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Abstract
Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic

memory. While numerous studies have investigated the neural processing mechanisms

engaged during traumamemory recall in PTSD, these analyses have only focused on

group-level contrasts that reveal little about the predictive validity of the identified brain

regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying

the neural mechanisms engaged during traumamemory recall would entail testing whether a

multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an indi-

vidual is engaging in trauma or non-traumamemory recall. Here, we use a MVPA approach

to test 1) whether traumamemory vs neutral memory recall can be predicted reliably using a

multivariate set of brain regions among women with PTSD related to assaultive violence

exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of

memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of

the feature weight spatial maps, and 3) the correspondence between brain regions that dis-

criminate traumamemory recall and the brain regions predicted by neurocircuitry models of

PTSD. Cross-validation classification accuracy was significantly above chance for all meth-

odological permutations tested; mean accuracy across participants was 76% for the method-

ological parameters selected as optimal for both efficiency and accuracy. Classification

accuracy was significantly better for a voxel-wise approach relative to voxels within restricted

regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related

ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable

involvement of the left hippocampus in discriminating memory recall across participants and

that the contribution of the left amygdala to the decision function was dependent upon PTSD

symptom severity. These results havemethodological implications for real-time fMRI neuro-

feedback of the traumamemory in PTSD and conceptual implications for neurocircuitry mod-

els of PTSD that attempt to explain core neural processing mechanismsmediating PTSD.
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Introduction
Posttraumatic Stress Disorder (PTSD) is characterized by re-experiencing of the traumatic
event, avoidance of trauma-related stimuli, general changes in mood and cognition, and hyper-
arousal symptoms[1]. PTSD has a prevalence rate of ~8% [2] and is associated with markedly
decreased quality of life and psychiatric and physical comorbidity [2,3]. Towards the larger
goal of developing optimally effective interventions for PTSD, much research over the past two
decades has focused on identifying the neurocircuitry mediating the core clinical symptoms of
PTSD. Extant PTSD neurocircuitry models [4–8], derived from this large body of human neu-
roimaging and animal model research, emphasize altered functional activity of four neuroana-
tomical sites: the amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC), and
dorsal anterior cingulate cortex (dACC). Heightened activity of the amygdala and dACC are
hypothesized to mediate the observed hyperarousal clinical symptoms (e.g., hypervigilance for
threat, startle, etc.). By contrast, the vmPFC and hippocampus are hypothesized to mediate
inhibition of the fear/traumatic memory and have been found to be hypoactive in PTSD,
thereby ostensibly leading to re-experiencing and avoidance symptoms.

Meta-analyses that explicitly test the degree to which univariate functional activity within
these regions is altered in PTSD provide partial support for these neurocircuitry models of
PTSD. On the one hand, a recent fMRI meta-analysis [8] focusing on tasks probing generic
emotional or cognitive constructs (i.e., not symptom provocation studies with ideographic
trauma stimuli) demonstrated altered functional activation in PTSD in the amygdala, hippo-
campus, dACC, and vmPFC. On the other hand, this meta-analysis also found 1) that amyg-
dala activity in PTSD patients was only hyperactive relative to non-trauma exposed controls
and not to trauma-exposed controls, and 2) altered activity in numerous brain regions not
specified by existing neurocircuitry models (e.g., lateral PFC, posterior cingulate cortex, etc).
Similarly, a recent neuroimaging meta-analysis [9] of symptom provocation studies (i.e.,
trauma memory recall), which presumably model PTSD re-experiencing symptoms specifi-
cally, also suggested the additional involvement of the posterior cingulate cortex (pCC) and ret-
rosplenial cortex and did not provide support for altered hippocampal or amygdala activity
relative to control groups. These meta-analytic findings highlight the notion that while the neu-
ral regions implicated in the neurocircuitry of PTSD (amygdala, hippocampus, and medial
PFC) are clearly important in PTSD, they are also clearly not sufficient to fully understand the
neurocircuitry mediating all relevant clinical features of PTSD.

