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Introduction
During development, a neuron extends its axon through a com-
plex and precise path to reach its final destination by sensing ex-
tracellular molecules called guidance cues. These cues are either 
locally tethered to, or diffuse from, intermediate or final targets 
and are sensed by the growth cone, a complex, motile structure 
at the leading edge of the extending axon. A wide range of ex-
trinsic signals such as guidance molecules and growth factors  
are detected through specific receptors on the surface of growth 
cones and are integrated and translated into structural changes of 
the cytoskeleton that determine the rate and direction of exten-
sion (Hedgecock et al., 1990; Kennedy et al., 1994; McFarlane 
and Holt, 1996; Tessier-Lavigne and Goodman, 1996; Smith, 
1988; Dickson, 2002).

The navigational movement of the growth cone has numer-
ous parallels with the chemotactic migration of cells, except  
that growth cones rarely reverse direction, and many aspects of 
the underlying molecular mechanisms of migration are shared  
(Mortimer et al., 2008). However, the growth cones are often lo-
cated far from their neuronal cell bodies (for example, retinal 
ganglion cells must send their axons several millimeters to the 
midbrain), and the spatial separation from the nucleus endows 

distinct characteristics to the neuronal growth cone. When a 
growth cone is severed from the cell body, it continues to exhibit 
chemotropic responses, indicating that the growth cone functions 
as a semi-autonomous apparatus that contains all the machinery 
required to sense and respond to the extracellular environment 
(Harris et al., 1987; Campbell and Holt, 2001). The finding that 
the cue-induced responses of severed axons are hampered by pro-
tein synthesis inhibitors provides strong evidence that the autono-
mous nature of the growth cone involves local mRNA translation 
(Campbell and Holt, 2001; Wu et al., 2005). In the last decade, 
scientific evidence has accumulated indicating that the local 
mRNA translation plays a potentially important role in axon 
guidance. Here, we review the basic roles and mechanisms of 
local protein synthesis in axon guidance and discuss recent find-
ings that localized translational control is involved in guidance 
decisions in vivo. A comprehensive review of axon guidance is 
beyond the scope of this review, and the reader is referred to 
several excellent recent reviews that cover this topic (Mortimer 
et al., 2008; Quinn and Wadsworth, 2008; Geraldo and Gordon-
Weeks, 2009; Bai and Pfaff, 2011; Kolodkin and Tessier-Lavigne, 
2011; Tojima et al., 2011; Vitriol and Zheng, 2012; Dudanova 
and Klein, 2013).

Axon guidance and spatiotemporal  
protein distribution
A key process in axon guidance is the chemotropic response of 
growth cones, in which guidance cues control the growth cone 
motility through directed cytoskeletal remodeling. The four clas-
sic classes of guidance cues—netrins, semaphorins, slits, and 
ephrins—elicit attractive or repulsive responses in growth cones 
in vitro via specific receptors (Table 1; Kapfhammer and Raper, 
1987; Kennedy et al., 1994; Serafini et al., 1994; Cheng et al., 
1995; Drescher et al., 1995; Fan and Raper, 1995; Brose et al., 
1999; Kidd et al., 1999). The list of guidance molecules has ex-
panded enormously in recent years as other classes of molecules 
such as morphogens, growth factors, and cytokines have been 
shown to influence axon growth (McFarlane and Holt, 1996; 
Trousse et al., 2001; Chalasani et al., 2003; Lyuksyutova et al., 
2003). Most cues seem to act bifunctionally in the sense that  
the response they elicit, attraction versus repulsion, depends on 

Axon guidance plays a key role in establishing neuronal cir-
cuitry. The motile tips of growing axons, the growth cones, 
navigate by responding directionally to guidance cues 
that pattern the embryonic neural pathways via receptor-
mediated signaling. Evidence in vitro in the last decade 
supports the notion that RNA-based mechanisms contribute 
to cue-directed steering during axon guidance. Different 
cues trigger translation of distinct subsets of mRNAs and 
localized translation provides precise spatiotemporal con-
trol over the growth cone proteome in response to localized 
receptor activation. Recent evidence has now demonstrated 
a role for localized translational control in axon guidance 
decisions in vivo.
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manner (Campbell and Holt, 2001; Guirland et al., 2004; 
Bouzigues et al., 2007).

