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Angiogenesis is required for functional adipose tissue maintenance, remodeling, and
expansion. Physiologically balanced adipogenesis and angiogenesis are inhibited in
subcutaneous adipose tissue in obese humans. However, the mechanism by which
angiogenesis is inhibited in obese adipose tissue is not fully understood. Transcription
factor TWIST1 controls angiogenesis and vascular function. TWIST1 expression is lower
in obese human adipose tissues. Here, we have demonstrated that angiogenesis is
inhibited in endothelial cells (ECs) isolated from adipose tissues of obese humans
through TWIST1-SLIT2 signaling. The levels of TWIST1 and SLIT2 are lower in ECs
isolated from obese human adipose tissues compared to those from lean tissues.
Knockdown of TWIST1 in lean human adipose ECs decreases, while overexpression
of TWIST1 in obese adipose ECs restores SLIT2 expression. DNA synthesis and cell
migration are inhibited in obese adipose ECs and the effects are restored by TWIST1
overexpression. Obese adipose ECs also inhibit blood vessel formation in the gel
subcutaneously implanted in mice, while these effects are restored when gels are mixed
with SLIT2 or supplemented with ECs overexpressing TWIST1. These findings suggest
that obesity impairs adipose tissue angiogenesis through TWIST1-SLIT2 signaling.

Keywords: angiogenesis, obesity, adipose tissue, TWIST1, SLIT2

INTRODUCTION

Obesity is regarded as a world epidemic with more than 1 billion people overweight in the
world (Huang et al., 2016; GBD 2015 Mortality and Causes of Death Collaborators, 2016) and
approximately two-thirds of US adults are overweight or obese (Cao, 2010). Obesity is highly
associated with increased morbidity and mortality through its association with cardiovascular
disease, type 2 diabetes, hypertension, stroke and certain types of cancer (e.g., colorectal, breast,
gastrointestinal, and prostate cancer) (Shibata et al., 2004; Despres, 2006; Despres and Lemieux,
2006; Cao, 2010; O’Sullivan et al., 2018).

Subcutaneous adipose tissue is the largest and safest site to store lipid in the body. In a healthy
condition, functional adipogenesis, adipocyte differentiation and hyperplastic expansion maintain
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metabolism in the body. However, in an obese condition,
hypertrophic adipose tissue is inflamed and the capacity of lipid
storage in the subcutaneous adipose tissue is exceeded, which
leads to the accumulation of excess amounts of dysfunctional
lipids in the ectopic sites (e.g., visceral fat, peri or epicardial
fat, liver, skeletal muscles). The deregulated adipose tissue
remodeling in an obese condition results in local and systemic
insulin resistance and inflammation, consequently increasing the
risk of obesity-related diseases (Crewe et al., 2017; Hammarstedt
et al., 2018; Chouchani and Kajimura, 2019).

Well-organized functional angiogenesis is necessary for organ
development, regeneration and repair from injury (Mammoto
and Mammoto, 2019). Under obese conditions, due to its
proinflammatory state, endothelial signaling is dysregulated
and EC functionality is impaired (Chudek and Wiecek, 2006;
Hammarstedt et al., 2018; O’Sullivan et al., 2018). Obese
conditions also promote cellular senescence and cell cycle arrest
(Yokoyama et al., 2014; Briot et al., 2018; Gustafson et al.,
2019; Conley et al., 2020; Smith et al., 2021). While healthy
subcutaneous adipose tissue is maintained by physiologically
balanced adipogenesis and angiogenesis, inflammatory and anti-
angiogenic signals in hypertrophic obese adipose tissues inhibit
angiogenesis and disrupt physiological vascular function, which
results in local hypoxia, metabolic stress, and tissue dysfunction
(Hosogai et al., 2007; Halberg et al., 2009; Pasarica et al., 2009;
Cao, 2010; Christiaens and Lijnen, 2010; Xiao et al., 2016;
Crewe et al., 2017; Hammarstedt et al., 2018; Chouchani and
Kajimura, 2019). These EC dysfunctions, chronic inflammation
and impairment of angiogenesis in obese adipose tissues lead to
ectopic lipid accumulation and obesity-associated cardiovascular
diseases (Friedman, 2000; Shibata et al., 2004; Hosogai et al., 2007;
Pasarica et al., 2009; Cao, 2010; Christiaens and Lijnen, 2010;
Crewe et al., 2017; Hammarstedt et al., 2018; Chouchani and
Kajimura, 2019). Thus, we need to understand the mechanism
by which obesity inhibits angiogenesis in adipose tissues.

TWIST1 is a basic helix-loop-helix transcription factor,
which regulates vascular development (Li et al., 2014) and
function (Mammoto et al., 2013). TWIST1 is involved in
obesity- and angiogenesis-associated diseases such as diabetes
(Pettersson et al., 2010), chronic obstructive pulmonary disease
(COPD) (Nishioka et al., 2015), cancer (Wang et al., 2011),
pulmonary fibrosis (Mammoto et al., 2016), and atherosclerosis
(Mahmoud et al., 2016, 2017). TWIST1 also controls cellular
metabolism; knockdown of TWIST1 in fat cells stimulates oxygen
consumption and mitochondrial biogenesis, which results in
resistance to obesity (Pan et al., 2009). Inhibition of TWIST1
activity increases the expression of PGC1α that stimulates
mitochondrial biogenesis (Finck and Kelly, 2006; Austin and St-
Pierre, 2012; Patten and Arany, 2012; Fan and Evans, 2015) and
angiogenesis (Arany et al., 2008; Patten and Arany, 2012; Kluge
et al., 2013; Rowe et al., 2014) in fat cells (Pan et al., 2009)
and aged ECs (Hendee et al., 2021). The SLIT family proteins
are extracellular matrix (ECM) proteins and consist of three
members (SLIT1-3). SLIT proteins are known as axon guidance
molecules and control brain development (Nguyen Ba-Charvet
et al., 1999; Wang et al., 1999; Brose and Tessier-Lavigne, 2000).
Recently it is reported that SLIT2 promotes thermogenic activity

