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Brain tissue gene expression from donors with and without Alzheimer’s disease has been used to help inform the molecular changes
associated with the development and potential treatment of this disorder. Here, we use a deep learning method to analyse RNA-seq
data from 1114 brain donors from the Accelerating Medicines Project for Alzheimer’s Disease consortium to characterize post-mor-
tem brain transcriptome signatures associated with amyloid-β plaque, tau neurofibrillary tangles and clinical severity in multiple
Alzheimer’s disease dementia populations. Starting from the cross-sectional data in the Religious Orders Study and Memory and
Aging Project cohort (n= 634), a deep learning framework was built to obtain a trajectory that mirrors Alzheimer’s disease progres-
sion. A severity index was defined to quantitatively measure the progression based on the trajectory. Network analysis was then car-
ried out to identify key gene (index gene) modules present in the model underlying the progression. Within this data set, severity
indexes were found to be very closely correlated with all Alzheimer’s disease neuropathology biomarkers (R� 0.5, P,1e−11)
and global cognitive function (R=−0.68, P, 2.2e−16). We then applied the model to additional transcriptomic data sets from dif-
ferent brain regions (MAYO, n=266; Mount Sinai Brain Bank, n=214), and observed that the model remained significantly pre-
dictive (P,1e−3) of neuropathology and clinical severity. The index genes that significantly contributed to the model were
integrated with Alzheimer’s disease co-expression regulatory networks, resolving four discrete gene modules that are implicated in
vascular and metabolic dysfunction in different cell types, respectively. Our work demonstrates the generalizability of this signature
to frontal and temporal cortex measurements and additional brain donors with Alzheimer’s disease, other age-related neurological
disorders and controls, and revealed that the transcriptomic network modules contribute to neuropathological and clinical disease
severity. This study illustrates the promise of using deep learning methods to analyse heterogeneous omics data and discover poten-
tially targetable molecular networks that can inform the development, treatment and prevention of neurodegenerative diseases like
Alzheimer’s disease.
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Abbreviations: AD/ADRD=Alzheimer’s disease and Alzheimer’s disease-related dementias; AMP-AD=Accelerating Medicines
Project for Alzheimer’s Disease; BM=Brodmann area; CDR= clinical dementia rating; CER= cerebellum; CERAD=Consortium
to Establish a Registry for Alzheimer’s Disease; CPM= counts per million reads; DEG= differentially expressed gene; DLPFC=
dorsolateral prefrontal cortex; FP= frontal pole; IFG= inferior frontal gyrus; LOAD= late-onset Alzheimer’s disease; MCI=mild
cognitive impairment; MSBB=Mount Sinai Brain Bank; NIA=National Institute on Aging; PCA=principal components
analysis; PHG= parahippocampal gyrus; PMI=post-mortem interval; PVE=proportion of variance explained; RADC=Rush
Alzheimer’s Disease Center; RIN=RNA integrity number; ROSMAP=Religious Orders Study and Memory and Aging Project;
SD= standard deviation; SI= severity index; STG= superior temporal gyrus; TCX= temporal cortex; UMAP=Uniform
Manifold Approximation and Projection.

Graphical Abstract

Introduction
As the age of the global population advances, dementia, with
late-onset Alzheimer’s disease (LOAD) as the most prevalent

form, has become a formidable public health threat. Despite
numerous recent scientific advances in illuminating the
pathophysiology of LOAD, no disease-modifying treat-
ments are currently available. This fact underscores the
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complicated molecular aetiology driving the disease and the
urgent need to broaden our search for effective therapeutics
beyond the conventional amyloid cascade hypothesis.1

For a highly heterogeneous, multifactorial disease such as
LOAD, integrated and large-scale genomic data analyses
have been carried out to disentangle and capture the diverse
gene regulatory interactions.2 Most of these studies focus on
the exploration of the molecular mechanism of Alzheimer’s
disease pathology by employing a case–control study design
or modelling it as discrete stages, usually excluding the study
subjects with other dementia pathologies, or omitting the
mild cognitive impairment stage and its role in the disease
progression, even in the studies aiming to reveal the tran-
scriptional dysregulation involving the progression of
Alzheimer’s disease.3 Difficulties in sampling brain tissue
throughout life coupled with globally limited access to diag-
nostic neuroimaging necessitates that a definitive diagnosis
of Alzheimer’s disease is only made following post-mortem
neuropathological assessment. This further exacerbates the
challenge we face in studying LOAD or dementia in general
as a continuous spectrum to find novel biomarkers and drug
targets. Recent efforts have begun to model Alzheimer’s dis-
ease progression as a continuous trajectory using cross-
sectional transcriptomic data,4,5 by leveraging the methods
developed in single-cell genomics6,7 and machine learning.8

Iturria-Medina et al.4 adopted an unsupervised machine
learning algorithm applied to gene expression microarray
data and discovered a contrastive trajectory in multiple co-
horts, respectively. The trajectory has been demonstrated to
strongly predict neuropathological severity in Alzheimer’s dis-
ease in each data set. Mukherjee et al.5 applied a
manifold-learning method to RNA-seq data to define order-
ing across samples based on gene expression similarity and es-
timate the disease pseudotime for each sample. Disease
pseudotime was strongly correlated with the burden of Aβ,
tau and cognitive dementia within subjects with LOAD.
Although these unsupervised machine learning methods
have been shown to be highly predictive for well-known
pathological biomarkers within a data set, it would be desir-
able to have a generalized, universally predictive model for
Alzheimer’s disease neuropathology and cognitive impair-
ment across distinct cohorts and brain tissues, which helps de-
cipher commonAlzheimer’s disease aetiology at themolecular
level. In addition, their broader application in peripheral tis-
sues to identify novel biomarkers would greatly facilitate early
diagnosis and progression monitoring of Alzheimer’s disease.

Deep learning methodologies are a rapidly evolving class
of machine learning algorithms that have demonstrated
superior performance over traditional machine learning ap-
proaches in identifying intricate structures in complex high-
dimensional data, across diverse domains including com-
puter vision, pattern recognition and bioinformatics.9

Specific to genomic data, it has been demonstrated that
‘big data’ in many human diseases can be exploited by
deep learning methods for early detection,10 disease classifi-
cation11,12 and biomarker identification,8,13 mostly in the
cancer research field. More recent efforts have begun to

apply similar methods towards research questions within
the neuroscience research field,14 including the study of
neurodegenerative disease,15 though the potential for these
methods to contribute to novel insights in Alzheimer’s
disease research remains underexplored.