Among these mechanisms, local protein synthesis has the-
oretical advantages in certain situations (Lin and Holt, 2007). 
Particularly, for example, when the ectopic presence of a protein 
is harmful to the axon/growth cone functions, then local transla-
tion coupled with the transport of translationally silenced mRNA 
is potentially advantageous. When a rapid (minutes) and local in-
crease of a protein is required in growth cones during processes 
such as chemotropic responses, translation of mRNAs stored in 
the growth cone is a much faster way to express the genes than 
axonal transport of proteins from the cell body (the velocity of 
fast axonal transport is 1.0–5.0 µm/s [Stokin and Goldstein, 
2006]). Thus, local translation provides a fast, “on demand” sup-
ply of a protein that, within the confines of a subcellular compart-
ment where just a few de novo molecules (e.g., receptors) can 
make a functional difference, enables exquisite tuning of growth 
cones to their microenvironment.

Evidence for local mRNA translation and 
its physiological roles in axon guidance
The first evidence for protein synthesis in axons was reported 
more than 40 years ago using metabolic labeling techniques 
(Koenig, 1967; Giuditta et al., 1968). These initial findings were 
criticized at the time because the small amount of axonal labeling 
(only a small percentage of the cellular total) was thought to be 
due to low-level contamination by cell body material. Ultrastruc-
tural studies in the 1970s, however, reported the presence of ribo-
somes in cultured growth cones and young axons (Tennyson, 
1970; Zelená, 1970; Bunge, 1973) and, in the last 15 years, bio-
chemical and immunocytochemical approaches have confirmed 
the presence of axonal ribosomes (Koenig, 1979; Giuditta et al., 
1991; Koenig and Martin, 1996; Bassell et al., 1998) along 
with other components of the translation machinery, including 

several modulating factors such as the intracellular level of sec-
ond messengers, such as cAMP and cGMP (Ming et al., 1997; 
Song et al., 1998), the molecular composition of the extracellular 
microenvironment (Höpker et al., 1999), and the age of the growth 
cone (Campbell et al., 2001; Shewan et al., 2002). Axons of pro-
jection neurons grow long distances before reaching their final 
target and their pathway is broken up into molecularly distinct 
steps with intermediate targets acting as “stepping stones” (Bate, 
1976; Zou et al., 2000). The floorplate at the midline of the spinal 
cord, for example, secretes netrin-1 and acts as an attractive inter-
mediate target for commissural axons (Tessier-Lavigne et al., 
1988; Kennedy et al., 1994). Remarkably, in order to progress  
beyond the floorplate, growth cones use an anti-linger mechanism 
which coordinately switches off attraction and turns on repulsion 
to the floorplate (Kidd et al., 1998; Zou et al., 2000). As discussed 
later, recent evidence indicates that local translation partly con-
trols this switch (Colak et al., 2013).

An important aspect of mechanisms underlying axon 
guidance is the spatial and temporal control of protein distribu-
tion at the subcellular level. For example, an extracellular gradi-
ent of a guidance cue elicits not only the polarized activation or 
repression of components of intracellular signaling pathways, 
but also the asymmetric distribution of proteins including cyto-
skeletal proteins and cell surface receptors in the growth cone 
(Lin and Forscher, 1993; Zhou et al., 2002; Leung et al., 2006; 
Yao et al., 2006; Bouzigues et al., 2007). Furthermore, the spa
tiotemporally restricted expression of guidance cue receptors 
has been demonstrated to be essential for the switching of the 
growth cone response to the cues at intermediate targets (Chen 
et al., 2008). Localized patterns of protein distribution in cellu-
lar compartments occur mainly by three different mechanisms: 
protein transport (including exocytosis/endocytosis), protein 
degradation, and local protein synthesis. All of these mecha-
nisms have been implicated in axon guidance in a nonredundant 

