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Abstract: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory
syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With
no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently
needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal
of research is concentrated on it. Phytochemicals have been used as antiviral agents against several
viruses since they could inhibit several viruses via different mechanisms of direct inhibition either at
the viral entry point or the replication stages and via immunomodulation potentials. Recent evidence
also suggests that some plants and its components have shown promising antiviral properties against
SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions
and potential antiviral activities against important viral pathogens. A special focus has been given
on medicinal plants and their extracts as well as herbs which have shown promising results to
combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives
for treatment under phytotherapy approaches during this devastating pandemic situation.

Keywords: COVID-19; medicinal plants; phytochemicals; herbs; antiviral agents; SARS-CoV-2

1. Introduction

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing coron-
avirus disease 2019 (COVID-19) has become a major pandemic, which has rapidly spread to
more than 215 countries, causing serious global health concerns, panic, and huge economic
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losses [1]. The virus has caused nearly 2.6 million deaths, and 117 million are affected as of
10 March 2021. Lack of specific treatment against SARS-CoV-2 has rendered the world help-
less hence various countries are exploring phytochemicals obtained from medicinal plants
and herbs as alternatives for treating COVID-19 patients via phytotherapy approaches [2–6].
Recent publications on SARS-CoV-2/COVID-19 suggest that phytochemicals used to treat
the human immunodeficiency virus (HIV) infection can be explored for COVID-19 treat-
ment [7]. Some of the most promising small plant molecules found to inhibit coronavirus
are conjugated with fused ring structures and are classified as polyphenols [8]. In an in
silico study conducted with SARS-CoV-2 main protease (Mpro) and angiotensin-converting
enzyme 2 (ACE2) as targets in treating coronavirus infection, it was found that absinthin,
quercetin 3-glucuronide-7-glucoside, and quercetin 3-vicianoside have a good binding
potential to these targets [9]. Therefore, reliable and detailed knowledge of the structure of
SARS-CoV-2 and pathogenesis of COVID-19 and also of plant phytochemicals will help
us find a treatment to this coronavirus. SARS-CoV-2 has certain important factors that
affect its virulence: the spike proteins that mediate its entry into the host, the nucleocapsid
that protects its genetic material, and the RNA through which the virus replicates in the
host [10]. There are various plants, including Glycyrrhiza glabra, Azadirachta indica, Andro-
graphis paniculata, Calotropis gigantea, Ocimum sanctum, Curcuma longa, Withania somnifera,
Zingiber officinale, Allium sativum, Tinospora cordifolia, Moringa oleifera, and others, that have
anti-viral and immunomodulatory properties [11–13]. Plant-specific compounds, such as
lignans, saponins, alkaloids, kaempferol, luteolin, apigenin, baicalin, quercetin, catechins,
flavonoids, and polysulphates (sulphated polysaccharides) play various roles in inhibiting
viral entry, destroying the nucleocapsid and genetic material, and inhibiting the replication
of viruses, which includes, dengue, herpes simplex virus (HSV), hepatitis C virus (HCV),
influenza, chikungunya, SARS, and others [13]. This review discusses the structure of
SARS-CoV-2 and its pathogenesis, which will help understand its mechanism of infection.
It presents collective information on various plants and their phytochemicals as well as
potent herbs that have already been identified as potent antiviral agents against important
human pathogens along with their promising applications to safeguard against SARS-CoV-
2 infection and usefulness in treating COVID-19 patients as alternative and complementary
phytotherapy approaches.

2. Structure and Pathogenesis of SARS-CoV-2

SARS-CoV-2 has a positive-sense, single-stranded RNA that is associated with nu-
cleoproteins present in its capsid comprising matrix proteins [14]. The envelope is made
up of club-shaped glycoprotein projections and few coronaviruses have hemagglutinin
esterase (HE)-protein [15] in their envelope. SARS-CoV-2 contains four different struc-
tural proteins: the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins,
which is encoded by open reading fragments located on one-third of the genome near
the 3’ terminal. Apart from the main structural proteins, it also has other structural and
accessory proteins (HE, 3a/b protein, and 4a/b protein) that play various roles in the
replication and genome maintenance [16,17]. The membrane glycoprotein (M) is the most
common structural protein and it covers the membrane bilayer. It has a short NH2-domain
situated on the outside and a long -COOH terminal located within the virion [15]. The
spike protein plays an important role as an inducer of neutralizing antibodies and also acts
as a type I membrane glycoprotein along with peplomers. Figure 1 depicts the structure of
SARS-CoV-2.

SARS-CoV-2 enters the host through binding of its spike proteins to ACE2 receptors,
and this process is primed with the help of a protease called TMPRSS2 [18,19]. After entry,
the virus gets uncoated and starts genome replication and translation at the cytoplasmic
membrane with the help of a coordinated process of RNA synthesis (continuous and dis-
continuous) mediated by a complex of the protein encoded by 20kb replicase gene [20]. The
coronaviruses have a replicase enzyme that is not found in other RNA viruses, with the pres-
ence of the putative sequence-specific endoribonuclease, 3′-to-5′exoribonucleases, 2′-o-ribo
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methyltransferases, and ADP-ribose-1’-phosphatase [21]. The mechanism of pathogenesis
is represented in Figure 2.
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Figure 2. Pathology of COVID-19 [Source: Leila Mousavizadeh, Sorayya Ghasemi, Genotype and
phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and
Infection. 2020].