One approach towards clarifying the neurocircuitry mediating PTSD is multivariate pattern
analysis (MVPA) [10–14]. In the traditional neuroimaging approach to understanding brain
function, a psychological task is manipulated (e.g., viewing faces versus houses) and its effect on
brain activity is observed. Analyses then test whether, across all stimulus presentations, a given
region tends to be more active during one or the other stimulus class. In this approach, one is
testing if knowledge of the stimulus provides predictive information about the brain response
(e.g., given a face stimulus, one might expect fusiform gyrus activation). However, this link does
not necessary extend in reverse; that is, it does not necessarily indicate that knowledge of a brain
region’s activity is predictive about a stimulus. By contrast, MVPA explicitly tests this latter rela-
tionship and asks whether a given multivariate set of brain regions allows better-than-chance
prediction of the generating stimulus. Additionally, whereas most prior PTSD-related neuroim-
aging research has focused on univariate analyses and identified functional activation of single
regions (or at best functional connectivity between two regions), MVPA approaches seek to
identify multivariate predictive relationships and can include the linear or non-linear simulta-
neous combination of all voxels in the brain. A focus on brain-wide functional interactions pro-
vides a notably better fit to the spatially distributed information processing that characterizes
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the human brain [15,16]. Accordingly, an MVPA approach might shed considerable light on
the brain networks mediating PTSD. For example, a hypothesis derived from neurocircuitry
models and recent meta-analysis is that symptom provocation tasks in PTSD (i.e., trauma mem-
ory recall) should concurrently engage a distributed network consisting of the amygdala, hippo-
campus, vmPFC, dACC, pCC, and retrosplenial cortex. This hypothesis can be tested
stringently using an MVPA approach by testing whether the hypothesized multivariate set of
brain regions reliably predicts trauma memory recall vs neutral memory recall. Further, predic-
tion accuracy using the set of brain regions hypothesized in PTSD neurocircuitry models could
be directly compared to alternative sets of brain regions (e.g., all grey matter voxels, all grey mat-
ter voxels excluding ROIs implicated in PTSD models, randomly generated ROIs, etc.) to test
more stringently the hypothesis that the regions hypothesized by PTSD neurocircuitry models
are indeed critical mechanisms mediating trauma memory recall in PTSD.

A related field that would be informed by clearer delineation of core neural mechanisms
mediating observable PTSD clinical symptoms is real-time fMRI (rtfMRI) neurofeedback
[12,17–20]. In rtfMRI neurofeedback, information about a participant’s brain state is presented
back to that participant, in near real-time, allowing the participant to volitionally modulate
that brain state. There are numerous examples in the literature of using rtfMRI neurofeedback.
Perhaps most relevant to PTSD is recent research demonstrating that healthy and depressed
individuals can be trained to increase amygdala activity in response to positively valenced sti-
muli through rtfMRI neurofeedback [17,21]. This body of data demonstrates that affected indi-
viduals can learn to volitionally control the neurocircuitry mediating their clinical symptoms.
It would seem that efficacy of rtfMRI in reducing clinical symptoms is at least partially depen-
dent upon targeting the correct neurocircuitry for the intended clinical symptoms. For exam-
ple, if one were aiming to reduce distress upon intrusive recollections of the traumatic
memory, one might expect that volitional control of the canonical regions implicated in PTSD
(amygdala, hippocampus, vmPFC, dACC) would be helpful. In this manner, an MVPA
approach towards a symptom provocation task (i.e., trauma memory recall) in PTSD would be
informative regarding the multivariate set of brain regions that accurately predict trauma
memory and therefore suggest the brain regions that might be targeted in rtfMRI neurofeed-
back for optimal clinical symptom reduction.

Here, we utilize a previously published data set [22] to conduct an MVPA of trauma mem-
ory recall among women with assault-related PTSD to 1) test whether a multivariate brain state
can reliably predict trauma vs neutral memory recall, 2) define the methodological parameters
that optimize classification accuracy, and 3) identify the correspondence between brain regions
that differentiate trauma vs neutral memory recall and the brain regions predicted by neurocir-
cuitry models of PTSD. It should be emphasized that the current lack of a trauma-exposed con-
trol group precludes inferences regarding whether brain regions encoding trauma memory
recall differ among a PTSD sample. Nonetheless, the lack of a control group does not preclude
inferences regarding whether the trauma memory can be reliably predicted based on brain
state and whether the observed brain states correspond with neurocircuitry models. Further,
individuals exposed to trauma who do not have PTSD exhibited resilience; thus, different brain
states would be expected in this population and would not necessarily be informative regarding
the brain states to target during rtfMRI for those who did develop PTSD.

Method

Participants and assessment
Participants consisted of 17 adult women with PTSD related to either physical or sexual assault.
One woman moved excessively during the scan causing intractable signal artifact, and her data
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were subsequently removed from analyses. This resulted in a final sample of 16 participants.
Inclusion criteria consisted of 1) a history of either physical or sexual assault, 2) a current diag-
nosis of PTSD, and 3) that participants were stable on any psychiatric medications for at least 4
weeks. Exclusion criteria consisted of psychotic disorders, a primary substance use disorder, or
internal ferromagnetic objects. Participants were recruited from outpatient mental health clin-
ics and from community wide advertisements. Table 1 lists demographic and clinical charac-
teristics of this sample. All study procedures were approved by the University of Arkansas for
Medical Sciences institutional review board and all participants provided written informed
consent.

