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ABSTRACT  33 

The application of machine learning (ML) tools in electronic health records (EHRs) can help 34 

reduce the underdiagnosis of dementia, but models that are not designed to reflect minority 35 

population may perpetuate that underdiagnosis. To address the underdiagnosis of dementia in 36 

both Black Americans (BAs) and white Americans (WAs), we sought to develop and validate 37 

ML models that assign race-specific risk scores. These scores were used to identify undiagnosed 38 

dementia in BA and WA Veterans in EHRs. More specifically, risk scores were generated 39 

separately for BAs (n=10K) and WAs (n=10K) in training samples of cases and controls by 40 

performing ML, equivalence mapping, topic modeling, and a support vector-machine (SVM) in 41 

structured and unstructured EHR data. Scores were validated via blinded manual chart reviews 42 

(n=1.2K) of controls from a separate sample (n=20K). AUCs and negative and positive 43 

predictive values (NPVs and PPVs) were calculated to evaluate the models. There was a strong 44 

positive relationship between SVM-generated risk scores and undiagnosed dementia. BAs were 45 

more likely than WAs to have undiagnosed dementia per chart review, both overall (15.3% vs 46 

9.5%) and among Veterans with >90th percentile cutoff scores (25.6% vs 15.3%). With chart 47 

reviews as the reference standard and varied cutoff scores, the BA model performed slightly 48 

better than the WA model (AUC=0.86 with NPV=0.98 and PPV=0.26 at >90th percentile cutoff 49 

vs AUC=0.77 with NPV=0.98 and PPV=0.15 at >90th). The AUCs, NPVs, and PPVs suggest that 50 

race-specific ML models can assist in the identification of undiagnosed dementia, particularly in 51 

BAs. Future studies should investigate implementing EHR-based risk scores in clinics that serve 52 

both BA and WA Veterans. 53 
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1 Introduction 61 

Alzheimer’s disease (AD) and related dementias (ADRD) are fatal neurodegenerative disorders 62 

that account for half of admissions to long-term care facilities (Rice et al., 2001), yet nearly half 63 

of those affected by ADRD have not been formally diagnosed (Barnes et al., 2020, Amjad et al., 64 

2018). This crisis of underdiagnosis exacerbates existing disparities in health care, as dementia 65 

underdiagnosis may disproportionately affect Black Americans (BAs) (Gianattasio et al., 2019). 66 

In a large 2019 study of Medicare claims, older BAs with dementia were about two times less 67 

likely to be correctly diagnosed with dementia than older White Americans (WAs) with 68 

dementia (Gianattasio et al., 2019), and in one of the small handful of studies that examine racial 69 

disparity in dementia care within VHA (Sleath et al., 2005, Kalkonde et al., 2009), significantly 70 

fewer BA Veterans with suspected dementia underwent neuropsychological testing for the 71 

diagnosis of dementia than WA Veterans with suspected dementia (Kalkonde et al., 2009). The 72 

underdiagnosis of dementia translates into missed opportunities to treat patients (Cummings et 73 

al., 2021), improve quality of life (e.g., through medication management and referrals) (Callahan 74 

et al., 1995, Fitten et al., 1995), reduce patient and family burden (Sayegh and Knight, 2013, 75 

Hinton et al., 2004), and reduce hospitalization, institutionalization, and health care costs 76 

(Rasmussen and Langerman, 2019, Black et al., 2018).  77 

We seek to use natural language processing (NLP) and machine learning (ML) tools to 78 

address the magnitude of dementia diagnostic disparity in the Veterans Health Administration 79 

(VHA) Corporate Data Warehouse (CDW), which is an ideal setting for this work, as it contains 80 

comprehensive structured and unstructured data on ~0.4 million BA Veterans who are age 65+ 81 

and receive care as part of the largest integrated health care system in the nation. ML methods 82 

have previously been applied to EHRs (Nadkarni et al., 2011, Gottesman et al., 2013), but we 83 

have developed one of the first ML models to increase the sensitivity of dementia identification 84 

by using both structured EHR data (e.g., demographics, diagnoses [ICD codes], procedures 85 

[CPTS codes], medications, and clinical note types) and unstructured EHR data (e.g., words in 86 

clinical notes) (Shao et al., 2019). In our previous work, we applied topic modeling and logistic 87 

regression to develop risk scores for dementia based on the EHRs of older Veterans with 88 