in beige fat tissue and the levels of SLIT2 decrease in the fat
tissue of obese mice (Svensson et al., 2016). SLIT2 is expressed in
various types of cells including ECs (Urbich et al., 2009; Guijarro-
Munoz et al., 2012; Rama et al., 2015; Tavora et al., 2020) and
is involved in physiological and pathological angiogenesis (Rama
et al., 2015; Liu et al., 2018; Genet et al., 2019; Tavora et al., 2020).
However, the role of endothelial TWIST1 and SLIT2 in obese
adipose tissue angiogenesis remains unclear.

Here we found that angiogenesis is impaired in adipose
tissue ECs isolated from obese humans through TWIST1-SLIT2
signaling. The levels of TWIST1 and SLIT2 are lower in obese
adipose ECs and overexpression of TWIST1 or treatment with
SLIT2 stimulates EC DNA synthesis and migration in vitro and
vascular formation in the gel implanted on mice. Modulating
TWIST1-SLIT2 signaling in ECs could be a novel therapeutic
approach for obesity and obesity-associated diseases.

MATERIALS AND METHODS

Materials
Recombinant human SLIT2 (aa1122–1529) was purchased from
R&D Systems (Minneapolis, MN, United States). Anti-β-actin
(A5316) monoclonal antibody was from Sigma (St. Louis, MO,
United States). Anti-VEGFR2 (2479) antibody was from Cell
Signaling (Danvers, MA, United States). Anti-TWIST1 antibody
was from Abcam (ab50887, Cambridge, MA, United States) and
Santa Cruz Biotechnology (sc-15393, Dallas, TX, United States).

Adipose Endothelial Cell Isolation and
Culture
Human subcutaneous adipose tissues [n = 29, body mass index
(BMI) < 30 or >30] were obtained as discarded surgical
specimens from patients undergoing abdominal surgeries. After
surgical removal, samples were placed in ice-cold HEPES buffer
and immediately transferred to the laboratory for EC isolation.
De-identified patient demographic data were collected using
the Generic Clinical Research Database (GCRD) at the Medical
College of Wisconsin (MCW). All protocols were approved by
the Institutional Review Board of MCW and Froedtert Hospital.
The information about sex, age, and BMI of each sample is listed
in Table 1 and sample demographic information is summarized
in Table 2. Human adipose ECs were isolated as previously
described and cultured in 10% FBS/ECM (Mammoto et al., 2018,
2019c, 2020; Hendee et al., 2021). All cell culture experiments
were conducted between passages 2–3.

Molecular Biology and Biochemistry
Experiments
RNA isolation was performed using an RNeasy mini kit
(Qiagen, Valencia, CA, United States). Quantitative reverse
transcription (qRT)-PCR was performed using the iScript
reverse transcription and iTaq SYBR Green qPCR kit (Bio-
Rad, Hercules, CA, United States) then analyzed using
the real-time PCR system (Bio-Rad). β2 microglobulin
(B2M) was used for overall cDNA content. The primers
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TABLE 1 | Sample information.

BMI < 30 Sex Age BMI

1 F 47 28

2 M 33 28

3 F 42 26

4 F 47 27

5 F 46 24

6 F 42 27

7 F 51 24

8 F 41 23

9 F 38 29

10 F 30 25

11 F 34 23

12 F 41 24

13 F 33 24

14 F 55 21

15 F 31 19

BMI > 30 Sex Age BMI

1 F 50 34

2 F 46 36

3 F 44 37

4 F 32 34

5 F 38 37

6 F 50 44

7 F 36 37

8 F 43 35

9 F 37 31

10 M 40 32

11 F 43 34

12 F 30 45

13 F 43 41

14 F 45 37

TABLE 2 | Sample demographics.

Sample demographics (n = 29) Lean (BMI < 30,
n = 15)

Obese (BMI > 30,
n = 14)

Gender, Male/Female 1 (6.6%)/14 (93.4%) (7.1%)/13 (92.9%)

Age, year (mean ± SEM) 40.73 ± 1.95 41.21 ± 1.61

Body mass index (mean ± SEM) 24.78 ± 0.71 36.81 ± 1.11

Underlying diseases

Coronary artery disease 0 (0%) 1 (7.1%)

Hypertension 0 (0%) 5 (35.7%)

Hyperlipidemia 0 (0%) 2 (14.2%)

Cancer 1 (6.6%) 3 (21.4%)

used for human B2M and TWIST1 are described before
(Mammoto et al., 2018, 2020; Hendee et al., 2021). Primers for
human SLIT2 are forward; AGCCGAGGTTCAAAAACGAGA,
reverse; GGCAGTGCAAAACACTACAAGA. The protein levels
of human SLIT2 were measured using ELISA (MyBioSource, San
Diego, CA, United States).

Gene Manipulation
Gene knockdown was conducted by siRNA transfection
using siLentFect (Bio-Rad) or lentiviral transduction.