3. Similarities of Viruses to SARS COV-2

The idea of SARS-CoV-2 structure and pathology will help in comparing viruses that
share certain similarities. The zika virus is a single-stranded positive-sense RNA virus with
nucleocapsid, the open reading frames codes a single protein which is processed into the
capsid, membrane protein, and envelope structural proteins [22]. The rabies virus belongs
to the RNA viruses. Although it is a negative RNA virus it has the lipid bilayer membrane
covered with transmembrane glycoprotein spikes and a nucleocapsid that covers its genetic
material [23]. Dengue virus has a positive-sense RNA [24]. The H1NI (swine flu virus)
also affects the respiratory tract with a minimum incubation period of 5 to 7 days and it is
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an enveloped virus with the glycoprotein spikes on the lipid bilayer membrane and also
hemagglutinin on the envelope [25].

The chikungunya virus is also a spherical virus with an envelope consisting of glyco-
protein spikes and a positive-sense single-stranded RNA [26]. The Ebola virus even though
a tubular-shaped virus with negative-stranded RNA has a lipid bilayer membrane and
glycoprotein spikes [27]. SARS-CoV2 Mpro and HCV NS3/4A protease shows similarity in
three-dimensional structure and also in the arrangement of active site residues. Besides,
8 protease inhibitors of HCV are also capable of binding to Mpro active site suggesting that
protease inhibitors of HCV can effectively inhibit SARS-CoV-2 protease and the replication
of SARS-CoV2 [28]. Spike protein HE found in SARS-CoV2 and hemagglutinin of influenza
virus has a similar function [29]. HIV has two copies of single-stranded positive-sense
RNA and belonging to the retrovirus family [30]. All the above-mentioned viruses can be
compared to their genetic material like RNA viruses or positive-sense RNA virus, a struc-
ture like spherical shape, glycoprotein spikes, hemagglutinin, lipid bilayer, nucleocapsid,
and the site of infection with SARS CoV-2.

4. Plants with Antiviral Properties

Medicinal plants and herbs have shown promising anti-viral properties and multiple
beneficial health applications as well as are being used as traditional practitioners to protect
various health issues of humans and animals [11–13]. Since finding drugs and treatment
options for coronaviruses (CoVs), the medicinal plants and their derived phytoconstituents,
herbs could provide the strong base for designing and developing the novel alternative
and supplementary treatment for coronavirus with exploring phytotherapy approaches.
Various medicinal plants extracts, phytochemicals, and herbs have been revised and con-
sidered to be the potential anti-CoV agents especially to tackle infection with SARS-CoV-2
for effective control of COVID-19 and future drug development with the medicinal plant
formulations for preventing or curing the COVID-19 and other highly infectious viral
diseases [2–6,31,32].

A herbal medicine prepared by mixing washed rice water (about 85–90%), endodermis
from the roots of Ulmus pumila and Betula luminifera (about 5–10% and 4–6%, respectively)
is used to cure rabies and hydrophobia (one of the symptoms of rabies). This medicine does
not show any side effects and is safe for consumption [33]. Pharmaceutical formulations
with harmless lectins, for example, with Sambucus nigra agglutinin-I, are widely used
as antiviral agents for enveloped viruses in animals and humans [34]. The lectins play
an important role against the viruses by agglutinating virions and inhibiting them from
binding to the cell surface of the host and also by inhibiting the replication of the viruses [11].
Researchers proved that the root extract of Boerhaavia diffusa has potential anti-hepatotoxic
activity, which can also be used to treat viral hepatitis [35]. Medicinal formulations made by
B. diffusa alone or in combination with other drugs were found to have antiviral activities
against infections associated with the liver, respiratory tract, and heart [36]. The extract of
Eclipta alba has antiviral activities against many viruses [37]. Its leaf juice is used to cure
jaundice and also other ailments of the liver [38]. Besides, the aqueous extract of Euphorbia
prostrate has antiviral activity against HIV-1 integrase [39].

Medicinal plants inhibit protease enzymes of the SARS-CoV-2 [2]. Many medici-
nal plants are believed to target the viral 3-chymotrypsin-like cysteine protease (3CLpro)
enzyme, which is essential for replication of coronavirus [5]. Isoflavone extracted from
Psorothamnus arborescens, (2S)-Eriodictyol 7-O-(6”-O-galloyl)-beta-d-glucopyranoside from
Phyllanthus emblica, 3,5,7,3′,4′,5′-hexahydroxy flavanone-3-O-beta-d-glucopyranoside from
Phaseolus vulgaris, methyl rosmarinate from Hyptis atrorubens, myricitrin from Myrica cerifera,
myricetin 3-O-beta-d-glucopyranoside from Camellia sinensis, amaranthin from Amaranthus
tricolor and licoleafol from Glycyrrhiza uralensis are some of the potent phytochemicals
against SARS-CoV-2 [5].

Selected quinones are useful in treating HSV, parainfluenza virus, HIV, and Prunella
vulgaris infections. Some mannose-specific lectins are also used in treating HIV-1 infection.
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Most of the phytochemicals can be used as reverse transcriptase inhibitors, which are
very important for the inhibition of viral infections [40]. Marine-derived lectins are found
to possess effective antiviral properties, while plant lectins inhibit viral infections, such
as H1N1, H3N2, HIV, and HCV. Lectins obtained from Galanthus nivalis are effective in
treating HIV1, HIV2, and feline immunodeficiency virus. The diversity of lectins helps treat
life-threatening infections, which can lead to epidemics or pandemics [41]. Plants exhibit
immunomodulatory characteristics by producing pro-inflammatory cytokines as well as
different types of interleukins (IL) secreted by monocytes and dendritic cells, thereby
enhancing cell-mediated immunity to fight against viruses [11]. Quinine obtained from the
bark of Cinchona tree has shown potential as anti-SARS-CoV-2 through its two derivatives
viz., chlroquine and hydroxychloroquine [42–44]. It has been used and is presently being
used for treating patients with COVID-19 infection [42–44].