(n=1,861, mean age 79.8) and without (n=9,305, mean age 79.5) ICD-9 dementia codes (Shao et 89 

al., 2019). Here, we extend this work by building separate predictive models for detecting 90 

undiagnosed dementia in BAs and WAs using a larger sample of all VA patients who are 65+ 91 

years old with and without ICD 9/10 diagnosed dementia. We validate these models by 92 

performing chart reviews blinded to dementia risk scores in a new set of patients who lack ICD-93 

9/10 dementia diagnoses and who were not used to build the models; we then compare the chart 94 

review diagnoses to the diagnoses based on the model-generated risk scores. 95 

2 Materials and Methods 96 

2.1 Study population 97 

After receiving IRB approval, we created a cohort of cases (i.e., Veterans with an ICD-9/10 98 

dementia code) and controls (Veterans without any ICD-9/10 dementia codes) from the CDW by 99 

selecting patients who turned age 65 between 1999 and 2018, lacked a dementia diagnosis at age 100 

65, were previously evaluated at a VA clinic, and were identified as BA or WA in their EHRs 101 

(top row, Figures 1a and 1b). The selected Veterans were followed until 9/12/2018, until 102 

diagnosis (cases), or until censoring due to absence of records (controls).  103 

To meet inclusion criteria, cases had to have received at least one ICD-9 or ICD-10 diagnosis 104 

of dementia, with the first diagnosis occurring after age 65, and had to have at least 3 years of 105 
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continuous follow-up (i.e., 2+ documented clinical visits and associated notes during each year) 106 

immediately prior to first diagnosis. That is, the one-year-long period in which first diagnosis 107 

occurred had to have at least 3 visits (i.e., a diagnosis visit plus 2 previous visits), whereas the 108 

other 2 one-year-long periods had to have at least 2 visits. Conversely, controls could not have 109 

had any ICD-9/10 dementia codes; could not have filled donepezil, galantamine, rivastigmine, or 110 

memantine prescriptions; and needed 3+ years of continuous follow-up (i.e., 2+ documented 111 

clinical visits and associated notes during each year) after reaching age 62. We created separate 112 

BA and WA cohorts of cases and controls to satisfy these criteria (second row, Figures 1a and 113 

1b). 114 

All clinical data were collected for a 3-year period that either immediately preceded but did 115 

not include the first ICD-9/10 diagnosis of dementia (for cases) or a random visit date that was 116 

selected as an index date (for controls). This 3-year period was established to provide adequate 117 

structured and unstructured data. 118 

The sampling and modeling of the Training and Validation Samples was performed 119 

separately for BAs and WAs. We created model Training Samples by randomly sampling 5,000 120 

cases and 5,000 controls in each race (total n=20,000). For each control, we randomly chose the 121 

index visit among all visits that satisfied the 3-year lookback criterion. We used the Training 122 

Samples to build models that produced dementia risk scores. We then created model Validation 123 

Samples by randomly sampling 10,000 controls in each race who were not part of the Training 124 

Samples (total n=20,000) and used the models to generate scores for these samples. Finally, we 125 

sampled 600 Veterans from the Validation Samples for each race to undergo blinded chart 126 

reviews (total n=1,200). Veterans were selected for chart review by simple random sampling 127 

(n=200) and stratified random sampling (n=400) based on percentiles of the full Validation 128 

Sample risk scores, such that 100 Veterans from the >75th– 90th percentiles were included, and 129 

30 Veterans in each of the 10 remaining upper percentile ranges (i.e., 30 each from the >90th–130 

91st, >91st–92nd, etc.) were included. 131 

2.2 Variable creation 132 

2.2.1 Structured data 133 

For each Veteran, we aggregated the structured data over the 3-year analysis period, recording 134 

the presence/absence of each type of structured data during the 3-year period. Each type of 135 

structured data was treated as a candidate binary variable for our model that would produce 136 

dementia risk scores, with 0 indicating an absence of the codes/medications/note type and 1 137 

indicating their presence. 138 

To account for a transition from ICD-9 to ICD-10, we performed equivalence mapping, 139 

visualizing the CDC/CMS general equivalence mappings (GEM) as a large bipartite graph that 140 

consisted of two disjointed sets of vertices representing all the ICD-9 and ICD-10 codes, 141 

respectively, and a number of edges connecting ICD-9 vertices to ICD-10 vertices representing 142 

the possible conversions from ICD-9 codes to ICD-10 codes. These mappings allowed us to 143 

decompose the GEM, viewed as a large bipartite graph, into a number of smaller disjoint 144 

bipartite subgraphs that could not be decomposed into smaller disjoint subgraphs without 145 

breaking edges. Then, for each of these minimal equivalence mappings, a new code was defined 146 

to represent the group of ICD-9 codes before the transition date and the group of ICD-10 codes 147 

after the transition. Variables corresponding to the new codes were defined in the same way as 148 

other codes (e.g., CPT codes).  149 
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2.2.2 Unstructured data 150 