Table 1.  Guidance cues and local protein synthesis

Guidance 
cue

Receptor Effect on 
protein synthesis

Target mRNA involved 
in axon guidnace

Response mediated 
by protein synthesis

Neuron type Reference

Netrin1 DCC, UNC-5 Induce -actin Attractive RGC Campbell and Holt, 2001; Leung 
et al., 2006; Yao et al., 2006; 
Welshhans and Bassell, 2011

Sema3A Neuropilin1, 
PlexinA

Induce Rho A 
NFPC

Repulsive 
Caudal turn

DRG 
RGC

Campbell and Holt, 2001; Wu et 
al., 2005; Leung et al., 2013

Slit2 Robo3 Induce Cofilin Repulsive RGC Campbell and Holt, 2001; 
Piper et al., 2006

Ephrin A EphA Suppress ND Repulsive RGC Nie et al., 2010
Ephrin B EphB None None None RGC Mann et al., 2003
Engrailed ND Induce ND Attractive, Repulsive RGC Brunet et al., 2005
BDNF TrkB Induce -actin Attractive, Repulsive Spinal, 

hippocampal,
 and cortical

Zhang et al., 1999; Yao et al., 
2006; Sasaki et al., 2010

SFRP1 Fz2 Induce ND Attractive RGC Rodriguez et al., 2005
NGF TrkA Induce Par3, -actin 

WAVE1, cortactin, Arp2
Elongation
Branching

RGC
DRG

Hengst et al., 2009 
Spillane et al., 2012

CSPGs NgR1, 3 Induce Rho A Axonal growth 
inhibition

DRG Dickendesher et al., 2012; 
Walker et al., 2012

BDNF, brain-derived neurotrophic factor; SFRP1, secreted frizzled-related protein 1; NFPC, NF-protocadherin; NGF, nerve growth factor; CSPGs, chondroitin sulfate 
proteoglycans; RGC, retinal ganglion cell; DRG, dorsal root ganglion neuron. ND, not determined.
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beyond the protein synthesis–sensitive range in DRGs. It is note-
worthy that all the other results reported in this study indicated that 
Sema3A does stimulate axonal protein synthesis (e.g., increased 
amino acid incorporation, activation of eIF4E). The differential 
requirement for protein synthesis at low versus high cue concentra-
tions leading to the activation of distinct signaling pathways may 
enable growth cones to extract more information from a limited set 
of guidance cues and/or may be an important part of the mecha-
nism underlying growth cone adaptation (Piper et al., 2006).

Roles of local mRNA translation in  
axon guidance
The studies using translational inhibitors led to the question of 
what proteins are the critical targets of local translation for axon 
guidance. -Actin was the first mRNA to be visualized using  
in situ hybridization in rat cortical axonal growth cones (Bassell  
et al., 1998) and has subsequently been found to be universally 
present in growing axons. A gradient of netrin-1 induces asym-
metric translation of -actin on the side of the growth cone closest 
to the gradient source, and the suppression of local synthesis of  
-actin by antisense oligonucleotides or morpholinos abolishes 
growth cone attraction in Xenopus (Fig. 1; Leung et al., 2006; 
Yao et al., 2006). On the other hand, repulsive cues such as Slit2 
and Sema3A induce the axonal translation of cytoskeletal regu-
lators such as RhoA and cofilin, both of which control actin 
polymerization, and the inhibition of RhoA translation impairs 
Sema3A-induced growth cone collapse (Fig. 2; Wu et al., 2005; 
Piper et al., 2006). This indicates that cue-induced local mRNA 
translation modulates guidance pathways through the spatio-
temporal up-regulation of their components. Importantly, these 
local translation events are rapid, on the time scale of minutes, 
with de novo proteins appearing before overt collapse and turn-
ing occurs. These studies support the idea that the local synthe-
sis of -actin and its regulators mediate chemotropic responses 
of growth cones through promoting spatially polarized assem-
bly or disassembly of the cytoskeleton (Fig. 1).