Species of the Veronica genus are consumed in the form of tonics and applied as
ointments to treat influenza and coughs and also used for wound healing, which is known
to be inhibiting the intracellular replication of the viruses and symptomatic episodes of
HSV-1 infection [45]. Studies carried out in Pakistan conclude that 106 plant species of
56 floral families are effective in treating skin diseases caused by viral infections, such as
HIV, also help treat diseases, such as psoriasis, eczema, and leprosy [46]. In vivo studies in
mice show that Ayurveda medicines and Chinese folk medicine use drugs and medicines
that can cure viral infections, such as those caused by HIV1, HIV2, HSV, influenza virus,
Ebola virus, dengue virus, and HCV [47]. Extract from seed coats of the Caryophyllaceae
family shows antiviral activity against HSV and parainfluenza viruses [48].

5. Plants of Indian Origin and Common Use

Numerous plants of important medicinal value in Indian traditional medicine have
been quoted to possess anti-SARS-CoV-2 value [3]. A. indica, Ficus religiosa, Sesbania
grandiflora, M. oleifera, Avicennia marina, Terminalia bellirica, P. amarus, Hippophae rhamnoides,
are few of these plants having antiviral activity, however, their therapeutic applications in
COVID-19 are yet to be investigated [3].

Some spices of Indian origin have also demonstrated anti-SARS-CoV-2 activity by in
silico molecular docking approach [49]. They are considered to be effective inhibitors of
SARS-CoV-2 Mpro enzyme hence having an antiviral effect. However, further validation
requires their effectiveness in clinical trials [49]. Common spices needing evaluation are
red pepper, garlic, fenugreek, turmeric as they contain active ingredients having diverse
medicinal benefits [49]. They may affect proteases [49], RNA binding [50], or envelope
protein ion channel of coronaviruses; Gupta et al. [51] and Sinha et al. [52] investigated
20 different active compounds from the Glycyrrhiza (liquorice) against spike glycoprotein
and non-structural protein-15 endoribonuclease along with lopinavir and rivabirin using
the in silico approach. Among the 20 compounds, glyasperin A has a high interaction
of nonstructural protein-15 endoribonuclease and glycyrrhizic acid showed the ability
to bind spike glycoprotein that inhibited the entry of viruses. Both these compounds
were noted to have the high binding ability with the protein receptor cavity by molecular
dynamics simulation study, respectively. In vitro and in vivo studies have confirmed that
G. glabra shows antiviral property against SARS-related coronavirus, H5N1 influenza A
virus, HIV-1, HSV, influenza A virus, and respiratory syncytial virus [53]. Glycyrrhizin
interferes with oxidative stress induced by H5N1. In lung-derived A549 cells, glycyrrhizin
shows inhibition of replication of H5N1 influenza A virus, and also the expression of
pro-inflammatory cytokines and apoptosis induced by H5N1 [54].

The ACE-2 favors the entry of SARS-CoV-2 and also supports an anti-inflammatory
pathway. Glycyrrhizin and its active metabolite glycyrrhetinic acid have anti-inflammatory
activity through Toll-like receptor 4 antagonism, which may reduce the protection of the
down-regulated ACE-2. Both are involved in reducing the expression of type 2 transmem-
brane serine protease, which is crucial for virus uptake [55]. Pan Lau et al. [56] highlighted
the therapeutic uses of glycyrrhizin for the remedy of COVID-19 by a mechanism, in-
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cluding the binding with ACE-2, inhibiting thrombin, inhibiting reactive oxygen species,
down-regulating pro-inflammatory cytokines, and inducing endogenous interferon (IFN).
Glycyrrhizic acid is used to treat viral hepatitis and also have potential activity against
other viruses, including SARS-related animal and human coronavirus. Glycyrrhizic acid is
an important anti-inflammatory and immuno-active agent that exhibits both membrane
and cytoplasmic effects. It makes cholesterol-dependent disorganization of lipid cores that
favors the entry of the virus into the host [57]. Nimbidin, nimocinol, nimbolide, nimbinene,
isomeldenin, nimbandiol, meliacinanhydride, and zafaral compounds present in A. indica
leaves have the potential to inhibit COVID-19 Mpro [58].

The antiviral capacity of ethanolic and aqueous extracts of O. sanctum was examined by
infecting Madin-Darby Canine Kidney (MDCK) cells with the H1N1 virus and subsequently
treating them with ethanolic and aqueous extracts of O. sanctum; the ethanolic extract
demonstrated strong antiviral activity against H1N1 at 150 µg/mL [59]. In silico analysis
showed that luteolin-7-O-glucuronide and chlorogenic acid present in O. sanctum could
covalently bind to Cys145 of Mpro of SARS-CoV-2 and may hinder the viral enzymes [60].

When HSV-1-infected vero cells were treated with T. cordifolia, it inhibited the growth
of HSV by 61.43% at 10TCID50 [61]. The phytoconstituents in T. cordifolia, such asberberine,
cardiofolioside B, tinosponone, tembetarine, xanosporic acid have been reported to have a
significant docking score. Among these compounds, tinosponone is an important inhibitor
of Mpro of SARS-CoV-2 and also confirmed the stability of the complex by molecular
dynamics simulation [62]. Phytoconstituents present in the A. sativum can reduce the
expression of pro-inflammatory cytokines, such as leptin and this can play a significant role
in prevention of SARS-CoV-2 virus infection [63]. Thuy et al. [64] identified eighteen active
substances, which included seventeen organo-sulfur compounds from A. sativum [64].
This may interact with the amino acids of the ACE2 protein. Particularly, the allyl di
and trisulfide showed strongest anti-coronavirus activity. Moreover, A. paniculata showed
antiviral activity against influenza A. flavi viruses, chikungunya virus, HSV-1, and HIV
antigen-positive H9 cells [65]. Murugan et al. [66] investigated the four phytoconstituents,
including neoandrographolide, andrographolide, 14-deoxy andrographolide, and 14-deoxy
11,12-didehydro andrographolide from A. paniculata by targeting three non-structural
proteins, papain-like proteinase and RNA-directed RNA polymerase and also with the
structural protein [66]. The results of free energy suggest that neoandrographolide pos-
sesses high affinity against SARS-CoV-2 infection. Andrographolide has been noted to
inhibit Mpro of SARS-CoV-2 by docking analysis [67].