Unstructured data were handled using the two-step topic modeling approach previously 151 

described in Shao et al. (Shao et al., 2016, Shao et al., 2019). This unsupervised ML method 152 

identifies shared topics from a large text corpus. Each topic is defined as a binary variable 153 

indicating the presence/absence of that topic, and the proportion of topics within any particular 154 

document is calculated. Here, we use the proportion of dementia-related topics observed in 155 

excess in cases versus controls to identify dementia-related signs.  156 

More specifically, raw topics were identified in clinical notes by running a latent Dirichlet 157 

allocation (LDA) algorithm within the Machine Learning for Language Toolkit Java package 158 

(Shao et al., 2016, Shao et al., 2019), which includes topic learning and inference functions. The 159 

learning function is a time-consuming algorithm that learns the topics from a set of text 160 

documents and generates a topic model, whereas the inference function runs much faster and can 161 

apply the learned topic model to a new set of text documents and then infer the topic 162 

distributions in those documents. For our topic learning subset, we randomly sampled one note 163 

per day for each subject from the ~5 million notes collected during the 3-year study period, 164 

yielding a sample corpus of 1.8 million notes. We randomly selected 1 million notes from this 165 

sample corpus, which allowed for a reduced running time for topic learning while ensuring that 166 

main topics were preserved. We then ran LDA topic learning 3 times on the 1 million sampled 167 

notes, setting 1,000 as the total number of topics, and applied the 3 resulting models to all of the 168 

5 million notes, using the topic inference function to infer the topic proportions in each note. 169 

Based on the inferred topic proportions, we calculated the number of words that were associated 170 

with each topic in each note by multiplying the topic proportion by the total number of words in 171 

the note. Because the “number of words” associated with a topic was not always a whole 172 

number, we call it the pseudo word count (PWC).  173 

We then applied the stable topic extraction method (Shao et al., 2016, Shao et al., 2019), 174 

which yielded 852 stable topics. For each stable topic, there were 3 topics—one from each run—175 

that were very similar to each other, and the stable topic was the “average” of the 3 similar 176 

topics. Likewise, the PWC for the stable topic in each note was defined to be the median value of 177 

the 3 PWCs corresponding to the 3 topics. By design, topic proportions are always positive 178 

numbers, so the PWCs are positive as well. However, because not all of the topics are present in 179 

every note, we set a nonzero threshold on the PWCs to indicate whether a topic was present in a 180 

note. Empirically, we set the threshold at 2.0, which roughly means that a topic is present in a 181 

note only when the PWC≥2.0. To allow various degrees of topic presence, we defined topic 182 

presence to be a function of PWC as follows: (1) presence=0 if PWC<2.0, (2) 183 

presence=PWC/10.0 if 2.0≤PWC≤10.0, and (3) presence=1.0 if PWC>10.0. For the ML model, 184 

stable topics were used as variables/features, and the maximum presence value over all the notes 185 

of each Veteran was defined as the Veteran’s topic presence value. 186 

2.3 Variable selection 187 

Separately for BAs and WAs, we selected variables from the structured data that corresponded to 188 

the codes/medications/note types that were present in 10+ Veterans in the Training Sample. All 189 

of the stable topic variables and two demographic variables (age and sex) were selected. The age 190 

variable was normalized so that the value 0 corresponded to 65 years old (minimum age) 191 

whereas the value 1 corresponded to 85 years old (maximum age). All other variables were either 192 

binary (i.e., values 0 and 1) or continuous (i.e., values between 0 and 1). 193 
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2.4 Support vector machine (SVM) model 194 

Separately for BA and WA Veterans in the Training Sample, we constructed SVM models that 195 

used the selected predictor variables to generate dementia “risk” scores. To construct the SVM 196 

models, we used the linear SVM model (LinearSVC algorithm) in Python package scikit-learn 197 

(Pedregosa et al., 2011). The SVM models had only one important hyperparameter: “C,” the cost 198 

parameter, which sets the trade-off between misclassification and the simplicity of the decision 199 

surface. To determine the best value for C, we performed five-fold cross-validation on the 200 

training dataset with various values for C and then selected the value corresponding to the 201 

highest predictive area under the receiver operating characteristic (ROC) curve (AUC) in the 202 

five-fold cross-validation. The selected C value was used to train the final SVM model on the 203 

entire training dataset. The linear SVM model output scores represent the distance to the 204 

separation hyperplane in the high-dimensional feature space. The scores have no theoretical 205 

limits, and higher scores mean indicate a higher likelihood of having dementia.  206 