Recent studies conducted in vivo showed that local protein 
synthesis is also involved in regulatory mechanisms that orches-
trate the chemotropic responses of growth cones to navigate pre-
cisely in the developing nervous system. During midline crossing, 
several receptors for repulsive guidance cues are expressed only 
on distal axon segments. This restricted expression pattern is im-
portant for neutralizing the repulsion between the midline interme-
diate targets, which express the repulsive cues, and precrossing 
axons. A previous study based on a fluorescent translation reporter 
analysis suggested that the spatially restricted expression of 
EphA2 in distal axon segments occurs through translational 
control (Brittis et al., 2002). Recent reports have revealed a novel 
RNA-based mechanism for the expression control in the midline 
crossing (Colak et al., 2013). The receptor Robo3.2, whose  
interaction with Slit mediates the repulsive response of axons,  
is selectively expressed on the post-crossing distal segment of 
commissural axons. This restricted expression is crucial for the 
axons to cross through the Slit-expressing midline (Chen et al., 
2008). The Robo3.2 transcript has a premature termination 
codon (PTC) and is a potential target for nonsense-mediated 
mRNA decay (NMD), a translation-dependent quality-control 

translation initiation factors, mRNA, tRNA, aminoacyl-tRNA 
synthetases, elongation factors, Golgi, and endoplasmic reticu-
lum proteins (Black and Lasek, 1977; Giuditta et al., 1977; Gioio 
et al., 1994; Giustetto et al., 2003; Merianda et al., 2009). Axonal 
translation was first linked with axon guidance by experiments 
done on isolated axons (severed from their cell bodies) showing 
that metabolic labeling representing new protein synthesis in-
creased significantly after addition of the guidance cues netrin-1 
and semaphorin 3A (Sema3A; Campbell and Holt, 2001).

The functional role(s) of local mRNA translation in axon 
guidance has been challenging to address, particularly in vivo, 
partly due to the technical difficulty of inhibiting protein synthesis 
exclusively in the axonal compartment. However, techniques such 
as compartmentalized cultures, antisense morpholinos, and small 
interfering (si)RNA are enabling the block of translation of spe-
cific mRNAs with increasing spatial and temporal precision. This 
was first demonstrated using chemotropic assays in Xenopus reti-
nal ganglion cell (RGC) axons separated from their cell bodies. In 
these surgically isolated axons, translation inhibitors (anisomycin 
or cycloheximide) were found to block the attractive turning re-
sponse of growth cones to a gradient of netrin-1 (Campbell and 
Holt, 2001). A similar dependence on protein synthesis was ob-
served with the chemotropic “collapse” response of growth cones 
to repellents such as Sema3A or Slit2 (Campbell and Holt, 2001; 
Wu et al., 2005; Piper et al., 2006). In the growth cone collapse 
assay, global application of a repellent cue triggers the rapid  
(10 min) withdrawal of filopodia and lamellipodia causing growth 
cones to lose their expanded complex morphology and assume  
a cigar-shaped (collapsed) profile that is easily quantified. Subse-
quent in vitro studies, using pharmacological translational inhibi-
tors or antisense morpholinos, which block translation of specific 
mRNAs, showed that local mRNA translation plays a prominent 
part in guidance processes that are regulated by a variety of extrin-
sic cues, such as Slit2, engrailed 1 and 2, and brain-derived neu-
rotrophic factor (BDNF; Guirland et al., 2003; Brunet et al., 
2005; Leung et al., 2006; Piper et al., 2006; Yao et al., 2006;  
Wizenmann et al., 2009). Ephrin-mediated growth cone collapse 
is not significantly affected by protein synthesis inhibition, indi
cating that not all cues trigger local translation (Mann et al., 2003).