Human TWIST1 siRNA was described previously
(Mammoto et al., 2020; Hendee et al., 2021). siRNA with
an irrelevant sequence (QIAGEN) was used as a control.
Lentiviral construct targeting human SLIT2 (SLIT2 shRNA) were
CCGGCCTGGAGCTTTCTCACCATATCTCGAGATATGGTG
AGAAAGCTCCAGGTTTTTG (MilliporeSigma). Generation of
lentiviral vectors was accomplished by a five-plasmid transfection
procedure as reported (Mammoto et al., 2009, 2018, 2019b, 2020).
Human adipose ECs were incubated with viral stocks in the
presence of 5 µg/ml polybrene (Sigma) and 90–100% infection
was achieved 3 days later (Mammoto et al., 2009, 2018, 2019b,
2020). Lentivirus with vector alone was used as a control.

Cell Biological Analysis
Human adipose ECs were seeded at a density of 1 × 105

cells/35 mm dish and DNA synthesis was measured using
the Click-iTTM EdU Cell Proliferation Kit (Thermofisher,
Waltham, MA, United States) (Hendee et al., 2021). The total
cells were labeled with Hoechst nuclear dye and cells were
imaged using a Nikon A1R confocal laser scanning microscope.
Quantification was performed using ImageJ software (NIH).
EC migration was analyzed by seeding human adipose ECs
(1 × 105 cells/100 µl) in a trans-well chamber (Corning Costar)
coated with 0.5% gelatin. 5% FBS was added to the lower
chamber to promote migration and cells were incubated for
16 h (Hendee et al., 2021). Cells migrated to the opposite
side of the membrane were stained with Wright Giemsa
solution (Fisher Scientific) and quantified. The number of
surviving cells were counted using trypan blue staining, in
which ECs were treated with 0.1% trypan blue (Sigma) in PBS
and counted under a light microscope (Salerno et al., 2011;
Chen et al., 2015).

Mouse Subcutaneous Gel Implantation
The in vivo animal study was carried out in accordance with
the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The
protocol was reviewed and approved by the Animal Care and Use
Committee of MCW. NOD SCID gamma (NSG) mice (Jackson
Laboratory, stock#, 5557) were used for the study. Human
adipose ECs were treated with viral stock expressing GFP for
labeling and the transduction efficiency was confirmed before
the assay. Fibrin gel was fabricated as previously described, and
GFP-labeled human adipose ECs (1 × 106 cells), in which gene
expression was manipulated, and human fibroblasts (3 × 105

cells) were mixed in the gel (Mammoto et al., 2018, 2019b, 2020;
Hendee et al., 2021). The drops of gels were incubated at 37◦C
for 30 min and subcutaneously implanted onto the back of the
NSG mice (Supplementary Figure 2A). The gel was harvested
7 days after implantation, fixed with 4% paraformaldehyde,
cryosectioned, and immunohistochemical (IHC) analysis was
conducted as described previously (Mammoto et al., 2018, 2019b,
2020; Hendee et al., 2021). The IHC images were taken using
a Nikon A1R confocal laser scanning microscope and stacks of
optical sections (20-µm thick) were compiled to form three-
dimensional images using software associated with a confocal
microscope. Morphometric analysis was performed using ImageJ
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and AngioTool software. Vascular network formation of GFP-
labeled human adipose ECs was evaluated by measuring the area
of GFP-labeled blood vessels from five different areas of the gel.

Microarray Data Analysis
Publicly available datasets from eight obese and seven lean adult
human subcutaneous adipose samples (NCBI GEO, GSE55200)
were utilized, and differential gene expression analysis and
volcano plot generation were performed by GEO2R. The total
number of genes identified by the array and displayed on
the volcano plot was 48,242, with 26,391 being downregulated
and 21,851 upregulated. Of these, 859 downregulated and
1,151 upregulated genes possessed adjusted p-values < 0.05
following Benjamini and Hochberg false discovery rate multiple-
testing correction of p-values, resulting in a total of 2,010
significantly differentially expressed genes. Thousand three
hundred and seventy four of these genes were assigned a
GenBank Accession ID. Upon ID conversion to official gene
symbol using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) v6.8, 1,302 genes returned with
unique conversion IDs. A subset of genes had multiple transcripts
appear on the array sharing the same accession ID; these
transcripts all changed in the same direction by gene and were
encompassed by including the converted gene names only once
in the final gene count. Thus, 548 downregulated and 754
upregulated significantly expressed genes underwent Biological
Processes Gene Ontology (BP GO) Term analysis through the
Functional Annotation Chart tool of the DAVID software. All
down and upregulated genes identified in the top 30 BP GO Term
categories by p-value were made into a network and color-coded
using Ingenuity Pathway Analysis (IPA) software. The network
mapped the shortest interactions among TWIST1 and the genes
from the Top 30 BP GO Term categories, SLIT2 and the Top 30
BP GO Term genes, and the TWIST1 and SLIT2 groups and the
Top 30 BP GO Term genes.

Statistics
All phenotypic analysis was performed by masked observers
unaware of the identity of experimental groups. Power analysis
was conducted to provide 80% power to detect an effective
20–30% difference between the experimental groups. Error bars
(SEM) and p-values were determined from the results of three
or more independent experiments. Student’s t-test was used for
statistical significance for two groups. For more than two groups,
one-way ANOVA with a post hoc analysis using the Bonferroni
test was conducted.

RESULTS

TWIST1 and SLIT2 Expression Is
Inhibited in Obese Adipose Endothelial
Cells
TWIST1 controls cellular metabolism and is involved in obesity-
and angiogenesis-associated diseases (Pettersson et al., 2010;
Wang et al., 2011; Nishioka et al., 2015; Mahmoud et al., 2016;

Mammoto et al., 2016; Mahmoud et al., 2017). It has been
reported that TWIST1 mRNA expression is lower in the
adipose tissues from obese humans (Pettersson et al., 2011).
Consistently, the levels of TWIST1 were significantly lower in
obese human adipose tissues when analyzed using the unbiased
publicly available microarray dataset (GSE55200) (Figure 1A).
To specifically examine the effects of obesity on TWIST1
expression in ECs, we isolated ECs from obese (BMI > 30)
vs. lean (BMI < 30) human subcutaneous adipose tissues
and measured the mRNA levels of TWIST1. The levels of
TWIST1 mRNA in ECs isolated from obese human adipose
tissues (BMI > 30) were 71% lower than those in lean human
adipose ECs (Figure 1B). We confirmed the results using
immunoblotting (IB) showing that the TWIST1 protein levels
were also 83% lower in ECs isolated from obese human adipose
tissues (BMI > 30) compared to those in lean human adipose
ECs (Figure 1C).