 207 

2.5 Validation of the SVM model 208 

We separately generated scores for BA and WA controls in the Validation Sample and then, in a 209 

subset of these Veterans, we performed chart reviews in which reviewers were blinded to score. 210 

Chart reviews were conducted by experienced cognitive disorder experts (i.e., 2 trained in 211 

geriatric psychiatry [DT and KC] and 1 in geriatric medicine [AT]) who achieved interrater 212 

reliability on dually reviewed charts (Cohen’s Kappa value of 0.74 [se = 0.25, 95% CI = 0.25 - 1; 213 

p = 0.0016]). The reviewers retroactively applied the DSM-V criteria for major neurocognitive 214 

disorder (Sachdev et al., 2014) by evaluating memory, apraxia, aphasia, agnosia, executive 215 

functioning, and functional domains of ADL and iAD (Katz, 1983) in abstracted notes. 216 

Reviewers avoided attributing cognitive or functional deficits due to physical limitations or acute 217 

or chronic medical conditions to dementia. When reviewers were uncertain about a Veteran’s 218 

dementia status, that Veteran was labeled uncertain and then one of the other reviewers 219 

adjudicated dementia status independent of the initial reviewer. Dementia status was coded by 220 

reviewers as “None,” “Possible,” or “Probable”; a probable or possible dementia code thus 221 

indicated that a Veteran had dementia symptoms that had either not been worked up nor 222 

previously assigned a dementia diagnosis. Using chart review as the reference standard, we 223 

assessed the prevalence of undiagnosed dementia and assessed the sensitivity, specificity, 224 

positive predictive value (PPV), negative predictive value (NPV), and AUC by varying the 225 

cutoff score for determining when to declare “possible or probable undiagnosed dementia.” 226 

Estimates were computed using inverse probability weighting to account for stratified sampling 227 

(Alonzo and Pepe, 2005), and confidence intervals were computed using bootstrapping. 228 

Demographics, estimates, and confidence intervals were computed using R (R Core Team, 229 

2020). We created scatter plots of dementia risks for 3 groups (probable, possible and none) as 230 

well as 2 groups (probable/possible combined and none). 231 

3 Results 232 

3.1 Demographics 233 

Among the Veterans who met inclusion/exclusion criteria (see Figures 1a and 1b), the prevalence 234 

of dementia was 5.5% for BAs and 4.3% for WAs. Veterans ranged in age from 65 to 84 (see 235 

demographics in Table 1). In the Training Sample, cases were older compared to controls (mean 236 

[SD]=72.4 [4.8] vs. 69.1 [3.7]), and both cases and controls were overwhelmingly male (97.7 % 237 

and 97.2%). BA Veterans were slightly younger than WA Veterans (72.1 [4.8] vs. 72.8 [4.8] for 238 
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cases; 68.6 [3.5] vs. 69.5 [3.8] for controls). The demographics for controls in the Validation and 239 

Training Sample were similar. 240 

3.2 Variable selection for the SVM model 241 

For the model trained on BA Veterans, a total of 8221 features were selected, including 2 242 

demographics, 854 topics, 2229 nondementia ICD code groups, 2561 CPT codes, 686 243 

medications, and 1889 note types. For the model trained on WA Veterans, a total of 7716 244 

features were selected, including 2 demographics, 854 topics, 2141 nondementia ICD code 245 

groups, 2330 CPT codes, 655 medications, and 1734 note types. 246 

The most significant topic features are shown in Supplemental Table 1. Note that the terms in 247 

a topic can occur in any order or combination, and the presence of a topic in a document does not 248 

require that all the terms in a topic be present. Topics that were observed more frequently in 249 

cases than in controls were considered dementia related. 250 

3.3 Distribution of scores 251 

In the Training Sample, cases had higher scores than controls (mean [SD]=0.56 [0.54] vs. -0.50 252 

[0.36] for BAs and 0.54 [0.55] vs. -0.47 [0.34] for WAs; Figure 2, Supplemental Figure 1). In the 253 

Validation Sample, among Veterans with undiagnosed dementia who underwent chart review, 254 

those diagnosed by reviewers with possible/probable dementia had higher scores compared to 255 

those diagnosed with no dementia (0.45 [0.38] vs. -0.02 [0.51] for BAs, and 0.38 [0.41] vs. -0.02 256 