Recently it has been discovered that the dependence of 
chemotropic responses of axonal growth cones on local protein 
synthesis varies according to the concentration of the guidance 
cue (Manns et al., 2012; Nédelec et al., 2012). This finding helps 
to resolve a controversy surrounding the role of local mRNA 
translation in axon guidance and brings fresh insight. The growth 
cones of mouse spinal motor neurons and chick dorsal root gan-
glion (DRG) neurons exhibit protein synthesis–dependent col-
lapse only at low concentrations (<500 ng/ml) of Sema3A. Above 
this level, growth cone collapse is protein synthesis–independent 
and, in DRGs, depends on GSK-3 activation (Manns et al., 
2012; Nédelec et al., 2012). This concentration dependence of 
axonal protein synthesis provides a simple and plausible expla-
nation for the discrepant interpretation of results in a report 
using DRG neurons which stated that “protein synthesis in 
distal axons is not required for growth cone responses to guid-
ance cues” (Roche et al., 2009), because a high concentration of 
Sema3A (1 µg/ml) was used for the collapse experiments, far 
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cue–induced local synthesis of an adhesion molecule modulates 
the strength of axon–substrate adhesion, thereby controlling the 
direction of axon pathfinding (Fig. 1).

The above studies reveal two remarkably diverse mecha-
nisms for place-specific translation in growth cones, one in-
volving self-regulated destruction of existing message and the 
other involving a translation boost. Both mechanisms rely on 
regionally expressed cue-induced translation and provide a way 
to synchronize growth cone sensitivity with its progressively 
changing microenvironment.

Mechanisms underlying local mRNA 
translation in the growth cone
To regulate protein synthesis with spatial and temporal preci-
sion, the growth cone requires mechanisms that avoid unwanted 
mRNA translation. Importantly, most of the known RNA-binding 
proteins that mediate mRNA transport repress translation, and 
this coupling mechanism is considered to be crucial to prevent 
the premature translation of mRNAs before reaching their  
destination (Fig. 3). The best-studied RNA-binding protein in-
volved in axon guidance is zip-code binding protein 1 (ZBP1; 
Vg1RBP in Xenopus, IMP1 in human), which binds the “zip-
code”, a cis element in the 3 UTR of -actin mRNA (Ross  

mechanism for mRNAs (Maquat, 1995). The study shows that 
floorplate signals in the spinal cord midline induce the local trans-
lation of Robo3.2 in growing commissural axons, and the in-
duced translation triggers the NMD-directed degradation of its 
own transcripts (Fig. 1; Colak et al., 2013). Conditional knock-
out mice that lack an essential NMD factor, Upf2, specifically 
in commissural neurons, has an increased level of the Robo3.2 
protein in distal axon segments after crossing and exhibits de-
fective guidance in this region, suggesting that NMD controls 
the Robo3.2 protein levels with regional precision for correct 
axon guidance (Fig. 1; Colak et al., 2013).

A cell adhesion molecule is another target of pathway re-
gion-specific translational control in growing RGC axons (Leung 
et al., 2013). This study showed that the pathfinding accuracy  
of RGC axons at the caudal turn in the mid-optic tract depends 
on axon–substrate interactions mediated by NF-protocadherin 
(NFPC, PCDH-7), a homophilic cell adhesion molecule, which 
is expressed in RGC axons and in the mid-to-dorsal segment of the 
optic tract neuroepithelium. Live translation-reporter imaging 
in vivo showed that NFPC translation is switched on in growth 
cones only when they reach the caudal turn. Sema3A, which lies 
adjacent to this turn, triggers rapid, protein synthesis–dependent  
increases of NFPC in RGC axons, suggesting that guidance 