Gene network analysis of microarray dataset (GSE55200)
reveals that genes from the top 30 GO Term categories
derived from 1,302 significantly differentially expressed genes
of lean vs. obese adipose tissues, including angiogenesis,
development/differentiation, cell proliferation, adhesion, and
inflammatory molecules directly or indirectly interacted with
TWIST1 (Figure 1D). SLIT2 controls angiogenesis (Rama et al.,
2015; Liu et al., 2018; Genet et al., 2019; Tavora et al., 2020)
and the levels of Slit2 decrease in the fat tissue of obese mice
(Svensson et al., 2016). Consistently, significantly differentially
expressed genes of lean vs. obese adipose tissues that interacted
with TWIST1 also interacted with SLIT2 (Figure 1D). Thus,
we next examined the effects of obesity on SLIT2 expression in
human adipose ECs. The levels of SLIT2 mRNA in ECs isolated
from obese human adipose tissues (BMI > 30) were 66% lower
than those in lean human adipose ECs (Figure 2A). We also
confirmed the results using ELISA; the SLIT2 protein levels in
obese human adipose tissue were 60% lower than those in lean
adipose tissue (Figure 2B).

We next examined whether TWIST1 controls SLIT2
expression in lean and obese adipose ECs. siRNA-based
knockdown of TWIST1 in human lean adipose ECs,
which downregulated TWIST1 expression (Figure 2C and
Supplementary Figure 1A), decreased the SLIT2 mRNA and
protein expression by 64% and 29%, respectively (Figure 2C),
while TWIST1 overexpression using lentiviral transduction
upregulated the SLIT2 expression in obese ECs (Figure 2D).
These results suggest that downregulation of TWIST1 decreases
SLIT2 expression in obese ECs.

TWIST1 and SLIT2 Control DNA
Synthesis and Migration in Obese
Endothelial Cells in vitro
It is reported that capillary density is reduced in obese
subcutaneous adipose tissues compared with those in lean
animals (Gavin et al., 2005; Halberg et al., 2009; Pasarica
et al., 2009; Gealekman et al., 2011; Spencer et al., 2011; Xiao
et al., 2016; Crewe et al., 2017; Hammarstedt et al., 2018;
Chouchani and Kajimura, 2019). Therefore, we next examined
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FIGURE 1 | TWIST1 expression in obese human subcutaneous adipose ECs is lower than lean ECs. (A) Volcano plot of differentially expressed genes, including
TWIST1, in eight obese vs. seven lean adult human subcutaneous adipose samples from the GSE55200 dataset. Blue indicates significantly down-regulated genes
and red indicates significantly up-regulated genes with Benjamini and Hochberg adjusted p-values < 0.05. (B) Graph showing the TWIST1 mRNA levels in ECs
isolated from lean (BMI < 30) vs. obese (BMI > 30) human adipose tissues (n = 9–10, mean ± SEM, *p < 0.05). The numbers along the dots correspond to the
clone numbers in Table 1. (C) Immunoblots showing the TWIST1 and β-Actin protein levels in ECs isolated from lean (BMI < 30) vs. obese (BMI > 30) human
adipose tissues (n = 5, mean ± SEM, *p < 0.05). The numbers along the dots correspond to the clone numbers in Table 1. (D) Network showing connections
among TWIST1, SLIT2, and genes from the top 30 BP GO Term categories derived from 1,302 significantly differentially expressed down and upregulated genes
with Benjamini and Hochberg adjusted p-values < 0.05 from the GSE55200 dataset. Genes are color-coded by GO Term categories. Red, angiogenesis-related
genes; Orange, development-related genes; Gold, ECM and cell adhesion-related genes; Dark green, cell proliferation, migration-related genes; Blue, inflammation
and/or immune response-related genes; Purple, cell signaling and/or apoptosis-related genes; Gray, miscellaneous category-related genes; Black outlines, genes
from the GSE55200 dataset.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 September 2021 | Volume 9 | Article 693410

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-693410 September 23, 2021 Time: 17:24 # 6

Hunyenyiwa et al. Obesity in Adipose Tissue Angiogenesis

FIGURE 2 | TWIST1 controls SLIT2 expression in lean vs. obese adipose ECs. (A) Graph showing SLIT2 mRNA expression in lean vs. obese human adipose ECs
(n = 9–10, mean ± SEM, *p < 0.05). (B) Graph showing SLIT2 protein expression in lean vs. obese human adipose tissues (n = 9, mean ± SEM, *p < 0.05).
(C) Graphs showing mRNA expression of TWIST1 and SLIT2 in lean human adipose ECs treated with TWIST1 siRNA or control siRNA with irrelevant sequences
(n = 4–5, mean ± SEM, *p < 0.05). Graph showing protein expression of SLIT2 in lean human adipose ECs treated with TWIST1 siRNA or control siRNA with
irrelevant sequences (n = 4, mean ± SEM, *p < 0.05). (D) Graphs showing mRNA expression of TWIST1 and SLIT2 in obese human adipose ECs treated with
lentivirus overexpressing TWIST1 or control virus (n = 4, mean ± SEM, *p < 0.05). Graph showing protein expression of SLIT2 in obese human adipose ECs treated
with lentivirus overexpressing TWIST1 or control virus (n = 4, mean ± SEM, *p < 0.05). The numbers along the dots correspond to the clone numbers in Table 1.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 September 2021 | Volume 9 | Article 693410