The hydro-alcoholic W. somnifera root extract displayed a maximum of 99.9% inhi-
bition of bursal disease virus in chicken embryo fibroblasts at 25 µg/mL in a cytopathic
effect reduction assay [68–71]. Withanolides are natural constituents present in the W.
somnifera and have been used to treat various diseases traditionally. Tripathi et al. [72]
evaluated 40 phytoconstituents from W. somnifera. In silico approach revealed that four
compounds, such as withanoside II, IV, V, and sitoinodoside IX revealed highest docking
energy [72]. Further, withanoside V shows hydrogen-bonding with the active site of the
protein and binding affinity. Quercetin glucoside and withanoside X also favor the interac-
tions at the binding site of non-structural protein-15 endoribonuclease and receptor-binding
domain [73].

C. longa exhibited a decrease in the percentage of cell viability at higher concentra-
tions, and reduction in viral load was observed after 24 h in mice infected with dengue
virus [74]. The antiviral activities of curcumin, gallium-curcumin, and Cu-curcumin were
tested on HSV-1 infected Vero cell line. The cytotoxic concentration (CC50) values for
curcumin, gallium-curcumin, and Cu-curcumin were 484.2 µg/mL, 255.8 µg/mL, and
326.6 µg/mL, respectively, with inhibition concentration (IC50) values of 33.0 µg/mL,
13.9 µg/mL, and 23.1 µg/mL, respectively. From the results, it has been suggested that
curcumin and its derivatives have antiviral activity against HSV-1 [75]. Gupta et al. [76]
screened 267 compounds in C. longa by docking study [76]. The compounds C1 (1E,6E)-
1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and
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C2 (4Z,6E)-1,5-dihydroxy-1,7-bis(4-hydroxyphenyl)hepta-4,6-dien-3-one were found to be
lead agents. Both compounds have a minimum binding score against Mpro protein when
compared to lopinavir and shikonin and also efficiently bind to the catalytic part of the
Mpro protein with higher efficacy.

Polyphenols of green tea [77] and withanolides of W. somnifera [72] are considered
to be Mpro inhibitors of SARS-CoV-2. Ginseng has proven antiviral, immunomodulatory,
anti-inflammatory and antioxidant activity [73]. Ethanolic and aqueous leaf extracts of M.
oleiferai have kaempferol and anthraquione. Molecular peptide docking of these compounds
in comparison with hydroxychloroquine was done and both the compounds revealed
important effects regarding the binding of peptides of SARS-CoV-2 [78]. An aqueous
extract of the Phyllanthus species showed antiviral properties against HSV-1 and HSV-2 [38].
It was also found that Phyllanthus urinaria and P. amarus possessed significant antiviral
activity against HSV-1 and HSV-2 [79]. In a study conducted in Nigeria, leaf extracts of
Macaranga barteri, Ipomoea asarifolia, Mondia whitei, and Ageratum conyzoides, as well as
Terminalia ivorensis bark, showed high antiviral activities against echoviruses [59]. Some
Indian plants possessing antiviral properties are tabulated in Table 1 and their possible
mechanisms are represented in Figure 3.
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Table 1. Indian plants with antiviral properties.

Common Name Botanical and
Family Name Native Parts Used Traditional Uses Antiviral Property

Liquorice or Yashtimadu G. glabra
(Fabaceae)

Central and Southern Asia,
Russia, Northern India
(Sub-Himalayan and Punjab),
Mediterranean, Afghanistan, and
Iran

Roots

Extensively used in Indian
traditional medicine systems like
Ayurveda and Siddha for ulcer,
aliment, purgative, demulcent,
antitussive, and expectorant

SARS-related coronavirus, H5N1 influenza
A virus, HCV, HIV-1. influenza A virus
pneumonia, respiratory syncytial virus
and SARS- CoV-2 [53,55]

Neem A. indica
(Meliaceae)

India, Bangladesh, Burma, Nepal,
and West Africa

Leaves, roots, twigs
and seeds

Different parts of neem are used as
an important ingredient in
Ayurveda, Unani and Homeopathy
medicine

Dengue virus and SARS-CoV-2 [80,81]

Green chireta A. paniculata
(Acanthaceae)

South India, Sri Lanka, Pakistan,
USA, Thailand, Jamaica, and
West Indies

Leaves and roots

The plant has a pivotal role in
Chinese and Indian (Siddha and
Ayurveda) traditional system for
different formulation against
various diseases diabetes, sore
throat, fever, cirrhosis, malaria,
viral hepatitis, liver cancer, and
upper respiratory infections

Chikungunya virus, Influenza A,
Flaviviruses, HIV antigen-positive H9
cells, and SARS-CoV-2 [65,66]

Tulsi O. Sanctum
(Lamiaceae)

India, Iran, Italy, Egypt, the USA,
and France

Whole plant seeds,
leaves and roots

The plant has been well
documented in Ayurveda, Siddha,
and Greek medicinal system which
is used for various treatment
purposes such as fever, common
cold, malaria fever, epilepsy,
bronchitis, migraine, headache,
convulsions, hepatic disease,
stomach disorders, and heart
diseases

H1N1 and SARS-CoV-2 [59,60]
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Table 1. Cont.