In this work, we are leveraging the multidimensional,
well-characterized and high-quality genomic, neuropatholo-
gical and clinical data from the Accelerating Medicines
Project for Alzheimer’s Disease (AMP-AD) programme16

and applying the latest deep learning framework to identify
pseudo-temporal trajectories in transcriptomic space and the
underlying gene signatures for Alzheimer’s disease progres-
sion. As a major component of the AMP-AD programme,
the Target Discovery and Preclinical Validation Project
brings together different organizations to collect and analyse
multidimensional molecular data (genomic, transcriptomic,
epigenomic, proteomic) from more than 2000 human brains
and peripheral tissues from multiple Alzheimer’s disease co-
horts.17 Using the RNA-seq data from dorsolateral prefron-
tal cortex (DLPFC) region in the Religious Orders Study and
Memory and Aging Project (ROSMAP) cohort,18,19 we first
trained a deep learning model to perform supervised classi-
fication between the two termini of the disease continuum
(Alzheimer’s disease and control diagnosis group). The
goal is to achieve the maximum separation of neuropatholo-
gically confirmed cases and controls. The model was subse-
quently applied to all the subjects within the cohort and the
intermediate layer of the obtained manifold for all subjects
was further dimensionality reduced by Uniform Manifold
Approximation and Projection (UMAP)20 to obtain a trajec-
tory in three-dimensional (3D) space for Alzheimer’s disease
progression. We then derived an index to assess the stage of
the progression, namely the severity index (SI) along the tra-
jectory. We observed that the SI was significantly correlated
with all the neuropathological biomarkers and achieved
excellent model metrics aligned with the global cognitive
function scores. When the deep learning model trained on
the ROSMAP cohort was applied to two independent
AMP-AD data sets, the MAYO RNA-seq study cohort21

and The Mount Sinai Brain Bank (MSBB) study cohort,22

similar trajectories and sample distribution following a
generalized pattern were observed and the estimated SI
values remain to be strongly correlated to pathological bio-
markers and clinical severity. The model identified 593 genes
(‘index genes’) playing significant roles for the severity of
Alzheimer’s disease-related neuropathology and cognitive
impairment in the disease continuum. Network analysis sug-
gests that these genes are clustered in six gene co-expression
modules, four of which are strongly associated with neuro-
pathology and clinical severity. One of the four modules
shows especially high correlation with all the neuropatholo-
gical biomarkers and clinical cognitive functions and the
genes are associated with metabolic and vascular dysfunc-
tion in oligodendrocytes. The other three modules are also
found to be associated with the pathological and clinical se-
verity significantly in neurons, astrocytes and endothelial
cells, respectively. Our results collectively demonstrate that
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a deep learning approach can reveal novel genomic informa-
tion from complex, high-dimensional gene expression data
in a manner that can elucidate the molecular mechanisms
of Alzheimer’s disease. The model can be readily applied
to additional gene expression data sets to predict
Alzheimer’s disease severity, thus indicating its potentially
broad utility for Alzheimer’s disease diagnosis and staging.
The approach also provides a general framework for study-
ing multi-omics data to capture underlying molecular signa-
tures towards novel biomarkers and drug targets of
neurogenerative diseases.

Materials and methods
RNA-seq data sets from AMP-AD
consortium
All the RNA-seq data were obtained from the AMP-AD data
portal through Synapse (https://www.synapse.org/).
Demographic information for each of the cohort (ROSMAP,
MAYO andMSBB) sampled in the RNA-seq study is reported
in Supplementary Table 1. The processed, normalized data
were obtained for each cohort, respectively, from the harmo-
nized, uniformly processed RNA-seq data set across the three
largest AMP-AD contributed studies (syn17115987). In the
ROSMAP cohort, all the brain tissue samples were collected
from DLPFC (n= 639, syn8456629).18,19 In Mayo RNA-seq
study (syn8466812), brain tissue samples were collected
from cerebellum (CER, n= 275) and temporal cortex (TCX,
n= 276).21 The MSBB study (syn8484987) has 1096 samples
from the Mount Sinai/JJ Peters VA Medical Center Brain
Bank, which were sequenced from 315 subjects from four
brain regions including the frontal pole [FP, Brodmann area
(BM) 10], inferior frontal gyrus (IFG, BM 44), superior tem-
poral gyrus (STG, BM 22) and parahippocampal gyrus
(PHG, BM 36), respectively.22 The harmonized processing of
each study from three cohorts was previously performed using
a consensus set of tools with only library type-specific para-
meters varying between pipelines (https://github.com/Sage-
Bionetworks/ampad-DiffExp).23 The log counts per million
reads (CPM) values from each data set were used in all the sub-
sequent analyses.

Phenotypic data
All the clinical and pathological data for the ROSMAP co-
hort were obtained from the Rush Alzheimer’s Disease
Center Research Resource Sharing Hub (https://www.radc.
rush.edu/home.htm), upon approval of data-usage agree-
ment. The following phenotypical measurements were
used in the study: cogdx= final consensus cognitive diagno-
sis; age_death= age at death; educ= years of education;
msex= sex; race7= racial group; apoe4= apoe4 allele count;
PMI= post-mortem interval; r_pd= clinical Parkinson’s dis-
ease; r_stroke= stroke diagnosis; dlbdx= pathologic diagno-
sis of Lewy body diseases; hspath_typ= hippocampal

sclerosis; arteriol_scler= arteriolosclerosis; braaksc=Braak
stage; ceradsc=Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) score; gpath= global
Alzheimer’s disease pathology burden; niareagansc=
National Institute on Aging-Reagan diagnosis of
Alzheimer’s disease; amyloid= overall amyloid level;
plaq_d= diffuse plaque burden; plaq_n= neuritic plaque
burden; nft= neurofibrillary tangle burden; tangles= tangle
density; cogn_global= global cognitive function. All the
clinical diagnosis data were from the last visit, except for
cogn_global, which was from the last available test. Their
detailed definitions, together with possible values are re-
ported in Supplementary Table 2. Among them, cogdx,
braaksc and ceradsc values were used to define the class label
for Alzheimer’s disease, control (CN) and OTHER groups
(see below, methods for deep learning).

For MAYO andMSBB cohorts, subject clinical and patho-
logical data were obtained from Synapse (syn3817650 for
Mayo TCX samples, syn5223705 for Mayo cerebellum sam-
ples and syn6101474 for all the MSBB samples). For MAYO
cohort, the following phenotypical data were used in the
linear regression: age_death= age at death; gender= sex;
apoe4= apoe4 allele count; RIN=RNA integrity number;
PMI= post-mortem interval; Braak=Braak stage; Thal=
Thal amyloid stage. For MSBB cohort, the following pheno-
typical data were used in the linear regression: age= age at
death; sex= sex; race= racial group; apoe4= apoe4 allele
count; RIN=RNA integrity number; PMI= post-mortem in-
terval; Braak=Braak stage; PlaqueMean=mean plaque bur-
den; CDR= clinical dementia rating; CERAD=CERAD
score. The original CERAD score in theMSBB cohort was de-
fined as: 1, Normal; 2, Definite Alzheimer’s disease; 3,
Probable Alzheimer’s disease; 4, Possible Alzheimer’s disease.
They were recoded to be semi-quantitative as follows: 1,
Definite Alzheimer’s disease; 2, Probable Alzheimer’s disease;
3, Possible Alzheimer’s disease; and 4, Normal, to be consist-
ent with the notion used in the ROSMAP cohort.

Deep learning of the transcriptome
from DLPFC tissues in ROSMAP
cohort
The whole machine learning framework consists of two ma-
jor components, supervised classification (deep learning) and
unsupervised dimension reduction. The deep learningmethod
was built wholly based on the approach implemented in the
previous implementation DeepType (https://github.com/
runpuchen/DeepType).11 The detailed algorithm could be
found in the reference. The method has been demonstrated
to achieve superior performance on independent data sets
and is very robust against label noise in classifying genomic
data from complex human diseases such as cancer.24 In this
work, we incorporated the method into our model (super-
vised classification) and applied it to the normalized
logCPM data from the ROSMAP cohort, which consists of
the expression profile of 634 subjects with various
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Alzheimer’s disease pathology for 15582 genes, and further
applied an unsupervised dimension reduction method to ob-
tain the pseudo-temporary trajectory for Alzheimer’s disease
progression. The whole framework is illustrated in Fig. 1.