The assault exposure histories of participants were characterized using the trauma assess-
ment section of the National Women’s Survey and National Survey of Adolescents [23–25].
This is a structured interview used in prior epidemiological studies of assault and mental health
functioning among adult women and adolescents. Specific assaultive events were assessed with
behaviorally specific dichotomous questions and included: 1) sexual assault (i.e., anal penetra-
tion, vaginal penetration, oral sex on the perpetrator, oral sex from the perpetrator, digital pen-
etration, fondling, forced fondling of the perpetrator), 2) physical assault (i.e., attacked with a

Table 1. Demographic and clinical characteristics of the 16 adult women in this sample.

Variable Mean (or frequency) SD

Age 33.8 10.8

Ethnicity 44% Caucasian -

50% African-American

6% Other

Education 6% not graduate high school -

38% graduate high school or GED

38% some college

18% graduate 2 year college or more education

Current Job 44% unemployed -

Ever been hospitalized for psychiatric reason 38% yes -

Age at first assault 9.53 6.66

% exposed to assault prior to age 18 75% -

Age at last assault 26.19 10.49

% exposed to assault after age 18 75%

PCL 62.3 13.5

BDI-II 24 11.7

Number of total direct assaults 7.6 2.4

Number of physical assaults from non-caregiver 3.0 1.2

Number of physical assaults from caregiver 1.6 1.2

Number of sexual assaults 2.9 1.4

Current Major Depressive Disorder 44% -

Current PTSD 100% -

Current Substance Use Disorder 25% -

Medication 31% antidepressant (SSRI, SARI)

25% benzodiazepine

19% other (gabapentin, lamotrigine, zolpidem)

56% no medication

Note. PCL = Posttraumatic Checklist—civilian version; BDI-II = Beck Depression Inventory-II.

doi:10.1371/journal.pone.0134717.t001
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weapon, attacked with a stick, club, or bottle, attacked without a weapon, threatened with a
weapon, attacked with fists), and 3) severe abuse from a caregiver (i.e., beaten with fists or an
object to the point where bruising or bleeding occurred).

PTSD and comorbid psychological disorders were assessed with the Structured Clinical
Interview for DSM-IV Disorders (SCID) [26] administered by a trained clinical interviewer
under the supervision of a licensed clinical psychologist. Participants additionally completed the
Posttraumatic Stress Checklist-Civilian Version [27] and Beck Depression Inventory-II [28].

Trauma Memory Recall Task
This task was delivered in the context of study probing the neural correlates of repeated expo-
sure to the trauma memory [22]. Participants were first given a description and therapeutic
rationale for repeated exposure to their traumatic memory (e.g., “coming in contact with the
memory repeatedly allows you to process the memory and feel less distressed by it”). Partici-
pants then provided a written account of their primary assaultive event and also of a neutral
control event. The narratives were collected with standardized methodology commonly used in
the literature [29–34] that facilitates collection of relevant sensory detail (e.g., physical reac-
tions, contextual stimuli, etc) during the event. The trauma and neutral scripts were matched
in length (~3 min) and audiorecorded by a female research assistant.

Participants were asked to indicate their level of anxiety, vividness of the memory, and dis-
sociation during the memory recall on Likert scales of 1–10, and practiced using this rating
scale prior to fMRI. The imagery procedure during fMRI consisted of five sequential presenta-
tions of the memory. The narratives were presented both aurally through headphones and
visually, such that the written narrative was presented to them on a projected screen that par-
ticipants viewed through a mirror attached to the MRI head coil. Each three minute presenta-
tion was preceded by 30 seconds of a resting-state, and these 30 seconds were not used in the
classification analyses described below. Participants provided the subjective ratings after each
individual presentation of each narrative. The trauma and neutral narratives were presented
sequentially (e.g., the neutral narrative was repeated five times, then the trauma narrative was
repeated five times), with the order (neutral or trauma first) counterbalanced across partici-
pants. The two script types were separated by a 4 minute anatomical scan. Preliminary analyses
demonstrated that anxiety during the first neutral script was not significantly higher among
women who received the trauma scripts first compared to the women who received the neutral
scripts first (p = .397).