[0.47] for WAs; Figure 3). For our chart review subsample of the Validation Sample, we 257 

oversampled Veterans with higher scores (i.e., Veterans with chart reviews had higher scores 258 

compared to all Validation Veterans: 0.05 [0.52] vs. -0.45 [0.41] for BA Veterans, and 0.02 259 

[0.48] vs. -0.44 [0.38] for WA Veterans; Supplemental Figure 2), and therefore, we adjusted 260 

scores using inverse probability weighting to account for stratified sampling.  261 

3.4 Prevalence of undiagnosed dementia and screening test characteristics 262 

Of the 1,200 Veterans who underwent chart review, 15.3% (n=92) of BAs and 9.5% (n=57) of 263 

WAs were identified with possible/probable dementia. After adjusting for stratified sampling that 264 

intentionally oversampled Veterans with higher scores, the estimated prevalence of undiagnosed 265 

dementia in the full Validation Sample was 4.1% [3.2, 6.2] for BA Veterans and 3.6% [2.3, 6.3] 266 

for WA Veterans. There was a strong positive relationship between risk scores and the 267 

prevalence of undiagnosed dementia (Figure 4), and as anticipated, for Veterans with scores 268 

below the 90th percentile, the percentages of undiagnosed dementia were low: 3.9% (95% CI 269 

[2.1, 7.0]) and 2.9% (95% CI [1.3, 5.8]) for BA and WA Veterans, respectively. Among 270 

Veterans with scores above the 90th percentile, we found that a higher percentage of BA 271 

Veterans had undiagnosed dementia than WA Veterans: 25.6% (95% CI [20.9, 30.8]) vs. 15.3% 272 

(95% CI [11.6, 19.8]).  273 

Supplemental Figure 3 shows observed values for sensitivity, specificity, PPV, and NPV of 274 

the screening tests that use chart review as the reference standard and vary cutoff score, and 275 

Supplemental Table 2 lists values for various score cutoffs. As shown in Supplemental Figure 4, 276 

the AUC was moderately high for both BA Veterans (0.86 [0.59, 0.95]) and WA Veterans (0.77 277 

[0.59, 0.90]). For score cutoffs above the 50th percentile in the Validation Sample, sensitivity was 278 

moderate and specificity was very high for both BA and WA Veterans (e.g., using the 90th 279 

percentile as the cutoff, sensitivity and specificity were 0.61 [0.40, 0.76] and 0.92 [0.91, 0.92], 280 

respectively, for BA Veterans and 0.43 [0.24, 0.67] and 0.91 [0.91, 0.92], respectively, for WA 281 

Veterans). Because of the low prevalence of undiagnosed dementia in the full Validation 282 

Samples, as well as the low sensitivity and high specificity of the screening tests, it was 283 

unsurprising that PPV was low and NPV was high (Tenny and Hoffman, 2022); using the 90th 284 
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percentile as the cutoff, PPV was only 0.26 [0.21, 0.30] and 0.15 [0.12, 0.20] for BA and WA 285 

Veterans, respectively. In contrast, NPVs remained quite high regardless of the score cutoff.  286 

4 Discussion 287 

4.1 Significance 288 

We have successfully developed and validated a ML model to identify probable dementia 289 

cases in BA and WA Veterans without ICD diagnoses. The dementia risk scores generated by the 290 

SVM models were positively correlated with the diagnosis of dementia and achieved a high 291 

AUC (0.86 [0.59, 0.95]) for BA Veterans and a satisfactory AUC for WA Veterans (0.77 [0.59, 292 

0.90]). Given that BAs are about twice as likely to develop dementia as WAs (Tang et al., 2001, 293 

Langa et al., 2017), the good performance of the SVM in this population is particularly 294 

important.  295 

4.2 Context 296 

Our preliminary data suggest that BA Veterans have different risk factors for developing 297 

dementia than WA Veterans. Using logistic regression to investigate risk factors for incident 298 

dementia in all VHA, we identified different risk factors in older BA and WA Veterans (Cheng 299 

et al., 2020). For example, among the key baseline characteristics that were significant predictors 300 

of dementia in both races, stroke was a significantly stronger predictor among BAs, and Hispanic 301 

ethnicity and depression were significantly stronger predictors among WAs (p<0.0001).Those 302 

findings motivated the development of the race-specific risk models proposed in the current 303 

study, which instead focuses on prediction.  304 

Many studies have applied NLP and ML methods in dementia (Chang et al., 2021), 305 

particularly in the context of neuroimaging (Popuri et al., 2020, Qiu et al., 2020) or in the use of 306 