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-693410 September 23, 2021 Time: 17:24 # 7

Hunyenyiwa et al. Obesity in Adipose Tissue Angiogenesis

FIGURE 3 | TWIST1-SLIT2 signaling controls DNA synthesis and EC migration in lean vs. obese human adipose ECs. (A) Representative images showing EdU
positive (green) lean (BMI < 30) vs. obese (BMI > 30) human adipose ECs (left). Scale bar, 50 µm. Graph showing DNA synthesis of lean (BMI < 30) vs. obese
(BMI > 30) human adipose ECs analyzed using an EdU staining assay (right, n = 6, mean ± SEM, *p < 0.05). (B) Representative images showing lean (BMI < 30)
vs. obese (BMI > 30) human adipose ECs migrated to the opposite side of the trans-well membrane and stained with Wright Giemsa solution (left). Scale bar,
50 µm. Graph showing lean vs. obese human adipose ECs migrating toward 5% FBS (right, n = 5, mean ± SEM, *p < 0.05). (C) Representative images showing
EdU positive (green) lean (BMI < 30) human adipose ECs treated with TWIST1 siRNA (left). Scale bar, 50 µm. Graph showing EdU-positive lean (BMI < 30) human
adipose ECs (clone #6) treated with TWIST1 siRNA (right, n = 3, mean ± SEM, *p < 0.05). As a control, human adipose ECs were treated with siRNA with irrelevant
sequences. (D) Representative images showing lean (BMI < 30) human adipose ECs treated with TWIST1 siRNA, migrated to the opposite side of the trans-well
membrane and stained with Wright Giemsa solution (left). Scale bar, 50 µm. Graph showing lean human adipose ECs (clone #6) treated with TWIST1 siRNA
migrating toward 5% FBS (right, n = 5, mean ± SEM, *p < 0.05). As a control, human adipose ECs were treated with siRNA with irrelevant sequences. (E) Graph
showing EdU-positive obese (BMI > 30) human adipose ECs treated with lentivirus overexpressing TWIST1 or in combination with SLIT2 shRNA (n = 6–9,

(Continued)
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FIGURE 3 | (Continued)
mean ± SEM, *p < 0.05). As a control, human adipose ECs were treated with control virus (vector alone). (F) Representative images showing EdU positive obese
(BMI > 30) human adipose ECs treated with lentivirus overexpressing TWIST1 or in combination with SLIT2 shRNA. Scale bar, 50 µm. (G) Graph showing obese
human adipose ECs treated with lentivirus overexpressing TWIST1 or in combination with SLIT2 shRNA migrating toward 5% FBS (n = 5–7, mean ± SEM,
*p < 0.05). As a control, human adipose ECs were treated with control virus (vector alone). (H) Representative images showing obese (BMI > 30) human adipose
ECs treated with lentivirus overexpressing TWIST1 or in combination with SLIT2 shRNA, migrated to the opposite side of the trans-well membrane and stained with
Wright Giemsa solution. Scale bar, 50 µm. (I) Graph showing SLIT2 mRNA levels in obese human adipose ECs treated with lentivirus expressing SLIT2 shRNA
(n = 6, mean ± SEM, *p < 0.05). As a control, human adipose ECs were treated with control virus (vector alone). The numbers along the dots correspond to the
clone numbers in Table 1.

the effects of obesity on EC behaviors and whether TWIST1-
SLIT2 signaling mediates EC behaviors in obese adipose ECs.
DNA synthesis measured by an EdU nuclear incorporation assay
decreased by 37% in obese human adipose ECs (Figure 3A).
EC migration analyzed using a transwell migration assay also
decreased by 31% in obese human adipose ECs (Figure 3B).
When we manipulated the expression of TWIST1 in lean
(BMI < 30) vs. obese (BMI > 30) human adipose ECs
using siRNA transfection or lentiviral transduction, TWIST1
knockdown, which also suppresses EC survival (Supplementary
Figure 1B; Salerno et al., 2011; Chen et al., 2015), inhibited
DNA synthesis and EC migration in lean human adipose
ECs by 54 and 18%, respectively (Figures 3C,D), while
TWIST1 overexpression stimulated DNA synthesis and EC
migration in obese human adipose ECs (Figures 3E–H).
TWIST1 overexpression-induced stimulation of DNA synthesis
and migration in obese human adipose ECs was inhibited when
treated with SLIT2 shRNA, which inhibits SLIT2 expression, in
combination (Figure 3I), suggesting that endothelial TWIST1
mediates inhibition of DNA synthesis and EC migration in obese
adipose ECs through SLIT2.