For the deep learning step, we used neuropathologically
confirmed Alzheimer’s disease patients and normal controls,
the two termini of the Alzheimer’s disease continuum, to
train the model and identify transcriptomics signatures
that differentiate the two groups. Interpretation of the diag-
nosis was as follows:

1. Alzheimer’s disease (156 samples): cogdx=4, braaksc≥4 and
ceradsc≤2;

2. CN (87 samples): cogdx=1, braaksc≤ 3 and ceradsc≥3;
3. OTHER (391 samples): all the other samples.

This was consistent with the criteria used in the previous
differential expression (DE) analysis (syn8456629).23 Genes
were first sorted in a descending order by the variance of
logCPM values for the whole data set. The deep learning
model was first built for the 243 samples from Alzheimer’s
disease and control diagnosis groups. Data were randomly
partitioned into training and test data sets, containing 80%
(195) and 20% (48) of the samples with balanced distribution
from each group. The logCPM values in the training set were
first converted toZ-score, followed by scaling those in the test
set to the same scale. A three-layer neural network was
trained, with the number of the nodes in the input layer,
the intermediate layer and the output layer set to 15582,
128 and 1, respectively. In DeepType, the Adam method25

was employed to tune the parameters of the model and a
semi-supervised approach was adopted to train three hyper-
parameters: the number of clustersK, the trade-off parameter
α and the regularization parameter λ. The learning rate was
set to 1e−4, the number of training epochs for model initia-
lization and the joint supervised and unsupervised training
were set to 1500 and 5000, respectively, and the batch size
was set to 256. The model was trained by 5-fold internal
cross-validation for the training set and the optimal K, α
and λ were determined by the cross-validation to be 2, 2
and 0.004, respectively. Training and validation losses in
the training process were tracked to avoid over-fitting.

After the training process was accomplished, a manifold
representation of the intermediate layer was obtained for all
the 634 samples in the whole cohort by forward pass using
the trained network. Prior to that, data were scaled to the
Z-score using the same mean and standard deviation as the
training set. The equation, as implemented in DeepType in
MATLAB language, is as follows [Equations (1)–(3)]:

hidden layer = sigmoid(W1′ ∗ input data

+ repmat(B1′, [1, size(input data, 2)]));

(1)

hidden layer = min(hidden layer, 1− 1e− 9); (2)

hidden layer = max(hidden layer, 1e− 9); (3)

where W1 is the first-layer weighting matrix and B1 is the
first-layer bias vector obtained from the model. The hidden

Figure 1 The deep learning framework employed in this work. Using the gene expression profiles from Alzheimer’s disease and control
subjects and their diagnosis class as the input for supervised classification, the model was trained by a three-layer neural network. Then the
response function from input layer to the hidden layer was applied to the profiles from the whole cohort. The resulting manifold was subject to
unsupervised dimension reduction (PCA+UMAP) to obtain the pseudo-temporal trajectory and SI. SI was linearly correlated with phenotypic
data for evaluation.
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layer was bounded between (0, 1). Input_data was the expres-
sion matrix with data scaled and sorted in the same order as
in the training set.

The resulting representation of the hidden_layer was further
dimensionality reduced, first to 50 dimensions, by efficient
computation of a truncated principal components analysis
(PCA) using an implicitly restarted Lanczos method as imple-
mented in the R package Monocle3,26 using the function pre-
process_cds, without normalization or scaling. It was further
reduced to the first three dimensions, by the UMAP20 method
as implemented in the R package uwot (https://github.com/
jlmelville/uwot). To ensure reproducibility, the following para-
meters were set: n_components= 3, nn_method= ‘annoy’,
n_neighbours= 15L, metric= ‘cosine’, min_dist= 0.1,
fast_sgd= F, ret_model=T, with random seed set to 2016.

Severity index calculation and
correlation with phenotypic data
in ROSMAP cohort
SI for Alzheimer’s disease progression was derived for each
sample, based on the 3D UMAP trajectory obtained earlier,
by applying the method of inferring pseudotimes for single-
cell transcriptomics from the function ‘slingPseudotime’ as
implemented in the R package Slingshot.27 SIs were then lin-
early correlated with all the Alzheimer’s disease clinical and
pathological biomarkers individually, including the covari-
ates r_pd, r_stroke, dlbdx, hspath_typ, arteriol_scler, PMI,
RIN, apoe4, age_death, educ, msex and race7 (detailed defi-
nitions can be found in Supplementary Table 2 and data col-
lection is reported in Tasaki et al.28), using the following
linear regression model:

biomarker � SI+age death+ educ+msex+ race

+apoe4+RIN+PMI+ r pd+ r stroke

+dlbdx+hspath typ+arteriol scler (4)

The pathological biomarkers and Alzheimer’s disease clinic-
al measures used as dependent variables in the model are
braaksc, ceradsc, niareagansc, gpath, amyloid, plaq_d,
plaq_n, nft, tangles and cogn_global. All the neuropatholo-
gical measurements (gpath, amyloid, plaq_d, plaq_n, nft,
tangles) were log-transformed in the correlation analysis.
All the semi-quantitative and quantitative measurements
were treated as numerical; diagnosis of Lewy body diseases,
gender and race were treated as categorical. Correlation
coefficients were obtained by the ‘lm’ function in R. The pro-
portion of variance explained (PVE) for each predictor was
obtained from the incremental sums of squares table by the
‘anova’ function in R on the model, using the above order.

Applying the deep learning model to
external data sets (MAYO, MSBB)
The harmonized, uniformly processed RNA-seq data sets
were first sorted by the same gene order as the input data

set of ROSMAP. Batch effects were then removed by the
ComBat function29 in the R package sva.30 The input ex-
pression matrix subsequently was transformed to Z-score
by scaling to the training set in the deep learning model. A
manifold representation was obtained for all the samples
in each cohort by forward pass of the trained network, using
Equations (1)–(3) and reduced again to 50 dimensions by
PCA. Trajectories were obtained by carrying out the UMAP
transformation of the existing embedding model from
ROSMAP DLPFC data, by the ‘umap_transform’ function
in R package uwot. SI for each sample was again derived
from ‘slingPseudotime’ function in Slingshot.27 Linear correl-
ation of the SIs with all the pathological and clinical biomar-
kers was carried out by the ‘lm’ function in R, using other
non-Alzheimer’s disease pathology-related variables as cov-
ariates when available (age, sex, race, PMI, RIN, apoe4 allele
counts), by the following linear regression model:

biomarker � SI+ age death+ sex+ race+ apoe4

+ RIN+ PMI (5)

Network and cell-type analysis of the
significant genes underlying AD
progression
The hidden layer of the deep learning model returned a weight
vector for each of the 15582 genes in the input data set. The
root sum squares (RSS) of the weight vector for each gene
was calculated, normalized to the maximal RSS and taken as
the weight for each gene in the deep learning model. The
weights from all genes were put into a histogram on a loga-
rithm scale and a cut was made to separate the bimodal distri-
bution. The genes in the higher weight groups were identified
as significant genes contributing to Alzheimer’s disease pro-
gression (index genes). Unsigned co-expression networks
were built for these genes’ expression profiles using the un-
scaled logCPM values. Network modules were identified using
the cutreeDynamic function in the R package WGCNA,31 set-
ting the minimum module size to 30. The power of four was
chosen using the scale-free topology criterion. Correlation of
0.35 or height cut of 0.35 with deepSplit= 4 was used to
merge modules whose genes are highly co-expressed.

Functional enrichment analysis was performed using
Metascape,32 which uses a hypergeometric test and
Benjamini–Hochberg P-value correction to identify ontol-
ogy terms that contain a statistically greater number of genes
in common with an input list than expected by chance, using
the whole transcriptome as background. Statistically signifi-
cant enriched terms based on Gene Ontology,33 KEGG,34

Reactome35 and MSigDB36 were clustered based on
Kappa-statistical similarities among their gene member-
ships. A 0.3 kappa score was applied as a threshold to iden-
tify enriched terms.