Figure 1.  How regulated mRNA translation mediates axon guidance. (A) Several studies support a model in which guidance cue–induced asymmetrical 
synthesis of cytoskeletal proteins, or their regulators, mediates attractive/repulsive responses in growth cones through the polarization of cytoskeletal 
dynamics (Wu et al., 2005; Leung et al., 2006; Piper et al., 2006; Lin and Holt, 2007). (B) During midline crossing of axons, the receptor Robo 3.2 for 
the repulsive guidance cue Slit present at midline intermediate targets is expressed only on distal axon segments after crossing. This spatiotemporal expres-
sion pattern is formed through translational control to avoid the repulsion between the midline intermediate targets and axons that have not yet reached 
the midline (Colak et al., 2013). The Robo3.2 transcript, which harbors a PTC, is degraded by the NMD pathway after local translation, modulating its 
expression levels (Colak et al., 2013). (C) Axonal translation of an adhesion molecule, NF-protocadherin, is triggered by regionally expressed Sema3A 
in the visual pathway, resulting in increased adhesion between axons and the substrate and helping axons to turn correctly in vivo (Leung et al., 2013). 
RBP, RNA-binding protein; Cue, guidance cue.
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1B (MAP1B; Antar et al., 2006; Li et al., 2009). Transcripts that 
contain a cytoplasmic polyadenylation element (CPE) in their 
3UTR are recognized by CPE-binding protein (CPEB), and CPEB 
regulates their translation through cytoplasmic polyadenylation 
and localization (Hake and Richter, 1994; Richter and Klann, 
2009; Nagaoka et al., 2012). The local synthesis of the guidance 
receptor EphA2 following axonal midline crossing as described 
above is implicated to be regulated by CPEB (Brittis et al., 2002). 
Besides RNA-binding proteins, initiation factor 4E (eIF4E)–
binding protein 1 (4E-BP1; Pause et al., 1994), which is known 
to bind the eIF4E to repress translation initiation, has also been 
suggested to regulate axonal translation of -actin mRNA (Fig. 3; 
Leung et al., 2006).

The mechanisms for translational repression need to be 
overcome to activate the protein synthesis when the proteins are 
required. One key pathway that mediates cue-induced protein syn-
thesis in axons is the target of rapamycin (TOR) pathway, in which 
TOR regulates mRNA translation through phosphorylation of 
downstream targets (Fig. 2; Brown et al., 1995; Brunn et al., 1997; 
Burnett et al., 1998). TOR-dependent phosphorylation of 4E-BP1 
causes the dissociation of 4E-BP1–eIF4E complex to activate the 
translation machinery, and the FMRP function is also regulated by 
the TOR pathway through the phosphorylation of the ribosomal 
protein S6 kinase (S6K; Narayanan et al., 2008). The inhibition of 
MAPKs prevents Netrin-1– and Sema3A-induced events includ-
ing the phosphorylation of 4E-BP1, axonal protein synthesis, and 
the chemotropic responses, suggesting that the MAPKs link guid-
ance cue signaling with the mammalian TOR (mTOR) pathway 
(Fig. 2; Campbell and Holt, 2003). The PI(3)-kinase (PI3K) path-
way has also been demonstrated to mediate guidance cue signal-
ing (Ming et al., 1999; Markus et al., 2002; Drinjakovic et al., 

et al., 1997). When the -actin mRNA–ZBP1 interaction is 
disrupted either by an antisense oligonucleotide targeting the 
zip-code sequence (Yao et al., 2006) or by the knock-out of the 
ZBP1 gene (Welshhans and Bassell, 2011), the cue-induced  
localization of -actin mRNA in growth cones is significantly 
reduced, and the translation-dependent growth cone turning re-
sponse is in turn abolished. These results suggest that ZBP1 in-
teracts with the zip-code element to transport -actin mRNA, and 
the interaction is important for growth cone turning. In vivo stud-
ies of Vg1RBP (ZBP1 homologue) and another RNA-binding 
protein, Hermes (RBPMS), in Xenopus and zebrafish retinal gan-
glion cells, respectively, show that loss of function of these genes 
causes severe defects in axon terminal arborization without af-
fecting the long-range guidance from the eye to the tectum. These 
studies indicate that the translational regulation mediated by these 
RNA-binding proteins has a key role in the axon–target guided 
cell-specific interactions that lead to axon branching and selective 
synapse formation (Hörnberg et al., 2013; Kalous et al., 2013).