EHRs to identify cognitive impairment or diagnosed dementia (Amra et al., 2017, Wray et al., 307 

2014), yet few studies have sought to use EHRs as a direct phenotyping tool for undiagnosed 308 

dementia. Researchers in the UK developed models (including SVM) to identify patients with 309 

dementia (Jammeh et al., 2018), and Kaiser Permanente/UCSF researchers developed the 310 

eRADAR tool in research participants and then validated it in two health-care systems (Barnes et 311 

al., 2020, Coley et al., 2022); both studies limited their EHR interrogations to structured data and 312 

have shown some success in identifying undiagnosed dementia. Likewise, Yadgir et al. used ML 313 

to identify structured variables associated with cognitive impairment in ER patients (Yadgir et 314 

al., 2022). Conversely, Boustani et al. have developed passive digital signatures for ADRD by 315 

searching for predetermined variables in both structured and unstructured EHR data, and their 316 

work suggests that the combination can improve AUC by up to .11 (Boustani et al., 2020); 317 

however, like Barnes et al., Boustani et al. use curated, preselected search terms rather than 318 

leveraging the potential of supervised ML to identify topic features associated with dementia.   319 

Rather than employing a targeted-word study design like Barnes et al. or Boustani et al., we 320 

have sought to improve the identification of dementia by combining supervised ML with an 321 

improved clinical standard. More specifically, we have to sought to improve upon EHR ICD 322 

codes as the basis for ML by incorporating chart reviews by reviewers who have been blinded to 323 

the initial ML-derived dementia likelihood scores. We previously published a ML logistic 324 

regression model that used this approach on a smaller scale, applying supervised ML to 325 

structured and unstructured data from EHRs to identify topics associated with dementia and then 326 

identify cases with undiagnosed dementia (Shao et al., 2019). That study included blinded 327 

manual reviews in a smaller sample (n=140) than our current work and produced a sensitivity of 328 

0.825 and a specificity of 0.832. It also had older Veterans (i.e., an average age of 80 vs. 71 in 329 
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this study); complications with controls in the logistic regression model; and an ad-hoc 330 

stratification method for computing sensitivity and specificity, whereas our SVM models avoid 331 

these idiosyncrasies in a much larger (n=1,200) and more diverse (600 BA and 600 WA) 332 

validation effort.  333 

EHR tools and ML models that do not specifically attempt to reflect minoritized 334 

communities are more likely to unintentionally generate cycles of exclusion and to thereby 335 

perpetuate underdiagnosis in BAs rather than addressing underdiagnosis (Bracic et al., 2022). To 336 

our knowledge the present study is the first effort to develop and evaluate a model that 337 

specifically focuses on BAs. 338 

 339 

4.3 Implications 340 

We seek to develop EHR-based dementia risk scores to support future screening of dementia 341 

in clinical settings that include both WAs and BAs. Other researchers have noted that PPV and 342 

NPV are better at assessing a screening test in clinical practice than sensitivity and specificity 343 

(Trevethan, 2017). Our model generated a very high NPV at the 90th percentile for both BA 344 

Veterans (0.98 [0.96, 0.99]) and WA Veterans (0.98 [0.94, 0.99]). These findings are similar to 345 

the NPVs reported with the eRADAR tool in an EHR sample that was 89% WA (Barnes et al., 346 

2020) but higher than the NPV reported by Yadgir et al (i.e., 0.93) (Yadgir et al., 2022). The 347 

PPV in our study was low for both BA Veterans (0.26 [0.21,0.31]) and WA Veterans (0.15 348 

[0.12,0.20]) at the 90th percentile cutoff. Practically, this means that at that threshold, about a 349 

quarter of the BAs and a seventh of the WAs who were flagged by our model as having potential 350 

dementia would actually have dementia according to our manual chart reviews. In contrast, 351 

Yadgir et al., achieved PPVs greater than 0.4, but to do so, they applied threshold cutoffs higher 352 

than 0.8; this meant that they obtained a high true positive rate at the expense of low sensitivity, 353 

which is not optimal as a screening instrument given the high cutoff scores  (Yadgir et al., 2022). 354 

Our algorithms compare very favorably to the eRADAR tool for dementia, which had a PPV of 355 

0.115 in a research setting and 0.020 to 0.048 in patients (Barnes et al., 2020, Coley et al., 2022). 356 