Fisher’s exact test was used to test the enrichment of the
gene set from each module with the gene sets generated for
the ROSMAP samples from the meta-analysis of
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Alzheimer’s disease co-expression modules,23 or other
curated Alzheimer’s disease gene sets (Supplementary
material). The resulting P-values were corrected using the
Bonferroni method for multiple test correction. Cell-type
enrichments were also done using Fisher’s exact test of
gene set to overlap with cell-type-specific gene sets from hu-
man reference single-cell RNA-seq data37 and the unique
marker genes present in the single-cell RNA-seq data (with
log2FC.1) from the prefrontal cortical samples of
Alzheimer’s disease patients and normal control subjects.38

Cell-type marker gene expression signatures along SI were
obtained by first smoothing each gene’s expression as a
function of SI using a smoothing spline of the degree of
freedom= 3. The weighted mean of the marker genes was
obtained and normalized to lie in [0, 1]. The smoothed
and normalized expression of marker genes for each cell
type was plotted as a function of SI.

Statistical analysis
All the statistical tests were carried out in R version 4.0.0,39

except for functional enrichment analysis performed using
Metascape, where the P-values were directly reported by
the programme. The details of the tests were reported in
each section of the methods above.

Data availability
All the data sets from the AMP-AD consortium used in this
study are available at the Alzheimer’s disease knowledge
portal (https://adknowledgeportal.synapse.org/), with sy-
napse identifiers provided in the text. The machine learning
framework, including the trained model, SIs for each cohort
and the codes to apply the trained neural network, map to
the DLPFC 3D UMAP space and obtain the SI will be up-
loaded to synapse upon publication of this work. The source
code with synapse data withheld is available at https://
github.com/qwang178/DeepBrain.

Results
Deep learning identified a
pseudo-temporal trajectory for AD
progression
We designed a three-layer deep learning model to dissect the
gene expression data from DLPFC tissues across the
Alzheimer’s disease spectrum. This simple scheme consists
of inputting the two termini of the spectrum (i.e. pathologi-
cally confirmed Alzheimer’s disease and control groups) to
obtain a learned representation encoded by the intermediate
layer. We set the number of output clusters K at 2 through-
out the learning process (i.e. we are not interested in any sub-
cluster within the two termini). The regularization
parameter λ and the trade-off parameter α were estimated
to be 0.004 and 2, respectively (Supplementary Fig. 1A
and B). The training and validation losses in the training

process were tracked and no sign of over-fitting was ob-
served (Supplementary Fig. 1C). The training and validation
accuracy was observed to be stable at �97 and �90%, re-
spectively (Supplementary Fig. 1D).

After the intermediate layer was mapped into 3D UMAP
space, a prominent progressive trajectory, with two distinct
clusters at both termini could be observed (Fig. 2A).
Mapping of the other samples into the same space clearly in-
dicated a continuous disease spectrum as well as a progres-
sion course along the trajectory (Fig. 2B). SI was
calculated as the travelling distance along the trajectory by
setting the starting point at the control terminus to zero,
which reflects the disease progression of the subjects.
When correlating with pathological biomarkers, the
SI showed strong correlations with all the measurements
(P≤3.2e−6), with the weakest correlation observed for dif-
fuse plaque, which was still highly significant (P= 3.2e−6)
(Fig. 2C). In addition, it indicated that APOE4 allele counts
also contributed to all the biomarkers with various degrees
of significance (P= 1.24e−4 to 1.47e−9), confirming it as
a major genetic risk determinant for Alzheimer’s disease.
Most strikingly, the model explained the greatest amount
of variance for global cognitive function (R=−0.68)
(Fig. 2D), with SI contributing to the largest proportion
of variance explained (PVE= 0.35, P, 2e−16,
Supplementary Table 3). It also indicated that global cogni-
tive function in this cohort was positively correlated with
education (PVE= 0.0020, P= 5.57e−3), inversely corre-
lated with APOE4 allele count (PVE= 0.035, P=
5.00e−6), a diagnosis of Parkinson’s disease (PVE= 0.042,
P= 7.49e−7), neocortical Lewy body disease (PVE=
0.016, P= 5.49e−4), hippocampal sclerosis (PVE= 0.014,
P= 1.03e−3) and marginally age (PVE= 0.0047, P=
9.89e−2). When the two termini which were used in the
training process were excluded from the linear regression
model, we still observed strong correlations between SI
and all neuropathology biomarkers and clinical severity (P
,0.1), especially for global cognitive function (PVE=
0.15, P= 3.5e−7 for SI, R=−0.55 for the model,
Supplementary Tables 3 and 4 and Fig. 4), demonstrating
the generality of the model outside the training data.

Model achieved comparably strong
performance in MAYO/MSBB
cohorts
The model was applied to the harmonized transcriptomic data
from both the MAYO and MSBB cohorts. Data from the
MAYO cohort came from two different brain regions: TCX
and CER. After projecting into the same 3D UMAP space,
the subject distributions along the trajectories in the two
different brain regions showed different patterns (Fig. 3A
and B). For TCX, it showed the distributions of different loca-
tions for Alzheimer’s disease versus control subjects along the
trajectory similar to those from ROSMAP data, while this was
not observed for CER as one would expect. It was also
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Figure 2 The pseudo-temporal trajectory from the trained deep learning model for the transcriptome fromDLPFC tissues of
ROSMAP cohort and the SI correlation with phenotypical data. Diagnosis class is defined in the main text. (A) The trajectory with only
Alzheimer’s disease and control (deep learning data set) is shown. (B) The trajectory with all subjects (Alzheimer’s disease+CN+OTHER) is
shown. (C) The model metrics for the linear regression between SI, controlled covariates and all the neuropathological biomarkers and global
cognitive function, with P-values shown in cells with P, 0.05. Only covariates with significant association with at least one biomarker were
shown. The descriptions for the definition of each parameter can be found in Supplementary Table 2. Detailed model metrics stratified by
diagnosis groups can be found in Supplementary Tables 3 and 4. (D) The linear regression plot between SI and global cognitive function. Colour
legend for cogdx (final consensus cognitive diagnosis): 1, no cognitive impairment (CI); 2, MCI and no other cause of CI; 3, MCI and another cause
of CI; 4, Alzheimer’s disease and NO other cause of CI; 5, Alzheimer’s disease and another cause of CI; 6, other dementia.
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confirmed by the results obtained from linear regression of the
SI versus pathological biomarkers (Braak and Thal scores,
Fig. 3C). Only in the TCX samples were the SIs found to be
significantly correlated with both Braak (P= 4.88e−5) and
Thal scores (P= 1.56e−3). Again the model explained a large
amount of variance overall for both biomarkers, with R=
0.68. For the MSBB cohort, the same model was applied to
the gene expression profile of all four sampled regions [FP
(BM10), STG (BM22), PHG (BM36) and IFG (BM44)] and
all regions show similar albeit slightly different trajectories,
with the SI consistently significantly correlated with all the
neuropathological and clinical biomarkers (Braak score,
PlaqueMean, CDR scale and CERAD score, Fig. 4).