MRI acquisition
A Philips 3T Achieva X-series MRI system using an 8-channel head coil (Philips Healthcare,
USA) was used to acquire imaging data. Anatomic images were acquired with a MPRAGE
sequence (matrix = 256x256, 160 sagittal slices, TR/TE/FA = 2600ms/3.02ms/8°, final
resolution = 1x1x1mm3 resolution). Echo planar imaging (EPI) sequences were used to collect
the functional images using the following sequence parameters: TR/TE/FA = 2000ms/30ms/
90°, FOV = 240x240mm, matrix = 80x80, 37 oblique slices (parallel to AC-PC plane to mini-
mize OFC sinal artifact), slice thickness = 3 mm, final resolution = 3x3x3 mm3. Each memory
presentation was collected as a separate EPI run (i.e., each participant had 10 runs for the 5
trauma and 5 neutral memory presentations).

Image Preprocessing
Image preprocessing followed standard steps and was completed using AFNI [35] software. In
the following order, images underwent despiking, slice timing correction, deobliquing, motion
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correction using rigid body alignment, alignment to participant’s normalized anatomical
images, spatial smoothing using a 8 mm FWHMGaussian filter (AFNIs 3dBlurToFWHM that
estimates the amount of smoothing to add to each dataset to result in the desired level of final
smoothing), and rescaling into percent signal change. Images were normalized using the MNI
452 template brain. Following recent recommendations [36], we corrected for motion related
signal artifacts by using motion regressors derived from Volterra expansion, consisting of [R
R2 Rt-1 R

2
t-1], where R refers to each of the 6 motion parameters, and separate regressors for

mean signal in the CSF and WM. This step was implemented directly after motion correction
and normalization of the EPI images in the preprocessing stream. Grey matter (GM), CSF, and
WMwere segmented from the high resolution anatomical image using FSL

Classification Analyses
General procedures. Across all methodological permutations tested, we used a common

cross-validation procedure and classification algorithm. We used support vector machines
(SVM) to train a classifier to discriminate trauma memory recall from neutral memory recall
using the voxel-wise fMRI timeseries as the input features. The SVM algorithm used a non-lin-
ear radial basis function kernel and C parameter = 100. This algorithm attempts to find a deci-
sion boundary differentiating the classes of stimuli (trauma vs neutral memory recall) based on
the nonlinear combination of features. SVM was implemented in Matlab using the LIBSVM
library [37]. The features were the trial-by-trial % signal change (z-scored) values for each
voxel within the specified brain mask (see below). We used 10-fold cross validation, such that
the timeseries (e.g., 860 TRs) for a given participant was split into 10 equal segments (e.g., 86
TRs) of randomly chosen TRs. A classifier was trained using 9 of the segments and then tested
on the left out segment, and this process was repeated until each segment was used as the left-
out test sample. Classification accuracy was defined as the median accuracy across all 10 folds.
The feature weight of each voxel was additionally stored for each cross-validation fold, and the
final feature weight map was defined by each voxel’s median feature weight across the 10 folds.

Methodological permutations. We tested classification accuracy across the following per-
mutations: 1) spatial smoothing vs no spatial smoothing, 2) number of memory recall repeti-
tions (range 1–5), and 3) brain mask restricting which voxels are used in the SVM classifier (all
GM voxels, only voxels within PTSD neurocircuitry ROIs, all GM voxels except voxels within
PTSD neurocircuitry ROIs, only voxels within 5 randomly generated ROIs).

Spatial smoothing vs no spatial smoothing. Among datasets that were not spatially
smoothed, the last step of the preprocessing pipeline was detrending, whereas among spatially
smoothed data sets an additional spatial smoothing step (using an 8mm FWHM kernel;
3dBlurToFWHM) was included.

Number of memory recall repetitions. All participants underwent 5 successive memory
recall repetitions for each script type. We tested classification accuracy and reproducibility of
the SVM feature weight spatial maps between models trained using the first run of each script
type, the first two consecutive runs, the first three consecutive runs, the first four consecutive
runs, and all five runs.