Fragile X mental retardation protein (FMRP), which is 
known to mediate mRNA delivery and translational repression 
of target mRNAs in dendrites (Zhang et al., 2001; Reeve et al., 
2005; Dictenberg et al., 2008), was demonstrated to support 
Sema3A-induced growth cone collapse through the translational 
suppression of its binding partner, microtubule-associated protein 

Figure 2.  Intracellular signaling pathways activated by guidance cues. 
Members of the Rho subfamily of small GTPases, which includes Rac, Rho, 
and Cdc42, have been well established to mediate the chemotropic re-
sponses of growth cones through controlling cytoskeletal dynamics (Hall 
and Lalli, 2010). Rac and Rho activate LIM kinase (LIMK) through PAK and 
ROCK, and LIMK regulates the cofilin-mediated actin depolymerization. 
The mTOR pathway is also activated by several cue-induced responses 
through the PI3K and/or MAPKs pathways. mTOR regulates mRNA translation 
through phosphorylation of downstream targets (Brown et al., 1995; Brunn 
et al., 1997; Burnett et al., 1998). Cue-induced local mRNA translation 
modulates other guidance pathways through the spatiotemporal up-regulation  
of signaling components such as Rho A and cofilin (Wu et al., 2005; Piper 
et al., 2006). Arrows do not necessarily indicate direct interactions. Cue, 
guidance cue; Receptor, guidance cue receptor.

Figure 3.  Mechanisms linking local mRNA translation with guidance cue 
stimulation. Most of the known RNA-binding proteins that mediate mRNA 
transport are responsible for repression of translation. Some guidance 
cues activate the mTOR pathway, and activated mTOR promotes mRNA 
translation through phosphorylation of downstream targets (Campbell 
and Holt, 2001). DCC, a receptor for netrin 1, is physically associated 
with the translation machinery including eukaryotic initiation factors and 
ribosomal large and small subunits to repress translation. Activation of 
DCC by netrin 1 triggers the release of the translation machinery to facili-
tate the translation (Tcherkezian et al., 2010). RBP, RNA-binding protein; 
Cue, guidance cue.
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guidance, knowledge of the mRNAs localized in axons provides 
new insight into how the local translation contributes to growth 
cone functions. One of the future challenges will be the system-
atic testing and identification of mRNAs whose translation in the 
growth cone contributes to axon guidance. As studies to date 
have indicated, most local protein synthesis involved in growth 
cone responses is stimulated by extrinsic cues. Therefore, it will 
be interesting to conduct studies based on deep sequencing for 
mRNAs co-purified with ribosomes (Sanz et al., 2009) or ribo-
some profiling technique (Ingolia et al., 2009) to detect the change 
in translation status of mRNAs during guidance cue responses. 
This approach could reveal whether signature sets of mRNAs 
are translated by specific cues and address whether there are 
overlapping sets of RNAs associated with common functions 
(e.g., mitochondrial). For the functional studies, local translation-
blocking experiments through the axon-specific delivery of siRNA 
or morpholinos, or use of photo-activatable reagents, will be 
needed to discover the roles of candidate proteins synthesized de 
novo (Hengst et al., 2006; Shestopalov et al., 2007; Yoon et al., 
2012). A particular challenge for the future will be to improve 
current methodology for conducting such subcellular (axon only) 
manipulations in vivo to gain an increased understanding of the 
precise physiological functions of axonal mRNA translation.

Another future challenge is to understand the sorting mech-
anisms that underlie the selective transport and translation of spe-
cific mRNAs. Recent transcriptome studies strongly suggested 
that the subcellular distribution of mRNAs in the neuron is formed 
in a highly selective manner (Andreassi et al., 2010; Zivraj et al., 
2010). For example, a serial analysis of gene expression (SAGE) 
analysis (Andreassi et al., 2010) showed that, although transcripts 
encoding proteins related to cytoskeletal, synaptic, and nuclear 
functions were much more abundant in cell bodies than in axons, 
transcripts encoding mitochondrial proteins, ribosomal proteins, 
and proteins related to signal transduction were enriched in axons, 
indicating the presence of mechanisms for sorting of mRNAs. 
However, the underlying molecular mechanisms remain largely 
unknown. Discovery of growth cone–specific isoforms of mRNAs 
(e.g., splice variants) by RNA-seq studies would provide new 
clues for understanding the mechanisms governing specificity of 
the axonal mRNA transport. The future research tackling these 
challenges will have a significant impact on our understanding of 
the roles of local mRNA translation in axon guidance.

We apologize to the authors of papers we could not include in this review 
owing to space limitations. Illustrations were provided by Neil Smith, www 
.neilsmithillustration.co.uk.
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