Network analysis identified four
major gene modules for disease
progression
A clear bimodal distribution on the logarithm scale was ob-
served in the weight distribution for the 15 582 genes in the

deep learning model (Supplementary Fig. 2A). The cut-off
was set at 1.6e−4, which generated 593 genes as the signifi-
cant genes (index genes) associated with Alzheimer’s disease
progression (Supplementary Table 7). The distribution of
these genes showed some, though not complete overlap
with those differentially expressed genes (DEGs) identified
in previous work for ROSMAP cohort alone (syn8456629,
Supplementary Fig. 2B), or from the AMP-ADmeta-analysis
(syn11914606, Supplementary Fig. 2C), as unlike DEGs,
some of these index genes may have smaller fold change
(log2FC), or not pass the significant P-value cut-off in com-
parison between Alzheimer’s disease versus control. Based
on network analysis for these 593 genes’ expression profiles,
six co-expression modules were identified, with four of them
showing significant correlation with multiple phenotypes
(Fig. 5A). Among them, the green module (n= 41) is signifi-
cantly correlated with all the neuropathological and clinical
biomarkers, while the turquoise module (n= 308) was
found to be especially significantly correlated with tangles
and the brown module (n= 61) with amyloid. Notably,

Figure 3 The pseudo-temporal trajectory for the transcriptomes from two brain regions of MAYO cohort and the SI
correlation with phenotypic data generated by applying the trained deep learningmodel andmapping to the same 3D space as
ROSMAP. AD, Alzheimer’s disease; CN, control; PA, pathological ageing; PSP, progressive supranuclear palsy. (A) The trajectory for
transcriptome from TCX. (B) The trajectory for transcriptome from CER. (C) The model metrics for the linear regression between SI and the
neuropathological biomarkers by different brain regions, with P-values shown in cells with P, 0.05. Detailed model metrics are reported in
Supplementary Table 5.
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Figure 4 The pseudo-temporal trajectory from the transcriptomes of four brain regions of MSBB cohort and the SI
correlation with phenotypic data by applying the trained deep learningmodel andmapping to the same 3D space as ROSMAP
data. AD, Alzheimer’s disease (CDR≥ 1 and Braak≥ 4 and CERAD≤ 2); CN, control (CDR≤ 0.5 and Braak≤ 3 and CERAD≥ 3); OTHER, all
other subjects. (A–D) The trajectory for transcriptomes from regions BM10/20/36/44, respectively. (E) The model metrics for the linear
regression between SI and all the neuropathological and clinical biomarkers, by different brain regions with P-values shown in cells with P, 0.05.
Grey cells indicate no data. Detailed model metrics are reported in Supplementary Table 6.
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Figure 5 Network and gene set functional enrichment analysis of the index genes. (A) Module trait relationship between the
eigengenes of the six co-expression modules and individual traits. (B) Functional enrichments for the index genes present in the four modules.
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the turquoise module’s directions of correlations with the
pathological traits were reversed with the other three, al-
though all showed significant contributions to cognitive
functions. The yellowmodule (n= 53) was only significantly
correlated with the diagnosis of Parkinson’s disease and
amyloid, while the grey module (n= 63) showed little correl-
ation with any of the pathological phenotypes as expected.
We also decomposed the contributions of each module to
the SI and found that the SIs derived for turquoise and green
modules showed the strongest concordance with all the bio-
markers and cognitive function scores (Supplementary Fig. 3
and Table 8).

Functional enrichment of the genes present in the four key
modules showed that they were implicated in different
processes. For the turquoise module, the enriched terms
were related to metabolism and hormone activities; for the
brown module, they were related to vascular dysfunction
(Fig. 5B). Green and blue modules were implicated in
metabolic abnormalities. Interestingly, the four modules
were found to overlap mostly with the consensus cluster A

(for blue), cluster B (for brown), cluster D (for green) and
clusters C and E (for turquoise), respectively, from the
meta-analysis of the Alzheimer’s disease human brain tran-
scriptome23 (Fig. 6A) and concordantly, the three upregu-
lated modules were each enriched for astrocytes (blue),
oligodendrocytes (green) and endothelial cells (brown), and
the downregulated turquoisemodule was enriched in neurons
(Fig. 6B). Their overlaps with the curated Alzheimer’s disease
gene sets from known databases and the gene sets from an in-
dividual cohort study in the AMP-AD consortium confirmed
this observation (Supplementary Fig. 5).

The change of cell-type markers as a function of SI along
disease progression (Fig. 6C) recapitulates known cellular
changes such as neurodegeneration and gliosis. In addition,
it suggests that microgliosis and astrogliosis happen earlier
in the disease, while oligodendrocytes and endothelial cells
are activated at a faster pace at the late stage. Interestingly,
marker genes in microglia do not express monotonically in
the process, which is especially prominent in males
(Supplementary Fig. 7).

Figure 6 Gene set overlaps with known gene sets for the index genes. (A) The modules were examined for overlap (Fisher’s exact test)
with the gene sets from the mega analysis of the AMP-AD consensus RNA-seq co-expression modules.23 Overlaps were shown for those
adjusted P (Bonferroni correction), 0.001. (B) Cell-type enrichments using Fisher’s exact test of gene set overlap of the modules with
cell-type-specific gene sets from human reference single-cell RNA-seq data.37,38 Overlaps were shown for those adjusted P (Bonferroni
correction), 0.001. Ast, astrocytes; End, endothelial cells; Mic, microglia; Neu, neurons; Oli, oligodendrocytes; Opc, oligodendrocyte
progenitor cells; Per, pericytes. (C) Cell-type marker gene expression signatures as a function of SI. The mean expression of cell markers for
astrocytes, neurons, microglia, oligodendrocytes and endothelial cells were plotted and coloured, respectively.
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Discussion
It is increasingly accepted that Alzheimer’s disease and
Alzheimer’s disease-related dementias (AD/ADRD) are a
spectrum of related diseases that have similar clinical and
neuropathological manifestations.40 The progressive nature
and relatively long deteriorating course warrant the study of
the disease as a continuum instead of discrete states.
However, the lack of longitudinal data from brain tissues
of the same individuals prompts recent studies to model
the gene expression dynamics of Alzheimer’s disease as
pseudo-temporal trajectories, using data collected from
post-mortem brain tissues in large cohorts, with various de-
grees of neurodegeneration and dementia severity. These un-
supervised machine learning approaches provide novel
insights into the progressive nature of Alzheimer’s disease
and demonstrate that population-level cross-sectional tran-
scriptomic data could be capitalized to capture the evolution
of multiple Alzheimer’s disease-related neuropathology or
cognitive impairment. In this work, we present a deep learn-
ing framework, which includes supervised classification and
unsupervised dimension reduction of transcriptomic data to
derive a trajectory that strongly mirrors Alzheimer’s disease-
specific severity, since we have used the neuropathologically
confirmed Alzheimer’s disease and control as the two termi-
ni to train the model. The SI defined by the distance along a
trajectory could be utilized as a metric to evaluate the pro-
gression and staging of Alzheimer’s disease. The transcrip-
tomic signature identified by the model sheds new light on
the evolution of the gene expression profile across the
disease course and illustrates the utility of deep learning
approaches for the investigation of neurodegenerative dis-
eases such as Alzheimer’s disease.

Notably, the deep learning component in our framework
consists of a neural network of only three layers. There are
two reasons we chose such a network. Firstly, the learning
data sets from ROSMAP are composed of only 243 neuro-
pathologically confirmed Alzheimer’s disease and control
subjects. Although this is one of the largest post-mortem
brain transcriptomic data sets of LOAD cohorts publicly
available to date, more learning layers on this scale of data
do not necessarily produce better results, as four or more
layers in the current model did not improve the model’s
performance by our tests. Conversely, a single-hidden layer
in the model enables a straightforward interpretation of
the embedding of the input gene features, which facilities
the identification of index genes for downstream analysis.
With the rapidly accelerating generation of multi-omic
data for Alzheimer’s disease, this current framework could
be easily extended to include additional layers for exploiting
larger data sets, with both more samples or genomic fea-
tures, and other phenotypic data types.