Common Name Botanical and
Family Name Native Parts Used Traditional Uses Antiviral Property

Turmeric C. longa
(Zingiberaceae)

India, Nepal, China, Bangladesh,
and Pakistan Rhizomes

In Ayurveda, turmeric has a long
history of use because of the
presence of various beneficial
properties used in the treatment of
diabetic wounds, fungal infection,
cough, rheumatism, hepatic and
biliary disorder

Dengue virus, HSV-1 and SARS-CoV-2
[31,74]

Ashwagandha W. somnifera
(Solanaceae)

India, Sind, Baluchistan,
Afghanistan, and Sri Lanka Roots

The plant is well formulated in
Ayurveda, Siddha, Unani and
Tibetan Medicine system.
Traditionally, W. somnifera has been
used to treat tumor, stress,
immunomodulatory, depression,
inflammatory, adaptogenic, and
nervous disorder. It is also used in
patients with behavioural
disturbances for mood stabilization

HSV-1 and SARS-CoV-2 [68–71]

Garlic A. sativum
(Alliaceae)

Central Asia, China,
Mediterranean region, Mexico,
Egypt and in Southern and
Central Europe

Cloves, flowers and
leaves

Garlic has been traditionally used
as hypolipidemic, antihypertensive
and anti-thrombotic agent in
Ayurvedic, Chinese, and Islamic
medicine

Influenza virus A and SARS-CoV-2
[63,64,82]

Guduchi T. cordifolia
(Menispermaceae) Indian subcontinent and China Roots, stem and

leaves

The plant is a common shrub used
as anti-allergic, anti-inflammatory,
antiperiodic, anti-diabetic„ and
anti-spasmodic properties in
Ayurvedic medicine

HSV-1 and SARS-CoV-2 [62,83]

Drumstick M. oleifera
(Moringaceae)

Sub-Himalayan tracts of India,
Bangladesh, Pakistan, and
Afghanistan

Roots, flowers, leaves
and pod

The traditional use of plant
includes antispasmodic,
antiparalytic, antiviral, analgesic,
anti-inflammatory, antiepileptic,
stimulant and cardiac circulatory
tonic

HSV-1 and SARS-CoV-2 [78,84]
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Polysulphides are sulphates attached to a carbohydrate backbone or any other poly-
mer. Sulphated polysaccharides have antiviral activity against viruses, especially against
some enveloped viruses such as HSV in vitro [85,86], human respiratory syncytial virus,
cytomegalovirus, DENV-2, DENV-3, influenza A and B virus, and human hepatoma HepG2
virus. The polysulphates protect against HIV by shielding the CD4+ cells against the viral
envelope glycoprotein (gp120) at its positively charged V3 loop, that is essential for the
attachment of the virus to the primary binding site called the surface heparan sulphate
before specific binding occurs through CD4 receptors [87]. This mechanism explains its
antiviral activity against enveloped viruses. Therefore, it can be speculated that polysul-
phates might be beneficial in the case of SARS-CoV-2, which is also an enveloped virus,
after performing proper investigations [85].

6. Plant-Specific Compounds and Antiviral Mechanisms
6.1. Flavonoids

Flavonoids are known for their antiviral activity. Many flavonoid compounds are
well-known to act as antiviral agents by inhibiting binding and entry of viral, its replication,
translation of the viral protein, the formation of envelopes using glycoproteins complexes,
and virus release [88]. Flavonoids help in the signaling process in the host cell by activating
gene transcription factors and also by secreting cytokines [89]. The structure–activity
relationship of flavonoids shows that it is a good inhibitor of the neuraminidase enzyme of
influenza virus, thereby preventing its replication [90]. Flavonoids have shown potential
in therapy against COVID-19 [91]. They may inhibit SARS-CoV-2 entry into the cell [92]
hence have been used in the therapy of COVID-19 patients [93].

6.2. Catechins

Green tea contains important catechins (polyphenols), which are of different types,
such as (–)-epigallocatecheingallate (EGCG), (–)-epicatechingallate (ECG), and (–)- epogal-
locatechin (EGC), and has high medicinal values with health benefits [94]. In a quantitative
study performed using RT-PCR, high concentrations of EGCG and ECG, but not EGC,
decreased viral RNA synthesis in MDCK cells [95]. ECG and EGCG affected the activity of
neuraminidase by inhibiting it more efficiently than EGC [95]. The neuraminidase enzyme
in viruses is important in transporting budding viruses to other cells by cleaving the sialic
acid present in glycoproteins located in the envelope. Similarly, EGCG inhibits both HSV-1
and HSV-2 by binding to their envelope proteins such as gB, gD, or other envelope proteins,
which help for the fusion of the virus to cells [96]. Catechin binds the receptor-binding
domain of viral S-protein, as well as ACE2 of the host, thus may serve as a therapeutic
agent for COVID-19 [97]. In one of the docking analysis study, compound EGCG found
in green tea revealed the highest binding affinity with S protein of SARS-CoV-2, which
reflects its potential usage in preventing or treating the COVID-19 patients.

6.3. Quercetin

Quercetin is a flavonoid compound present in vegetables and fruits [98]. It is found to
acts against the HCV virus by inhibiting the action of a heat shock protein that is involved
in non-structural protein 5A-mediated translation of viral internal ribosome entry site,
which usually occurs in response to stress [99]. Quercetin acts against HCV through the
inhibition of HCV NS3 protease, which stops the replication of HCV in the sub genomic
RNA replicon cell system [100]. Quercetin halts rhinovirus pathogenesis at different stages
of the life cycle of the virus, including endocytosis, protein synthesis, and viral genome
transcription [101]. Furthermore, quercetin, along with myricetin, quercetagetin, and
baicalin, affected the growth of the Rauscher murine leukemia virus RLV [102]. Quercetin
along with vitamin C has been proposed to have the synergistic effect in treating COVID-19
patients [93]. Synergistic antiviral, antioxidant, and immunomodulatory activities and
the ability of ascorbate to recycle quercetin, increase the effectiveness of quercetin against
SARS-CoV-2 [93].
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6.4. Apigenin and Baicalin

Apigenin acts against the African swine fever virus by decreasing protein synthesis,
thereby causing a three-log decrease in the yield of viruses and is also effective against DNA
viruses such as adenoviruses and (hepatitis B virus) HBV [103]. It shows potent antiviral
effects against RNA viruses such as picornavirus and acts by inhibiting viral IRES activity,
thereby inhibiting the synthesis of viral proteins [104,105]. The translation of enterovirus-71
is disrupted by inhibition of the association of viral RNA with transacting factors that
regulate enterovirus-71 [106]. Apigenin is found to disturb HCV virus replication by
decreasing the microRNA122, which is a liver-specific microRNA [107].