Our PPV is similar or superior to the rates of standard screening methods for cancers like 357 

mammograms or colonoscopy (reviewed in Barnes et al., 2020). However, cancer screening is 358 

often followed by more definitive tests, such as ultrasound and/or biopsies, and thus low PPVs in 359 

screening tests may be acceptable. Development of multitier screening and diagnostic tests are 360 

therefore necessary prior to the implementation of our SVM model in clinical workflows.  361 

4.4 Limitations and future work 362 

The VA patient population skews heavily toward older males, and our training and test data 363 

thus had a low percentage of females; that may limit the generalizability of our final ML models 364 

outside VHA, though we expect that the same steps could be applied to generate risk scores 365 

within other health care systems with more females. In evaluating the low PPVs in our study, it 366 

may be that our standards for the diagnosis of dementia (i.e., manual chart review) are flawed , 367 

as and that due to insufficient information in the charts, we were unable to retrospectively apply 368 

the newest AD criteria (NIA-Reagan) are flawed.{Hyman, 1997, 9329452} If signs and 369 

symptoms relevant to impairment are not mentioned in clinical notes, reviewers are unable to 370 

assign an dementia diagnosis due to insufficient information. Here, this may have led to a low 371 

level of dementia prevalence, and a low prevalence of any condition leads to models with high 372 

NPVs and low PPVs. It is possible, therefore, that our model may catch signs of dementia that 373 

cannot be captured by a manual chart review, which means our model may perform better when 374 
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compared to more accurate diagnostic standards, like in-person expert diagnoses or 375 

neuropathological assessments; this represents a promising area for future research.  376 

We recognize that future studies need to assess the portability of the ML models that we have 377 

developed. Not all EHRs have notes available to researchers (due to privacy issues), and in those 378 

instances, researchers will be unable to leverage the full benefit of our models’ ability to search 379 

both structured and unstructured data. Future studies should investigate how other ML methods, 380 

like deep learning approaches, might improve the detection of undiagnosed dementia; solicit 381 

input from BA stakeholders regarding model implementation in clinical processes; and 382 

investigate the implementation of our EHR-based risk scores in clinics that serve both BA and 383 

WA Veterans. 384 
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health records who are at high risks for developing dementia. Furthermore, we are one of the first 397 

to develop a race-specific algorithm in the context of dementia identification and to thereby 398 

leverage machine learning to specifically address dementia-related health-care disparities in 399 

Black Americans. That is critical, as models that are not designed to reflect minority population 400 

may instead perpetuate underdiagnosis. Moreover, this work may also have tangible financial 401 

benefits. Incorporating electronic health records–based algorithms into screening workflows with 402 

diagnostic tests as follow-up could focus resources where they will have the most impact in 403 

primary care settings, including the prevention of costly health care events that otherwise tend to 404 

precede diagnosis.  405 
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Table 1a. Demographics of the Training Sample by Race (BA: Black American; WA: White American). 

 Case (n = 10K) Control (n = 10K) 

 BA (n = 5K) WA (n = 5K) Combined (n = 10K) BA (n = 5K) WA (n = 5K) Combined (n = 10K) 

Characteristic       

Age, mean (SD) 72.1 (4.8) 72.8 (4.8) 72.4 (4.8) 68.6 (3.5) 69.5 (3.8) 69.1 (3.7) 

       

Age category, (%)       

    65–69 35.7 29.8 32.8 70.5 60.0 65.2 

    70–74 34.1 34.4 34.3 22.1 28.4 25.3 

    75–79 20.9 24.2 22.6   5.8   9.2   7.5 

    80–84   9.4 11.5 10.4   1.6   2.5   2.0 

       

Gender, % male 97.9 97.5 97.7 96.8 97.6 97.2 

 

Table 1b. Demographics of the Validation Sample by Race (BA: Black American; WA: White American). 

 Full Validation Sample (n = 20K) Chart Review (n = 1,200)
*

 

    Unweighted Weighted
†
 

Characteristic BA 

(n = 10K) 

WA 

(n = 10K) 

Combined 

(n = 20K) 

BA 

(n = 600) 

WA 

(n = 600) 

Combined 

(n = 1,200) 

BA 

(n = 600) 

WA 

(n = 600) 

Combined 

(n = 1,200) 

          

Age,  

mean (SD) 

68.5 (3.4) 69.5 (3.8) 69.0 (3.6) 69.3 (4.2) 70.2 (4.5) 69.8 (4.3) 68.5 (3.4) 69.3 (3.7) 68.9 (3.6) 

          

Age category, 

(%) 

         