The original trajectory derived for the DLPFC tissues
from the ROSMAP cohort suggests that the course of
Alzheimer’s disease may be characterized by the multidi-
mensional, non-linear nature of transcriptome dynamics in
the neurodegenerative process. The neuropathologically

confirmed Alzheimer’s disease and control subjects were
mostly clustered in two corners, with relatively few subjects
located between the two clusters along the trajectory. When
other samples with various neuropathology and/or clinical
diagnosis were mapped to the same space, they were
distributed widely along the trajectory, with a considerable
portion in-between the two clusters. SI still significantly pre-
dicted cognitive function (P= 3.5e−7) and neuropathology
(P,7e−2) for the other samples after excluding the
Alzheimer’s disease/control termini used in the training pro-
cess, demonstrating the validity of the model for the general
dementia population. This was further demonstrated by the
application of the model to the external data sets in the
AMP-AD consortium, the MAYO and MSBB RNA-seq
profiles. For all the brain regions known to be susceptible
to Alzheimer’s disease-related pathology (TCX and FP/
PHG/IFG/STG), the trajectories showed differentiating
clusters of Alzheimer’s disease and control subjects. In stark
contrast, for the transcriptome in CER, which possesses a
distinct cellular architecture and is comparatively spared
by Alzheimer’s disease neuropathology, the subjects’ loca-
tions are randomly distributed along the trajectory.
Quantitatively, SIs derived from the trajectories confirmed
the observation, with all of them correlating with the bio-
markers closely except those for CER. Notably, thanks to
the detailed neuropathological and clinical characterizations
in the ROSMAP cohort enabling a covariate analysis in the
linear regression model of SI against global cognitive func-
tion (Fig. 2C and Supplementary Table 3), cognitive impair-
ment in the general dementia population is also partially
attributable to multiple other comorbidities such as
Parkinson’s and neocortical Lewy body disease, as well as
hippocampal sclerosis and arteriolosclerosis. This under-
scores the heterogeneity of the broad dementia spectrum
and the urgent need to dissect the spectrum by distinguishing
the Alzheimer’s disease-specific pathology and those caused
by other related diseases for precision dementia diagnosis
and treatment.

Deep learning methods have been demonstrated recently
to be able to capture complex, non-linear transcriptomic
features that are not learned using conventional gene expres-
sion data analysis methods in Alzheimer’s disease cohorts.41

In our model, it searches the data for correlated features and
combines them by amplifying the underlying signals with ad-
justable weights and the sigmoid function, so it can extract
the genomic features most pertinent to the questions we
are asking, that is, the coordinated transcriptomic signature
differentiating definitive Alzheimer’s disease and control.
The model is completely portable and applicable to any
gene expression data, and the reproducible significant results
in external data sets from pathologically affected tissues
manifest that the index genes indeed play significant roles
in the progression of LOAD.

The index genes identified by the deep learning model
have unique implications, in our understanding of
Alzheimer’s disease aetiology, as well as the pursuit of novel
therapeutics. They have some overlap, but considerably
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differ from those DEGs identified by DE analysis. Recently,
it has been demonstrated that certain gene expression pro-
files from RNA-seq experiments are generic, with a high
probability of DE across a wide variety of biological condi-
tions, so their specificity related to disease mechanisms has
been challenged.42 Additionally, DEGs are those passing
certain statistical cut-offs systematically for both fold
change and P-values selected as the ‘hit list’ for further inter-
pretation and validation. The cut-offs are arbitrarily set fol-
lowing a convention [e.g. fdr, 0.05, |log2FC|.0.263 in the
DEG analysis for the ROSMAP data set (syn8456629)], so it
might not be able to capture subtle, intrinsic and coordi-
nated gene expression signatures due to disease pathology
in the high-dimensional data, especially from bulk tis-
sues.41,43 This is further demonstrated by the fact that
neither DEGs identified by ROSMAP data set alone
(syn8456629) nor those from the AMP-Alzheimer’s disease
meta-analysis (syn11914606) could fully reproduce the pro-
gressive trajectory in any of the three transcriptomic data
sets, especially the external data sets when applied with
the model (results not shown).

Among the six co-expression modules from the index
genes, blue, brown, green and turquoise modules are signif-
icantly correlated with Alzheimer’s disease phenotypical
hallmarks, with the first three upregulated in the progres-
sion, while turquoise genes downregulated. Together with
the cell-type enrichment analysis showing the three modules
are enriched in astrocytes, oligodendrocytes and endothelial
cells, respectively, and turquoise module enriched in neu-
rons, this is consistent with the results obtained by the recent
work of neurodegeneration pseudotime estimation5 and cel-
lular composition deconvolution,43 which shows a reduc-
tion in the neuronal populations as Alzheimer’s disease
progresses, and an increase in expression associated with ac-
tivation of endothelial and glial cells, as also demonstrated
by the change of mean expression for the marker genes of
each cell type along Alzheimer’s disease progression.
Interestingly, the transcriptomic signatures obtained from
our study show high similarity with the signatures obtained
from a recent single-nucleus transcriptome analysis from the
prefrontal cortical samples of Alzheimer’s disease patients
and normal control subjects,38 where higher proportion of
endothelial nuclei was sampled and dysregulated pathways
are associated with blood vessel morphogenesis, angiogen-
esis and antigen presentation. Notably, these functions are
also implicated in the top common blood–brain functional
pathways relevant for LOAD progression in the recent study
of gene expression trajectories in Alzheimer’s disease.5 In
addition, the enriched functions of proton transport impli-
cated in mitochondrial functions and cell signalling pathway
in the turquoise module were also found to be associated
with the overlapped DEGs in neurons from two independent
single nuclei transcriptomic studies from Alzheimer’s disease
patients.38,44 Strikingly, although the brown module is
mostly overlapped with the consensus module cluster B
from the AMP-AD transcriptome meta-analysis23

(Fig. 6A), it is not enriched in microglia but endothelial cells

(Fig. 6B). It is most likely a submodule in the cluster, which
represents the signatures from endothelial cells. Likewise,
the turquoise module as a subset of the consensus module
cluster E shows comparatively poor enrichment for cell-type
expression signatures and were not well annotated or repre-
sented among curated Alzheimer’s disease pathways
(Supplementary Fig. 5). These results collectively suggest
that the transcriptomic signatures identified by the deep
learning framework constitute intrinsic molecular changes
at the cellular level associated with Alzheimer’s disease’s
progression. Whether the changes are the drivers of the pro-
gression or just physiological responses accompanying the
progression awaits further examination. With the identifica-
tion of the four modules each enriched in a specific cell type
and strongly associated with Alzheimer’s disease severity,
the future work will be a scrutiny of these genes for their
roles in Alzheimer’s disease’s progression.