TWIST1 and SLIT2 Control Vascular
Network Formation in Obese Endothelial
Cells in vivo
We also examined the effects of obesity on vascular formation
using the mouse gel implantation system, in which fibrin gels
supplemented with GFP-labeled lean (BMI < 30) vs. obese
(BMI > 30) human adipose ECs were subcutaneously implanted
on the back of the immunocompromised NSG mice for 7 days
(Supplementary Figure 2A; Mammoto et al., 2019c; Hendee
et al., 2021). Consistent with in vitro study (Figure 3), vessel
formation derived from GFP-labeled supplemented ECs in the
cryosectioned gel was attenuated when gel mixed with GFP-
labeled obese human adipose ECs was implanted for 7 days;
GFP-labeled vascular area and average vessel length were 46
and 55% lower than that in the gel mixed with lean human
adipose ECs (Figure 4A). Knockdown of SLIT2 in supplemented
lean human adipose ECs suppressed vascular formation in
the implanted gel (Figure 4B). The supplemented GFP-labeled
VEGFR2+ lean human ECs were integrated with host-derived
VEGFR2+ ECs in the gel, however these effects were attenuated
in the gel supplemented with obese ECs or lean ECs treated with
SLIT2 shRNA (Supplementary Figure 2B). Supplementation of
recombinant SLIT2 protein or overexpression of TWIST1 in
supplemented ECs in the gel restored obese EC-derived blood

vessel formation and integration with host-derived ECs in the
gel, while knockdown of SLIT2 suppressed restoration of vascular
formation and integration with host ECs induced by TWIST1 in
obese ECs in the implanted gel (Figure 4C and Supplementary
Figure 2C). These results indicate that TWIST1 restores obesity-
induced disruption of vascular formation through SLIT2.

DISCUSSION

Impaired angiogenesis and vascular dysfunction in obese adipose
tissues contribute to obesity-related diseases. In this report, we
have used ECs isolated from lean vs. obese human subcutaneous
adipose tissues and demonstrated that vascular formation is
inhibited in obese ECs through TWIST1-SLIT2 signaling. The
levels of TWIST1 and SLIT2 are lower in obese human
adipose ECs compared to those in lean adipose ECs. EC DNA
synthesis and migration in vitro and blood vessel formation
in the gel subcutaneously implanted on the back of mice
are suppressed in obese ECs, while TWIST1 overexpression
or treatment with SLIT2 protein restores the effects. These
results suggest that obesity impairs angiogenesis in subcutaneous
adipose ECs through TWIST1-SLIT2 signaling. Modulation
of this pathway may be an effective strategy for obesity-
related diseases.

While hyperplastic expansion of the adipose tissues
maintains healthy metabolism and protects against obesity-
related diseases, adipocyte hypertrophy, which is frequently
associated with development of obesity (Verboven et al.,
2018), leads to adipose tissue dysfunction, inflammation and
ectopic lipid accumulation, resulting in the metabolic diseases
(Crewe et al., 2017; Hammarstedt et al., 2018; Chouchani
and Kajimura, 2019). Impaired angiogenesis is one of the
characteristics of hypertrophic adipose tissues. We have found
that TWIST1 expression is lower in obese human adipose ECs
(Figure 1) and overexpression of TWIST1 restores angiogenic
activity and blood vessel formation through SLIT2 in obese
ECs (Figures 3, 4). Angiogenesis is controlled by multiple
angiogenic factors, which is necessary for well-organized
physiological blood vessel formation (Carmeliet and Jain,
2011; Chung and Ferrara, 2011; Herbert and Stainier, 2011).
TWIST1 interacts with a number of signaling molecules.
For example, TWIST1 mediates age-dependent decline in
angiogenesis through VEGFR2 expression (Hendee et al.,
2021). Increased levels of TWIST1 contribute to pulmonary
fibrosis and lung injury through Tie2 signaling (Mammoto
et al., 2013, 2016). TWIST1 also mediates hypoxia-induced
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FIGURE 4 | TWIST1-SLIT2 signaling mediates obesity-dependent inhibition of vascular formation in the gel subcutaneously implanted on mice. (A) 3D reconstructed
immunofluorescence (IF) images showing GFP-labeled vascular formation and DAPI in the fibrin gel supplemented with GFP-labeled lean (BMI < 30, clone #15) vs.
obese (BMI > 30, clone #7) human adipose ECs and subcutaneously implanted on NSG mice for 7 days. Scale bar, 50 µm. Graphs showing vascular area and
average vessel length in the gel (n = 5–6, mean ± SEM, *p < 0.05). (B) 3D reconstructed IF micrographs showing GFP-labeled vascular formation and DAPI in the
fibrin gel supplemented with GFP-labeled lean human adipose ECs (clone #15) treated with lentivirus encoding SLIT2 shRNA and subcutaneously implanted on NSG
mice for 7 days. As a control, lean human adipose ECs were treated with control virus. Scale bar, 50 µm. Graphs showing vascular area and average vessel length in

(Continued)
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FIGURE 4 | (Continued)
the gel (n = 6–7, mean ± SEM, *p < 0.05). (C) 3D reconstructed IF micrographs showing GFP-labeled vascular formation and DAPI in the fibrin gel supplemented
with GFP-labeled obese human adipose ECs (clone #7) treated with SLIT2 protein, lentivirus overexpressing TWIST1 or in combination with SLIT2 shRNA and
subcutaneously implanted on NSG mice for 7 days. As a control, obese human adipose ECs were treated with control virus (vector alone), control shRNA, or control
vehicle. Scale bar, 50 µm. Graphs showing vascular area and average vessel length in the gel (n = 6–7, mean ± SEM, *p < 0.05).