  65–69 70.9 60.3 65.6 64.8 52.8 58.8 70.4 60.9 65.7 

  70–74 22.3 28.6 25.5 22.3 28.5 25.4 23.2 28.4 25.8 

  75–79   5.5   8.7   7.1   9.3 13.7 11.5   5.4   8.2   6.7 

  80–84   1.3   2.4   1.9   3.5   5.0   4.3   1.0   2.5   1.7 

          

Gender, % 

male 

96.1 97.6 96.8 97.2 97.0 97.1 96.7 98.9 97.8 

*
 Patients who underwent chart review were a subset of the full Validation Sample, selected by a combination of random and stratified sampling as described in 

the text. 
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†
 Observations were weighted by the inverse probability of being sampled from the full Validation Sample. 
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BA Veterans who turned 65 between 1999 and 2018, were dementia-free 

at 65, and were previously evaluated at a VA clinic.

n = 461,675

Cases:

At least one ICD-9/10 dementia code after 

age 65 and at least 3 years of follow up prior 

to diagnosis.

n = 16,889

Controls:

No ICD-9/10 dementia codes, no anti-

dementia medications, and at least 3 years 

of follow up for at least one time period.

n = 287,466

Training Sample:

n = 5,000 controls

5,000 cases

Validation Sample:

n = 10,000 controls

Blinded Chart Review:

n = 600:

200 from random sample

400 from stratified sample

Create prediction model to compute 

dementia “risk” scores based on support 

vector machine (SVM) using structured and 

unstructured data from the Training Sample.

Compute dementia “risk” scores for the 

10,000 controls in the Validation Sample 

using the SVM model

Figure 1a. Study flow diagram for Black American (BA) Veterans. This figure shows the number of BA Veterans 

available within the Veterans Health Administration (VHA) Corporate Data Warehouse (CDW) for the time 

period under study who met inclusion/exclusion criteria, as well as the number of Veterans used for model 

building and validation. Veterans in the Training Sample and Validation Sample were chosen with simple random 

sampling. Veterans who underwent chart review (blinded to score) were chosen from the 10,000 in the 

Validation Sample by simple random sampling (n = 200) and stratified random sampling (n = 400), where the 

strata were based on the scores.
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WA Veterans who turned 65 between 1999 and 2018, were dementia-free 

at 65, and were previously evaluated at a VA clinic.

n = 3,331,548

Cases:

At least one ICD-9/10 dementia code after 

age 65 and at least 3 years of follow up prior 

to diagnosis.

n = 81,788

Controls:

No ICD-9/10 dementia codes, no anti-

dementia medications, and at least 3 years 

of follow up for at least one time period.

n = 1,817,349

Training Sample:

n = 5,000 controls

5,000 cases

Validation Sample:

n = 10,000 controls

Blinded Chart Review:

n = 600:

200 from random sample

400 from stratified sample

Create prediction model to compute 

dementia “risk” scores based on support 

vector machine (SVM) using structured and 

unstructured data from the Training Sample.

Compute dementia “risk” scores for the 

10,000 controls in the Validation Sample 

using the SVM model

Figure 1b. Study flow diagram for White American (WA) Veterans. This figure shows the number of WA Veterans 

available within the Veterans Health Administration (VHA) Corporate Data Warehouse (CDW) for the time 

period under study who met inclusion/exclusion criteria, as well as the number of Veterans used for model 

building and validation. Veterans in the Training Sample and Validation Sample were chosen with simple random 

sampling. Veterans who underwent chart review (blinded to score) were chosen from the 10,000 in the 

Validation Sample by simple random sampling (n = 200) and stratified random sampling (n = 400), where the 

strata were based on the scores.
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BA 

 

 

WA 

 

Figure 2. Distribution of scores by dementia status and race (BA: Black American; WA: White American) for Veterans in the Training Sample (n = 5,000 in each 

dementia status group for each race). Dashed lines represent the means of the distribution. 
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Figure 3a: Distribution of risk scores by dementia status and race (BA: Black American, WA: White American) for Veterans in in the Validation Sample wh

underwent chart review (n = 600 for each race). 
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Figure 3b. Distribution of risk scores by dementia status for both Black American and White American Veterans in the Validation Sample who underwent chart 

review (n = 600 for each race). 
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Figure 4. Prevalence of undiagnosed dementia by score percentile stratum and race (BA: Black 

American; WA: White American) for Veterans who underwent chart review (n = 600 for each race). For 

each race, score percentiles are based on using the scores from all 10,000 Veterans in the Validation 

Sample. 
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