It is more and more evident that sexual dimorphism plays
an important role in Alzheimer’s disease’s development and
progression.45 In the recent work byMukherjee et al.5 where
unsupervised learning methods were applied to the
ROSMAP transcriptome data, predictive pseudotimes were
only observed for female samples, highlighting great diver-
sity of the gene expression profiles between the sexes.
While we did not explicitly include sex as a feature node
in the deep learning model, our analysis showed that the
sex effect has been modelled through the expression levels
of sex markers such as XIST.46 When we compare SI with
the pseudotime obtained by unsupervised learning on the
same subjects as reported in the work of Mukherjee et al.,
higher degree of concordance is obtained for the female sam-
ples than the male (Supplementary Fig. 6A). SI was found to
be significantly associated with the neuropathological and
clinical biomarkers in both sexes, by both linear and logistic
regressions (Supplementary Fig. 6B and C). In the plots stra-
tified by sex of the mean marker gene expression as a func-
tion of SI, we observe not only consistent overall patterns in
both sexes, but also distinct curves for some cell types, for
example, neuron and microglia (Supplementary Fig. 7B
and C). Neuronal degeneration occurs earlier and faster in
female, although eventually, both sexes converge at a similar
total loss. For microglia, the change is not monotonic, espe-
cially in male. These observations highlight important
cell-type-specific contributions to Alzheimer’s disease pro-
gression in different sexes, which has drawn considerable re-
search efforts in recent years.47,48 Lastly, sex has also been
considered as a covariate in the linear regression of SI
against all the neuropathological and clinical biomarkers
in all three cohorts. They are all not significant except in
the IFG region from the MSBB cohort (Fig. 4E and
Supplementary Table 6), where female sex is associated
with higher clinical and pathological severity. All of the
above work collectively demonstrates that our model cap-
tures generalized transcriptomic features present in both
sexes for most Alzheimer’s disease-affected brain regions
like DLPFC, while in specific brain region like IFG, there
are additional sex effects that await further investigation.
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From the trajectories derived for different Alzheimer’s
disease-affected brain regions and their model metrics (e.g.
MSBB cohort, Fig. 4 and Supplementary Table 6), it is evi-
dent that there are perceptible although subtle variations
within their expression profiles, consistent with the observa-
tions from multiple analyses of transcriptomic data for the
cohort.49,50 This highlights the necessity of analysing tissue
and region-specific data sets to better understand interac-
tions between a brain region and molecular disease states
within Alzheimer’s disease. For instance, with preliminary
validation in this work, a similar deep learning framework
could be designed specifically to dissect transcriptomes
from peripheral tissues such as blood of Alzheimer’s disease
cohorts to seek highly sensitive and specific targets, to com-
plement any biomarkers currently being actively pursued for
early diagnosis of the devastating disease. Similarly, the ap-
plication of such an approach has broad utility for use with
any high-dimensional multi-omics data such as proteomics,
metabolomics and epigenomics, thus opening another chan-
nel for the application of artificial intelligence in the genom-
ics field for pursuing early diagnosis and effective treatment
of neurodegenerative diseases.

Acknowledgements
The results published here are in whole or in part based on
data obtained from the AD Knowledge Portal (https://
adknowledgeportal.org) (syn2580853). The RNA-seq
Harmonization Study (rna-SeqReprocessing) was supported
by the NIA grants U01AG046152, U01AG046170,
U01AG046139 and U24AG061340. Study data in
ROSMAP cohort were provided by the Rush Alzheimer’s
Disease Center, Rush University Medical Center, Chicago,
IL, USA. Data collection was supported through funding
by NIA grants P30AG10161 (ROS), R01AG15819
(ROSMAP; genomics and RNA-seq), R01AG17917
(MAP), R01AG36836 (RNA-seq), the Illinois Department
of Public Health and the Translational Genomics Research
Institute. Additional phenotypic data were requested at
https://www.radc.rush.edu. The data for MSBB cohort
were generated from post-mortem brain tissue collected
through the Mount Sinai VA Medical Center Brain Bank
and were provided by Dr Eric Schadt from Mount Sinai
School of Medicine. The MSBB study was led by Dr
Nilufer Ertekin-Taner and Dr Steven G. Younkin, Mayo
Clinic, Jacksonville, FL, USA, using samples from the
Mayo Clinic Study of Aging, the Mayo Clinic Alzheimer’s
Disease Research Center and the Mayo Clinic Brain Bank.
Data collection was supported through funding by NIA
grants P50AG016574, R01AG032990, U01AG046139,
R01AG018023, U01AG006576, U01AG006786,
R01AG025711, R01AG017216, R01AG003949, NINDS
grant R01NS080820, CurePSP Foundation and support
from Mayo Foundation. Study data include samples col-
lected through the Sun Health Research Institute Brain and
Body Donation Program of Sun City, Arizona. The Brain

and Body Donation Program is supported by the NINDS
(U24NS072026 National Brain and Tissue Resource for
Parkinson’s Disease and Related Disorders), the NIA
(P30AG19610 Arizona Alzheimer’s Disease Core Center),
the Arizona Department of Health Services (contract
211002, Arizona Alzheimer’s Research Center), the
Arizona Biomedical Research Commission (contracts
4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s
Disease Consortium) and the Michael J. Fox Foundation
for Parkinson’s Research. We thank the authors of
DeepType for technical assistance in training the deep learn-
ing model and integrating the method into our framework.
We thank the staff at Research Resource Sharing Hub,
Rush Alzheimer’s Disease Center, Rush University Medical
Center, Chicago, IL, USA, for their efforts to share the unre-
leased data from the ROSMAP study. The authors acknow-
ledge Research Computing at Arizona State University for
providing computing resources that have contributed to
the research results reported within this paper. The authors
also thank the constructive suggestions from the reviewers
for the improvement of this manuscript.

Funding
Q.W. is supported in part by PG08973 from Arizona State
University. Q.W. and B.R. are supported in part by National
Institute on Aging (NIA) grant U01AG061835. Y.S., K.C.
and E.M.R. are supported in part by NIA grants
R01AG069453, P30AG019610 and the State of Arizona.
The funding sources did not play a role in study design, the col-
lection, analysis and interpretation of data, writing of the re-
port; or in the decision to submit the article for publication.

Competing interests
The authors declare that they have no competing interests.

Supplementary material
Supplementary material is available at Brain
Communications online.

References
1. Long JM, Holtzman DM. Alzheimer disease: An update on patho-

biology and treatment strategies. Cell. 2019;179(2):312-339.
2. Gaiteri C, Mostafavi S, Honey CJ, De Jager PL, Bennett DA.

Genetic variants in Alzheimer disease—molecular and brain net-
work approaches. Nat Rev Neurol. 2016;12(7):413-427.

3. Meng G, Mei H. Transcriptional dysregulation study reveals a core
network involving the progression of Alzheimer’s disease. Front
Aging Neurosci. 2019;11:101.

4. Iturria-Medina Y, Khan AF, Adewale Q, Shirazi AH, Alzheimer’s
disease neuroimaging I.: Blood and brain gene expression trajec-
tories mirror neuropathology and clinical deterioration in neurode-
generation. Brain. 2020;143(2):661-673.

Deep learning of ROSMAP transcriptome BRAIN COMMUNICATIONS 2022: Page 15 of 16 | 15

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab293#supplementary-data
https://adknowledgeportal.org
https://adknowledgeportal.org
https://www.radc.rush.edu
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab293#supplementary-data


5. Mukherjee S, Heath L, Preuss C, et al. Molecular estimation of neu-
rodegeneration pseudotime in older brains. Nat Commun. 2020;
11(1):5781.

6. Van den Berge K, Roux de Bezieux H, Street K, et al.
Trajectory-based differential expression analysis for single-cell se-
quencing data. Nat Commun. 2020;11(1):1201.

7. Campbell KR, Yau C. Uncovering pseudotemporal trajectories with
covariates from single cell and bulk expression data.Nat Commun.
2018;9(1):2442.

8. Eraslan G, Avsec Z, Gagneur J, Theis FJ. Deep learning: New com-
putational modelling techniques for genomics. Nat Rev Genet.
2019;20(7):389-403.

9. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521-
(7553):436-444.

10. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al.
Diagnostic assessment of deep learning algorithms for detection
of lymph node metastases in women with breast cancer. JAMA.
2017;318(22):2199-2210.

11. Chen R, Yang L, Goodison S, Sun Y. Deep-learning approach to
identifying cancer subtypes using high-dimensional genomic data.
Bioinformatics. 2020;36(5):1476-1483.

