1, . . . , ε304) ∼ N

(
0, σ2

εI304
)
.

Additionally, BLUEs values for yield by year 2018 and 2019 were obtained including month (m) as
random effect in the model (Table S2):

y = Xβ+ f (r, c) + ZuX + Zgg + m + ε

Broad-sense heritability (H2), residual standard deviation, R2, and coefficient of variation were
calculated with Mr.Bean with genotype as random factor (Table 1).

4.3. DNA Extraction and Sequencing

Genomic DNA was extracted from 304 original plants used for clonal propagation using a
Qiagen DNEasy 96 Plant Kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. DNA
concentration and quality were measured using a NanoDrop ND1000 spectrophotometer (NanoDrop
Technologies, Inc. Wilmington, DE). The extracted DNA was sequenced at the University of Minnesota
Genomic Center for GBS according to Elshire et al. [77]. The sequencing was carried out on an Illumina
HiSeq 2000 sequencer, producing single-ended reads of 100 bp each. A total of 240,444,007 reads were
obtained from the population.

https://www.usclimatedata.com
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4.4. GBS and Variant Calling

The raw sequencing data (fastq files) were obtained and used for aligning to the Medicago
truncatula genome v5.0 [13] using Bowtie2 v2.2.6 [78] with highly sensitive parameters (modified from
the script S2 in [79]). Variants were called with NGSEP (Next Generation Sequencing Experience
Platform) software v4.0.0 [80] and filtered at (i) maximum value allowed for a base quality score:
30; (ii) minimum allele frequency of 0.05; (iii) maintained positions at least 70% of the samples are
genotyped; (iv) minimum genotyping quality 40; (v) ploidy = 4; (vi) imputation using hidden Markov
model implemented in NGSEP v4.0.0. After filtering, 6862 high quality SNP markers were obtained
and used in further analyses.

4.5. Dosage Analysis and Association Mapping

The variant call format (VCF) file with biallelic single nucleotide variants (SNVs) was transformed
into GWASpoly format [5] using NGSEP software v4.0.0 [80] based on genotype field BSDP: number
of base call (depth) for the all nucleotides. BDSP specify the read depth sorted as A, C, G, and T
(i.e., 0,0,16,0 corresponds to GGGG, 4,0,12,0 correspond to GGGA, 8,0,8,0 correspond to AAGG) and
was corroborated with the python script VCF2SM and SuperMASSA software [81] which uses Bayesian
network to address allele dosage.

The association studies were performed using the R package GWASpoly using a Q+K linear
mixed model as follow [5]:

y = Xβ+ ZSτ+ ZQv + Zu + ε

where y corresponds to the observed phenotypes; β is a vector of fixed-effects; X is a incidence matrix
used to model environmental effects; v is the subpopulations vector effects; Q in an incidence matrix for
a population of size m; u is a polygenic effects vector; Z is a matrix of incidence mapping genotypes to
observations; τ is a SNPs effects vector; S is a structure incidence matrix and ε is a residuals vector [5].

The GWAS analyses were generated with six different models including general, additive,
diploidized additive, diploidized general, duplex dominant (A > B & B > A), and simplex dominant
(A > B & B > A) with the dataset from BLUEs yield values. Finally markers were identified using a
threshold of Bonferroni > 0.05 and they were annotated using the M. truncatula genome v5.0 genome
browser [13].

4.6. Genomic Prediction

VCF file with allele dosage was numerically transformed using the python scripts VCF2SM and
SuperMASSA software [81] and convert-tet-vcf.py [82]. The numerically-transformed VCF was used
for GS. Eight models were tested: rrBLUP [83], BayesA, BayesB, BayesC, Bayesian ridge regression
(BRR), and Bayesian LASSO (BL) from the BGLR package [84], support vector machine (SVM) from
the R package Kerlab [85], and random forest (RF) from the R package Ranger [86]. For the models
rrBLUP, BayesA, BayesB, BayesC, BRR, and BL the predictive ability was calculated based on 10-fold
cross-validation with a training set and testing set fractions of 90% and 10% of genotypes, respectively,
with the GROAN R package [87]. For the models SVM and RF the predictive ability was calculated as
before, using Caret R package [88]. The predictive ability of the models was calculated as Pearson’s
correlation between GEBV and phenotypes of test population, root mean squared error (RMSE), and
mean absolute error (MAE). The rrBLUP assumes a lineal mixed additive model represented by
the equation:

yi = Xβ+ Zu + εi; u ∼ N
(
0, Kσ2

u

)
where yi is a vector of observations

{
y1, . . . , y272

}
, β is a vector of fixed-effects, u is a vector for genomic

breeding values to follow normal distribution, X and Z are designed matrices, εi is a vector of residual
effects with an assumed normal distribution εi ∼ N

(
0, σ2

e

)
, and K is a positive semidefinite matrix.
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The Bayesian models for continuous variables are represented by the equation:

yi = 1µ++
m∑

j=1

Xi jβ j + εi

where yi is the vector of adjusted phenotypic observations
{
y1, . . . , y272

}
, µ is the overall mean for the

trait, β j is a vector of the marker effects associated to the columns of the marker incidence matrix, Xi j is
the jth SNP genotype of plant i, m is the number of markers, and εi is a vector of residual effects with
an assumed normal distribution εi ∼ N

(
0, σ2

e

)
.

SVM and RF are machine learning methods for classification and regression tasks [11,89]. SVM
implements nonlinear regression finding a good fitting separating hyperplane. Parameters tuned up
were (i) sigma (σ) (gamma for e1071 package): default = 1/(data dimension) and (ii) cost I which is cost

of constrain violation = {0.25, 0.5, 1.0}with a radial kernel
(
e−σ(a−b)2

)
to predict GEVB. RF regression

was carried out using random subsamples of data and using the combined result for prediction of GEBV.
Parameters tuned up were (i) mtry: number SNPs of randomly selected at each tree node {2, 116, 6832}.
For regression models, the number of predictor variables split at in each node (rounded down), and
(ii) splitting rule were used during tree construction for regression “variance” or “extra-trees” with a
node-size = 5.

5. Conclusions

Marker–trait association identified a group of 27 SNP markers associated with salt tolerance.
BLAST search in the reference genome revealed several functional genes associated with the significant
marker loci and assigned as putative candidate genes based on their roles in response to salt stress.
Additionally, genomic selection allowed to predict the breeding values on Logan alfalfa population
for salt tolerance with good accuracy. Among the models tested, the machine learning methods were
the best models according to high Pearson’s correlation and low RMSE values in yields of different
harvests and vigor under salt stress for two years. The identification of the models and the accuracies
obtained in this work are likely sufficient to predict breeding values in breeding programs for salt
tolerance in alfalfa.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/9/3361/s1,
Figure S1. A correlation scatter plot between mean absolute error (MAE) and root mean squared error (RMSE)
values of GS results in yield. Table S1. Description of the hyperparameters autoadjusted by Caret R package in RF
and SVM models to obtain the lowest value of RMSE. Table S2. The BLUE values calculated for yield and vigor
under salt stress during 2018 and 2019.
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