Baicalin acts against HBV by disrupting its DNA and viral protein synthesis [108]. In
H5N1 virus infection, baicalin lowers the levels of interleukin-6 and -8 (IL-6; IL-8) produced
but does not interfere with IP-10 levels [109]. Baicalin can inhibit the synthesis of human
cytomegalovirus DNA and proteins; however, it does not affect the viral polymerase activity.
Baicalin, by interfering with neuraminidase activity, stops the replication of H5N1 in the
human lung- and monocyte-derived macrophages [109]. H1N1-infected BALB/c mice
administered baicalin orally showed decreased lung virus titers and an increased mean
time of death [110]. The results were also found in mice infected with Sendai virus [111].
Studies have shown that baicalin could help in the production of IFN-γ by CD4+ and CD8+

T cells during infection with influenza virus [112]. In silico studies on baicalin strongly
suggest that it has a good binding ability with the NS3/NS2B protein of dengue virus;
however, baicalin shows better interactions with NS5 protein.

6.5. Luteolin

Luteolin and luteolin-rich fractions are found to have antiviral property, including
SARS–CoV, chikungunya virus, Japanese encephalitis virus, and rhesus rotaviruses [113–116].
Luteolin inhibited HIV-1 by preventing clade B- and C- Tat-driven long terminal repeat
(LTR) trans activation [117]. In the case of Epstein-Barr virus, luteolin deregulated the
binding of transcription factor Sp1, which decreased the activity of early genes Zta and
Rta [118]. Above all, it was found to be the most potent compound among 400 natural
compounds against enterovirus-71 and coxsackievirus A 16 infections, since it disrupts
viral RNA replication [119]. Luteolin has antiviral, anti-inflammatory, neurotrophic actions,
anti-oxidant, anti-cancer, and anti-apoptotic activities [120]. It has shown the ability to
inhibit the entry of SARS-CoV virus and fusion with human receptors, thus may have
potential anti-SARS-CoV-2 activity [120].

6.6. Kaempferol

The compound kaempferol obtained from Ficus benjamina has demonstrated to have
a protective effect on HSV-1 and HSV-2, except forits aglycone form [121]. A rhamnose
residue containing kaempferol inhibits coronavirus release by affecting 3a channels [122].
Kaempferol and kaempferol-7-o-glucoside display inhibitory effect on HIV 1 reverse tran-
scriptase. Besides, kaempferol 3,7-bisrhamnoside isolated from Taxillus sutchuenensis, is
effective against HCV NS3 protease function [123]. In the case of H1N1 and H9N2 influenza
viruses, kaempferol affects neuraminidase activity using specific functional groups [124].
RNA frame shift site (fs RNA) is found to be the target site of kaempferol, which serves to
inhibit the Japanese encephalitis virus [125]. Kaempferol has more binding stability and its
structural features have shown that it affects binding at the site of N3 in the SARS-CoV-2
Mpro [126].

6.7. Alkaloids

Lycorine is the most important alkaloids found in the Amaryllidaceae family. The
lycorine was found to inhibit the poliomyelitis virus in Vero cells at a low concentration
of 1 µg/mL but was cytotoxic at a concentration of 25 µg/mL [127]. Lycorine obtained
from Lycoris radiata had significant antiviral activity against two strains (BJ001, BJ006) of
SARS-CoV grown on Vero cells, with an EC50 at 15.7± 1.2 nM, CC50 at 14,980.0± 912.0 nM,
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and a selective index (SI), which is greater than 900 [128]. This SI index is a ratio between
the antiviral effect and the toxicity of a compound; the greater the SI value, the safer the
drug could be when administered in vitro [129]. Another compound, sophoridine, was
found to have antiviral activity against the Enterovirus-71, when Vero cells were pretreated
with sophoridine before being infected with this virus [130]. In a study conducted with
coxsackievirus in mice, sophoridine obtained from Sophora flavescens had a potential role in
enhancing the expression of IFN-γ and interleukin-10 (IL-10) to increase the host resistance
response against the virus [131]. Among the ipecac, alkaloidsemetine, ipecac alkaloids
and analogues are possible antiviral agents for CoVs, hence having prospects for use in
COVID-19 therapy [132].

6.8. Saponins

Saponin isolated from Anagallis arvensis was found to have antiviral property against
poliovirus-2 and HSV-1 by protecting the host cells from structural damage [133]. Tormentic
acid glucosyl ester, a triterpenoid saponin demonstrated antiviral property against HSV-1
by inhibiting its viral capsid protein synthesis and DNA replication, respectively [134].
Administration of polyphylla saponin I (obtained from Paris polyphylla, 5–10 mg/kg) and
oseltamivir (3 mg/kg) to mice infected with influenza virus decreased viral hemagglu-
tination titers and reduced pathological conditions in lung tissues of the infected mice,
thereby reducing their mortality [135]. Saponins may inhibit the cellular attachment, entry,
adsorption, and penetration of a virion into the host cell. Saponins possess immunomodula-
tory, anti-inflammatory activities, anti-proliferative effect, and antiviral activities including
SARS-CoV [4,136,137], hence may have a role in curing COVID-19 patients [136].