12. Gao F, Wang W, Tan M, et al. DeepCC: A novel deep learning-
based framework for cancer molecular subtype classification.
Oncogenesis. 2019;8(9):44.

13. Leclercq M, Vittrant B, Martin-Magniette ML, et al. Large-scale
automatic feature selection for biomarker discovery in high-
dimensional OMICs data. Front Genet. 2019;10:452.

14. VuM-AT, Adali T, Ba D, et al. A shared vision for machine learning
in neuroscience. J Neurosci. 2018;38(7):1601-1607.

15. Chen H, He Y, Ji J, Shi Y. A machine learning method for identify-
ing critical interactions between gene pairs in Alzheimer’s disease
prediction. Front Neurol. 2019;10:1162.

16. Hodes RJ, Buckholtz N. Accelerating medicines partnership:
Alzheimer’s disease (AMP-AD) knowledge portal aids Alzheimer’s
drug discovery through open data sharing. Expert Opin Ther
Targets. 2016;20(4):389-391.

17. Greenwood AK, Montgomery KS, Kauer N, et al. The AD knowl-
edge portal: A repository for multi-omic data on Alzheimer’s dis-
ease and aging. Curr Protoc Hum Genet. 2020;108(1):e105.

18. Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA,
Wilson RS. Overview and findings from the rush Memory and
Aging Project. Curr Alzheimer Res. 2012;9(6):646-663.

19. Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS. Overview
and findings from the religious orders study. Curr Alzheimer Res.
2012;9(6):628-645.

20. McInnes L, Healy J, Saul N, Großberger L. UMAP: Uniform mani-
fold approximation and projection. J Open Source Softw. 2018;3-
(29):861.

21. Allen M, Carrasquillo MM, Funk C, et al. Human whole genome
genotype and transcriptome data for Alzheimer’s and other neuro-
degenerative diseases. Sci Data. 2016;3:160089.

22. Wang M, Beckmann ND, Roussos P, et al. The Mount Sinai cohort
of large-scale genomic, transcriptomic and proteomic data in
Alzheimer’s disease. Sci Data. 2018;5:180185.

23. Wan Y-W, Al-Ouran R,Mangleburg CG, et al. Meta-analysis of the
Alzheimer’s disease human brain transcriptome and functional dis-
section in mouse models. Cell Rep. 2020;32(2):107908.

24. Das A, Rad P. Opportunities and challenges in explainable artificial
intelligence (XAI): A survey. arXiv. 2020:2006.11371 [cs.CV].

25. Kingma DPB, Adam J. A method for stochastic optimization. In:
3rd International Conference for Learning Representations. 2015.

26. Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and reg-
ulators of cell fate decisions are revealed by pseudotemporal order-
ing of single cells. Nat Biotechnol. 2014;32(4):381-386.

27. Street K, Risso D, Fletcher RB, et al. Slingshot: Cell lineage and
pseudotime inference for single-cell transcriptomics. BMC
Genomics. 2018;19(1):477.

28. Tasaki S, Gaiteri C, Mostafavi S, De Jager PL, Bennett DA. The mo-
lecular and neuropathological consequences of genetic risk for
Alzheimer’s dementia. Front Neurosci. 2018;12:699.

29. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in micro-
array expression data using empirical Bayes methods.
Biostatistics. 2007;8(1):118-127.

30. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva
package for removing batch effects and other unwanted variation
in high-throughput experiments. Bioinformatics. 2012;28(6):
882-883.

31. Langfelder P, Horvath S.WGCNA: An R package for weighted cor-
relation network analysis. BMC Bioinformatics. 2008;9:559.

32. Zhou Y, Zhou B, Pache L, et al. Metascape provides a
biologist-oriented resource for the analysis of systems-level data-
sets. Nat Commun. 2019;10(1):1523.

33. The Gene Ontology C. The gene ontology resource: 20 years and
still going strong. Nucleic Acids Res. 2019;47(D1):D330-D338.

34. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and gen-
omes. Nucleic Acids Res. 2000;28(1):27-30.

35. Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowl-
edgebase. Nucleic Acids Res. 2020;48(D1):D498-D503.

36. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP,
Tamayo P. The Molecular Signatures Database (MSigDB) hallmark
gene set collection. Cell Syst. 2015;1(6):417-425.

37. Lake BB, Chen S, Sos BC, et al. Integrative single-cell analysis of
transcriptional and epigenetic states in the human adult brain.
Nat Biotechnol. 2018;36(1):70-80.

38. Lau S-F, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome ana-
lysis reveals dysregulation of angiogenic endothelial cells and neu-
roprotective glia in Alzheimer’s disease. Proc Natl Acad Sci USA.
2020;117(41):25800-25809.

39. R: A language and environment for statistical computing [computer
program]. Version 4.0.0. R Foundation for Statistical Computing;
2020.

40. Atri A. The Alzheimer’s disease clinical spectrum: Diagnosis and
management. Med Clin North Am. 2019;103(2):263-293.

41. Beebe-Wang N, Celik S, Weinberger E, et al. Unified AI framework
to uncover deep interrelationships between gene expression and
Alzheimer’s disease neuropathologies.Nat Commun. 2021;12:5369.

42. Crow M, Lim N, Ballouz S, Pavlidis P, Gillis J. Predictability of hu-
man differential gene expression. Proc Natl Acad Sci USA. 2019;
116(13):6491-6500.

43. Wang X, Allen M, Li S, et al. Deciphering cellular transcriptional
alterations in Alzheimer’s disease brains. Mol Neurodegener.
2020;15(1):38.

44. Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcrip-
tomic analysis of Alzheimer’s disease. Nature. 2019;570(7761):
332-337.

45. Guo L, Zhong MB, Zhang L, Zhang B, Cai D. Sex differences in
Alzheimer’s disease: Insights from the multiomics landscape. Biol
Psychiatry. 2022;91(1):61-71.

46. Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization
and function: New insights from multiple levels. Genome Biol.
2015;16:166.

47. Guillot-Sestier M-V, Araiz AR, Mela V, et al. Microglial metabo-
lism is a pivotal factor in sexual dimorphism in Alzheimer’s disease.
Commun Biol. 2021;4(1):711.

48. Hemonnot A-L, Hua J, Ulmann L, Hirbec H. Microglia in
Alzheimer disease: Well-known targets and new opportunities.
Front Aging Neurosci. 2019;11:233.

49. Wang M, Li A, Sekiya M, et al. Transformative network modeling
of multi-omics data reveals detailed circuits, key regulators, and po-
tential therapeutics for Alzheimer’s disease. Neuron. 2021;109(2):
257-272.e14.

50. BeckmannND, LinW-J,WangM, et al. Multiscale causal networks
identify VGF as a key regulator of Alzheimer’s disease. Nat
Commun. 2020;11(1):3942.

16 | BRAIN COMMUNICATIONS 2022: Page 16 of 16 Q. Wang et al.


	Deep learning-based brain transcriptomic signatures associated with the neuropathological and clinical severity of Alzheimer’s disease
	Introduction
	Materials and methods
	RNA-seq data sets from AMP-AD consortium
	Phenotypic data
	Deep learning of the transcriptome from DLPFC tissues in ROSMAP cohort
	Severity index calculation and correlation with phenotypic data in ROSMAP cohort
	Applying the deep learning model to external data sets (MAYO, MSBB)
	Network and cell-type analysis of the significant genes underlying AD progression
	Statistical analysis
	Data availability

	Results
	Deep learning identified a pseudo-temporal trajectory for AD progression
	Model achieved comparably strong performance in MAYO/MSBB cohorts
	Network analysis identified four major gene modules for disease progression

	Discussion
	Acknowledgements
	Funding
	Competing interests
	Supplementary material
	References