pulmonary hypertension by endothelial-to-mesenchymal
transition (EndMT) as well as by changing PDGFB expression
in ECs (Mammoto et al., 2018, 2020). TWIST1 controls
multiple other angiogenic pathways [e.g., VEGF-VEGFR2
(Li et al., 2014), HIF1α (Yang and Wu, 2008), Wnt (Guo
et al., 2007), Notch (Chen et al., 2014; Wirrig and Yutzey,
2014), PI3K-AKT (Cheng et al., 2008; Xue et al., 2012), and
TGF-β (Mammoto et al., 2018)]. In fact, gene ontology and
gene network analysis reveal that TWIST1 interacts with a
number of genes that are significantly altered in obese human
subcutaneous adipose tissues (Figure 1D). These genes directly
or indirectly interact with SLIT signaling molecules as well
as other genes to modulate cell signaling, proliferation, ECM
structures and control angiogenesis. Thus, TWIST1-SLIT2
signaling would be one of the important targets to control
angiogenesis in obese ECs. In addition to angiogenic signaling,
TWIST1 also binds to PGC1α, which controls mitochondrial
biogenesis and metabolism, and inhibits its co-transcriptional
activity in fat cells (Pan et al., 2009). We also reported that
TWIST1-PGC1α signaling in ECs contributes to age-dependent
disruption of angiogenesis (Hendee et al., 2021). TWIST1
may regulate metabolic and mitochondrial signaling and
indirectly control angiogenesis. TWIST1 is also involved in
DNA methylation that is associated with obesity (Dahl and
Guldberg, 2007; Albuquerque et al., 2015; McCullough et al.,
2016). Thus, multiple TWIST1 signaling pathways are involved
in angiogenesis in obese conditions.

It is reported that TWIST1 is expressed in different types
of adipose tissues (brown, subcutaneous, and visceral) (Pan
et al., 2009; Pettersson et al., 2010; Dobrian, 2012; Svensson
et al., 2016). SLIT2 is also expressed in all kinds of adipose
tissues and the expression is suppressed in subcutaneous adipose
tissue from high-fat diet-treated obese mice (Svensson et al.,
2016). In addition to TWIST1, the levels of TWIST2 are also
lower in obese human subcutaneous adipose tissues in another
dataset (GSE15524, not shown). The distribution pattern of
TWIST1 and TWIST2 seems to be different; the levels of
TWIST1 are higher in subcutaneous adipose tissues compared
to visceral adipose tissues, which is strongly correlated with
BMI and insulin resistance, while Twist2 is more ubiquitously
expressed in the body (Pan et al., 2009; Pettersson et al., 2010).
Although it remains unknown how the distribution pattern is
regulated, TWIST1 may play important roles in development
and remodeling of adipose tissues in an obese condition. While
our results demonstrate that overexpression of TWIST1 in obese
human adipose ECs restores vascular formation (Figures 3, 4),
which may restore adipose tissue homeostasis, it is reported
that transgenic mice overexpressing Twist1 in the adipose tissue
are susceptible to obesity (Pan et al., 2009). This may be
because of the differences in the role of TWIST1 depending

on cell types and animal species. TWIST1 is expressed in other
cell types such as fibroblasts and epithelial cells (Pozharskaya
et al., 2009; Yeo et al., 2018) as well, which also alters the
effects of TWIST1 in adipose tissues. Further investigation using
endothelial-specific Twist1 knockout/overexpressing mice will
elucidate the mechanism.

Crosstalk between angiogenesis and adipogenesis is required
for the physiological expansion of the adipose tissue, while
these processes are disrupted in obese conditions. Hypertrophic
obesity is associated with biological pathways related to hypoxia
and inflammation (Gustafson et al., 2009; Crewe et al.,
2017; Hammarstedt et al., 2018; Chouchani and Kajimura,
2019), which promotes insulin resistance and lipolysis (Tilg
and Moschen, 2006; Guilherme et al., 2008; Galic et al.,
2010) and inhibits angiogenesis by secreting proinflammatory
molecules (e.g., TNFα, NFkB, JNK) and adipokines (Guilherme
et al., 2008; Vazquez-Vela et al., 2008; Crewe et al., 2017;
Hammarstedt et al., 2018; Chouchani and Kajimura, 2019).
Inhibition of angiogenesis due to inflammatory response may
feedback to further develop hypoxia in hypertrophic adipose
tissues. It is reported that TWIST1 promotes inflammatory
pathways, which leads to various pathological conditions such
as atherosclerosis, nephropathy, and pulmonary fibrosis (Tan
et al., 2017; Hradilkova et al., 2019; Mahmoud et al., 2019;
Ren et al., 2020). Binding of SLIT2 with ROBO receptors
also triggers proinflammatory signaling (Zhao et al., 2014;
Wang et al., 2020). Thus, TWIST1-SLIT2 signaling may control
subcutaneous adipose tissue angiogenesis through inflammatory
signaling as well.

Adipogenesis in subcutaneous adipose tissues is also
regulated by production of ECM proteins and their mechanics
(Hammarstedt et al., 2018; Chouchani and Kajimura, 2019;
Guzman-Ruiz et al., 2020). Increased deposition of ECM proteins
such as collagens (e.g., collagen I, III, IV, VI), fibronectin, and
elastin in adipose tissues is associated with infiltration of
proinflammatory immune cells, which leads to adipose tissue
disorganization and dysfunction in obese conditions (Chouchani
and Kajimura, 2019). It is reported that increased adipose tissue
fibrosis in the subcutaneous adipose tissues contributes to insulin
resistance and metabolic disorder (Sun et al., 2013). ECM stiffness
also controls angiogenesis (Mammoto et al., 2009). Since Twist1
is a mechanosensitive gene and senses ECM stiffness (Fattet
et al., 2020) and contributes to mechanosensitive pathology
[e.g., pulmonary fibrosis (Mammoto et al., 2016), pulmonary
hypertension (Mammoto et al., 2018, 2020), cancer (Fattet et al.,
2020), atherosclerosis (Mahmoud et al., 2016, 2017)], Twist1
may sense changes in the ECM microenvironment in the obese
adipose tissues and control angiogenesis and adipogenesis.