6.9. Lignans

Lignans are phenolic compounds derived from the shikimic acid biosynthetic path-
way in plants [138]. Niranthin obtained from P. niruriacts acts against the HBV virus by
inhibiting its antigen expression in vitro; it also inhibits duck HBV by inhibiting its DNA
replication [139,140]. Nordihydroguaiaretic acid, found in the leaves of Larrea tridentata,
shows antiviral properties against various viruses, including HCV, dengue virus, influenza
A virus, and zika virus by inhibiting genome replication and viral assembly. It affects HCV
proliferation by altering host lipid metabolism, interfering with the lipid metabolism and it
also suppresses the replication of influenza A virus [140–144]. Terameprocol, semisynthetic
compound from lignin, which is derived from the leaves of L. tridentata acts against the
West Nile virus by affecting viral replication against poxvirus by inhibiting the cell-to-cell
transfer of the virus, and against HSV and HIV by preventing viral replication through
inhibition of the binding with host transcription factor [145–149]. Arctigenin demonstrates
antiviral properties including influenza A virus and HIV-1 by inducing the release of
IFNs and also by inhibiting the expression of the proteins (p17 and p24) of the HIV-1
virus [150–154].

The addition of yatein, a compound obtained from the dried leaves of Chamaecyparis
obtusa, to HeLa cells inhibited the expression of HSV-1ICP0 and ICP4 that arrests DNA
synthesis in HSV [155,156]. The compound diphyllin obtained from epigeal parts of the
genus Haplophyllum inhibits the vacuolar ATPase in zika virus infection; it also interferes
with the downstream replication of influenza A virus to inhibit its infection [157–161].
Patentiflorin obtained from the leaves and stem of Justicia gendarussa acts against zika
virus by impeding its fusion with the host cellular membrane, thus preventing infection by
avoiding the acidification of lysosomal or endosomal cells of the target. This acts against
HIV-1 by inhibiting its reverse transcriptase enzyme [160–164]. Clemastanin B affects viral
endocytosis and ribonucleoprotein export from the nucleus while acting against influenza
A virus [164–167]. Silymarin obtained from the seeds of Silybum marianum inhibits HCV
production by increasing the expression of anti-inflammatory and anti-proliferative genes,
but it does not affect serum albumin levels [168,169]. Thus, having considerable antiviral
effects through the inhibition of viral replication, lipid metabolism, apoptosis, protein, and
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cytokine expression; lignins may have potent anti-SARS-CoV-2 actions as they have shown
effects against SARS-CoV also [170,171].

6.10. Tannins

Tannins have potential in targeting viral replication at different stages like attack-
ing their attachment, host replication process, viral particle assembly, and protein trans-
port [172]. Ellagitannins, 1,3,4,6-tetra-O-galloyl-β-d-glucose and geraniin present in P.
urinaria were found to be useful in suppressing the HSV-1 and HSV-2 respectively [173].
Corilagin and geraniin (ellagitannins) found in Phyllanthus amarus reduced the interaction
of HIV and its replication [174]. Punicalagin and chebulagic acid, two hydrolysable tannins
present in Terminalia chebula have been successful in inhibiting the viral entry and transport
of virus in HSV-1 [175].

According to the study conducted with the combination of ellagitannins like castala-
gin, vescalagin, and grandinin with acyclovir, the effect of castalagin and vescalagin versus
HSV-1 was found to be identical to acyclovir, which interpreted that the combination of
ellagitannins with acyclovir was efficient [176,177]. Castalagin followed by vescalagin
have highest activity against alphaherpevirus-1 [178]. Castalagin was also found to in-
hibit the HSV-1 replication with its highest sensitivity being recorded at 0–3 h post viral
inoculation [179].

Various plants and herbs have shown effective antiviral and immune-boosting po-
tentials against emerging viruses such as SARS-CoV, zika, ebola, nipah virus, and other
highly pathogenic viruses [8,128,166,180–183]. Apart from developing effective vaccines,
therapeutics, and antiviral drugs, the potent antiviral applications of various plants, plant
extracts and herbs are required to be endorsed and proliferated optimally by strength-
ening researches and development activities along with conducting appropriate clinical
trials and validation experiments to combat COVID-19 pandemic and its high challenges
posed [12,32,184–191]. Advances in the fields of biotechnology, immunology, biochemistry,
pharmacology, pharmaceuticals, and nanotechnology may be warranted to their full poten-
tial for developing successful antiviral drugs and medicines out of these safe and valuable
natural resources against SARS-CoV-2 [192–200]. Beneficial applications of medicinal val-
ues of plants and herbs could lessen the high incidences, devastating scenario, and public
health concerns of SARS-CoV-2/COVID-19. A summary of plant compounds and their
antiviral properties is presented in Table 2 while an overview on modes of antiviral action
of various phytochemicals/compounds and its derivatives are presented in Table 3 and the
Figure 4 represented the antiviral properties of the plant compounds.
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Table 2. Plant compounds and their antiviral properties.

S. No Name of the Compound Structure Antiviral Property against Reference

1.

1. FLAVONOIDS
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virus, respiratory 
syncytical virus, 

Newcastle disease virus, 
HIV, and HBV 

[108,110,112,120,

202,203] 

1.5. Luteolin 

(O. sanctum) 

 

SARS-CoV-2, rhesus 
rota virus, 

chickenkuniya virus, 
and Japanese 

encephalitis virus 

[113–116,120,204] 

1.6. Kaempferol  
(F. benjamina)  

HSV-1, HSV-2, HIV, 
HCV, H1NI, H9N2, 

Japanese encephalitis 
virus, and SARS-CoV-2 

[121,123,124,126] 

HSV-1, HSV-2, HIV, HCV,
H1NI, H9N2, Japanese
encephalitis virus, and

SARS-CoV-2

[121,123,124,126]
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Table 3. Mechanism of antiviral action of phytochemical compounds and its derivatives.