Obesity-mediated inflammation and lipotoxicity through
ectopic lipid deposition contribute to vascular remodeling in
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ectopic organs (e.g., liver, muscle, pancreas, heart) as well as
in tumor tissues, promoting insulin resistance (Kim et al.,
2007; Savage, 2009; Virtue and Vidal-Puig, 2010), cardiovascular
diseases and tumor progression (Dong et al., 2017). Regarding
angiogenesis in obese subcutaneous adipose tissues, consistent
with our results, it is demonstrated that angiogenesis is impaired
and endothelial function is disrupted in obese subcutaneous
adipose tissues, which results in ectopic lipid accumulation
and obesity-associated diseases (Hosogai et al., 2007; Halberg
et al., 2009; Pasarica et al., 2009; Cao, 2010; Christiaens and
Lijnen, 2010; Corvera and Gealekman, 2014; Shimizu et al.,
2014; Fuster et al., 2016; Xiao et al., 2016; Crewe et al.,
2017; Hammarstedt et al., 2018; Chouchani and Kajimura,
2019). Under obese conditions, due to its proinflammatory
state, endothelial signaling and their functionality are impaired
(Hosogai et al., 2007; Halberg et al., 2009; Pasarica et al.,
2009; Cao, 2010; Christiaens and Lijnen, 2010; Corvera and
Gealekman, 2014; Shimizu et al., 2014; Fuster et al., 2016;
Xiao et al., 2016; Crewe et al., 2017; Hammarstedt et al., 2018;
Chouchani and Kajimura, 2019). Multiple groups have reported
that stimulation of angiogenesis in adipose tissue of obese rodents
by increasing angiogenic gene expression (e.g., VEGFA, VEGFB,
FLT1, FOXO, Angiopoietin2) not only improves local adipose
tissue function, but also counteracts systemic metabolic disorders
(Sun et al., 2012; Sung et al., 2013; Robciuc et al., 2016; An
et al., 2017; Rudnicki et al., 2018; Seki et al., 2018). Thus,
the response of ECs to obesity and associated inflammatory
and angiogenic signaling may be different among organs and
obesity/disease stages due to heterogeneity of ECs and differences
in the microenvironment (Mammoto et al., 2009; Mammoto
and Mammoto, 2019; Ren et al., 2019). Further time course
analysis and investigation of inflammatory gene expression and
immune cell infiltration in subcutaneous adipose tissue may
elucidate the mechanism.

In this report, we isolated ECs from human subcutaneous
adipose tissues of lean vs. obese individuals, which includes
a variety of other conditions. Since aging affects angiogenesis
(Mammoto et al., 2019a; Hendee et al., 2021), we only used ECs
from tissues of young patients (<55 years old). Recent lineage
tracing mouse study revealed that subcutaneous adipose tissue
expansion pattern is sex dependent; while subcutaneous adipose
tissue expansion is through hypertrophy in male mice, increase
in adipose tissue is through the combination of hypertrophy and
hyperplasia in female mice (Jeffery et al., 2016; Chouchani and
Kajimura, 2019). Thus, the pattern and signaling mechanism
of adipogenesis and angiogenesis in adipose tissue may be
different due to sex, the onset of obesity, and cardiovascular
conditions. However, due to tissue availability, most of the
human samples in this study are from females. Investigation
using a different cohort and a larger sample size will further
elucidate the mechanism.

In summary, we have found that vascular formation is
inhibited in ECs isolated from obese human subcutaneous
adipose tissues through TWIST1-SLIT2 signaling. Modulation
of endothelial TWIST1-SLIT2 signaling may be an
effective strategy for treating obesity and associated
metabolic complications.
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Supplementary Figure 1 | TWIST1 controls EC survival in human
adipose ECs. (A) Representative images showing TWIST1 expression and
DAPI in lean (BMI < 30) human adipose ECs treated with TWIST1 siRNA
(left). As a control, human adipose ECs were treated with siRNA with
irrelevant sequences. Scale bar, 10 µm. Graph showing integrated density of
TWIST1 (right, n = 5, mean ± SEM, ∗p < 0.05). (B) Representative images
showing trypan blue staining of lean (BMI < 30) human adipose ECs treated
with TWIST1 siRNA. Scale bar, 25 µm. Graph showing trypan blue excluding lean
human adipose ECs treated with TWIST1 siRNA (n = 5, mean ± SEM,
∗p < 0.05). As a control, human adipose ECs were treated with siRNA with
irrelevant sequences.

Supplementary Figure 2 | TWIST1-SLIT2 signaling mediates obesity-dependent
inhibition of vascular formation in the gel subcutaneously implanted on mice.
(A) Fibrin gel subcutaneously implanted on the back of a mouse. Scale bar, 1 mm.
Arrow indicates the implanted gel. (B) 3D reconstructed IF images showing
GFP-labeled and VEGFR2-stained vascular formation and DAPI in the fibrin gel
supplemented with GFP-labeled lean (BMI < 30, clone #15) vs. obese (BMI > 30,
clone #7) human adipose ECs and subcutaneously implanted on NSG mice for
7 days (top). 3D reconstructed IF images showing GFP-labeled and
VEGFR2-stained vascular formation and DAPI in the fibrin gel supplemented with
GFP-labeled lean (BMI < 30, clone #15) human adipose ECs treated with SLIT2
shRNA and subcutaneously implanted on NSG mice for 7 days (bottom). Scale
bar, 50 µm. (C) 3D reconstructed IF micrographs showing GFP-labeled and
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VEGFR2-stained vascular formation and DAPI in the fibrin gel supplemented with
GFP-labeled obese human adipose ECs (clone #7) treated with SLIT2 protein,
lentivirus overexpressing TWIST1 or in combination with SLIT2 shRNA and

subcutaneously implanted on NSG mice for 7 days. As a control, obese human
adipose ECs were treated with control virus (vector alone), control shRNA, or
control vehicle. Scale bar, 50 µm.
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