S. No Name of the Compound Mechanism of Action Reference

1. Polysulphates (sulphated
polysaccharides)

• Shields the viral envelope gp120 that is essential for the viral
attachment [85–87,213]

2. EGCG and ECG

• Decreases the viral attachment in MDCK cells
• EGCG inhibits the neuraminidase activity more efficiently

than EGC
• EGCG binds to the envelope protein Gb, Gd or other

envelope proteins of HSV-1 and HSV-2 that are essential for
its fusion with the host cell membrane

• Catechin binds to the ACE2 and receptor binding domain of
viral S-protein of SARS-CoV-2

[95,97,201]

3. Quercetin

• In HCV the heat shock protein activity is inhibited that is
essential for non-structural protein 5A mediated viral
ribosome entry site and it also inhibits NS3 protease
involved in HCV replication

• Stops the rhinovirus pathogenesis at various steps like
endocytosis, protein synthesis and viral genome
transcription

• Vitamin C along with quercetin has synergistic effect in
treating COVID-19 patients

[93,99–101]

4. Apigenin

• Acts against the African swine fever virus by decreasing its
protein synthesis

• In picrona virus it inhibits the viral protein entry
• In enterovirus-71 it inhibits the viral RNA association with

transacting factors
• In HCV it inhibits the viral replication

[103–106,202]

5. Baicalin

• In case of HBV, it inhibits the template for viral protein and
DNA synthesis

• In the case of HCV also it inhibits the protein and RNA
synthesis

• The replication of the avian influenza virus is inhibited by
interfering with the neuraminidase activity

• In influenza A virus infection it stimulates the production of
IFN-γ in the CD4+ and CD8+ cells

• It was found to have increased binding property with
NS3/NS2B protein and also has closer interaction with NS5
protein of the dengue virus

[108–110,112,120]

6. Luteolin

• In HIV it inhibits the clade B and C–T at driven
transactivation

• In Epstein-Barr virus it decreases the activity of early genes
Rta and Zta by deregulating the binding of the transcription
factor Sp1

• In enterovirus 71 and coxsackievirus A 16 it disrupts the
viral replication

• Luteolin inhibits the viral entry and fusion of SARS CoV-2
with human receptors

[113–120,210]
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Table 3. Cont.

S. No Name of the Compound Mechanism of Action Reference

7. Rhamnose residue containing
kaempferol

• In HIV, it inhibits the reverse transcriptase enzyme
• In H1N1 and H9N2, it affects the neuraminidase activity
• In Japanese encephalitis virus, it inhibits the RNA frame

shift
• Inhibits coronavirus release by effecting 3a channel
• Inhibits N3 binding site in the SARS-CoV-2 Mpro

[122,124–126]

8. Kaempferol
3,7-bisrhamnoside

• Effective against HCV NS3 protease [123]

9. Triterpene saponin

• It acts against the HSV-1 and poliovirus 2 by protecting the
host cells from cell damage and also by decreasing the viral
production

[131]

10. Triterpenoid saponin TS21

• In HSV it inhibits the viral capsid protein synthesis and also
replication

• Saponins has anti-inflammatory activities, anti-proliferative
effect, immunomodulatory and antiviral activities including
SARS-CoV

[134–136]

11. Niranthin

• In HBV infection it inhibits the antigen expression
• In the case of duck HBV infection it inhibits the DNA

replication
[139,140]

12. Nordihydroguairetic acid

• In the case of HCV, it affects the viral proliferation by
inhibiting the genome replication and viral assembly

• It suppresses the influenza A virus replication
[141–144]

13. Terameprocol • It inhibits the West Nile virus replication [145–149]

14. Arctigenin

• It inhibits the expression of P17 and P24 proteins of the HIV
• In the case of HIV-1 and HSV, it protects the host by

increasing the production of IFN
[150–154]

15. Yatein
• In HeLa cells, it inhibits the HSV-1 virus DNA synthesis by

inhibiting the expression of ICP0 and ICP4 [155,156]

16. Diphyllin

• It inhibits the vacuolar ATPase in case of zika virus
• In the case of influenza A virus, it inhibits the infection by

interfering with the downstream process
[157–161]

17. Patentiflorin A

• Prevents the fusion of the cell membrane of the host by
inhibiting the acidification of endosomal and lysosomal cells

• In HIV it inhibits the reverse transcriptase
[160–164]
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Table 3. Cont.

S. No Name of the Compound Mechanism of Action Reference

18. Clemastanin B
• In influenza A virus it affects the viral endocytosis and also

the ribonucleoprotein export [164–167]

19. Silymarin C

• It inhibits the HCV production and also increases the
anti-inflamatory and antiproliferative gene expression

• Lignins exhibits antiviral property by inhibition of viral
replication, protein and cytokine expression, and apoptosis
thus they may have effect on SARS-CoV-2

[168–171]

7. Conclusions

This review presents detailed information about plants and herbs that are widely used
to treat viral infections and their phytochemicals that possess antiviral properties. The
mechanisms by which the phytochemicals act against the viruses are also elaborated in
the review for better understanding. Future studies employing in vitro pharmacological
tools to establish the structures of the compounds that inhibit SARS-CoV-2 infection will
help in finding a cure for diseases that trigger fast-spreading pandemics. In-depth studies
for in vitro and in vivo evaluation of these medicinal plants and their phytochemicals are
warranted for assessing anti-SARS-CoV-2 activities. Exploiting the various modes of action
of phytoconstituents would lead to practical utilization of the natural resources of plants
and herbs for combating this pandemic virus effectively by designing and developing
potent drugs and medicines.
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