Brain mask restricting which voxels are used in the SVM classifier. We compared classi-
fication accuracy between models trained using all GM voxels, only voxels within ROIs specified
in PTSD neurocircuitry models, all GM voxels except those voxels within ROIs specified in
PTSD neurocircuitry models, and only voxels within randomly generated ROIs. The GMmask
was defined by segmenting each subject’s high resolution T1 image (using FSL) into GM, white
matter, and CSF, and then selecting those GM voxels that are shared by at least half of the partic-
ipants. This resulted in a common GMmask used across participants consisting of 36280 voxels.
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As indicated in the introduction, all current neurocircuitry models of PTSD implicate the
amygdala, hippocampus, and medial PFC as key neural mechanisms mediating PTSD, and a
recent meta-analysis additionally implicated the retrosplenial cortex, PCC, and precuneus in
PTSD re-experiencing symptoms specifically. The specific anatomical coordinates of the PTSD
ROIs used here were derived empirically from two recent meta-analysis of functional activation
studies in PTSD [8,9]: left amygdala (center-of-mass (COM) X,Y,Z coordinates = -20, -8, -16);
left (COM X,Y,Z coordinates = -32, -20, -8) and right (COM X,Y,Z coordinates = 28,-12,-24)
hippocampus; perigenual ACC (COM X,Y,Z coordinates = -10,24,22); dorsal ACC (COM X,Y,
Z coordinates = 3,26,21); retrosplenial cortex (COM X,Y,Z coordinates = 0,-53,8), pCC (COM
X,Y,Z coordinates = 2,-50,22), and precuneus (COM X,Y,Z coordinates = -1,-56,35). We placed
6mm spherical ROIs centered on each of these coordinates. Given that a 6mm ROI centered on
the left amygdala coordinates, derived from the Patel et al. meta-analysis [8], encompasses the
junction of the posterior amygdala and anterior hippocampus, we refer to this seed region as
amygdalohippocampal throughout the manuscript. Voxels within these ROIs (and within the
common GMmask described above) were then used to train the SVM classifier (total
voxels = 243).

To foster comparisons regarding the explanatory power of the PTSD ROIs, we also com-
pared classification accuracy to two control masks: 1) a mask using all GM voxels except for
those implicated in PTSD neurocircuitry models (total voxels = 36037), and 2) voxels within 8
randomly generated ROIs (33 spherical voxels) within the GMmask (total voxels = 229).
Regarding the randomly generated ROIs with the GMmask, we generated 10 sets of 8 ran-
domly generated ROIs (all sets of ROIs available for inspection upon request from the first
author), and tested classification accuracy for each participant using each of the 10 sets of ran-
dom ROIs, and then defined classification accuracy for the random ROIs as the median cross-
validation accuracy across all 10 random sets of ROIs.

SVM feature weight spatial maps reproducibility. Spatial maps representing each voxel’s
contribution to the nonlinear SVM decision function were created for each participant across
each relevant methodological permutation by reshaping the SVM feature weights back into
3-D brain shape. Reproducibility of the maps across methodological permutation was assessed
by examining the spatial correlation (after r-to-z transformation to improve normality)
between feature weights reshaped as 1-D vectors for a given participant. For example, for a
given participant, we characterized the correlation of the SVM feature weights for the model
trained using only the first run to the model trained using the first two runs.

Similarity of SVM feature weight maps across participants. We also sought to assess
whether there were commonalities in the feature weights contributing to the nonlinear SVM
decision function across participants. This was assessed in two ways. First, we assessed univari-
ate similarity for each voxel within the GMmask across participants using traditional mass
univariate one-sample t-tests. We similarly used mass univariate robust regression analyses to
test whether SVM feature weights scaled linearly with PTSD symptom severity (from the PCL)
when controlling for age, comorbid depression, and comorbid substance use disorders. We
corrected for multiple comparisons using cluster-level thresholding, with a corrected p< .05
achieved through a minimum of 47 contiguous voxels surviving an uncorrected p< .01 (based
on 3dClustSim). Second, to maximize statistical power, we conducted parallel one-sample t-
tests and robust regression analyses with PTSD symptom severity when constraining analyses
within the 8 PTSD-related ROIs described above. The mean SVM feature weight among the
voxels within these ROIs was calculated for each participant and then used in subsequent one-
sample t-tests or robust regression analyses.

Control classification analysis. Finally, we also conducted a control classification analysis
to demonstrate that classification results and feature weight maps for differentiating trauma vs
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neutral memory recall cannot be explained by differences in motion-related artifact. In this
analysis, we used framewise displacement (FD) to define motion across the 6 directions of
motion displacement. FD refers to the sum of the absolute value of temporal differences across
the 6 motion parameters; for example, an FD of .5 indicates a TR where the participant moved,
in total across the 6 parameters, 5 mm. We used a median split to divide the FD into high
motion TRs and low motion TRs, which were then the labels used in classification. The SVM
classification analyses used the first three runs to parallel the analyses that seemed most effi-
cient and accurate (see results below) for differentiating trauma vs neutral memory recall; thus,
the FD were concatenated across the three runs prior to the median split. The SVM classifica-
tion analyses used all GM voxels and were identical, except for the labels, to the corresponding
three run model differentiating trauma from neutral memory recall.

Results

Effect of spatial smoothing and memory recall repetitions
Fig 1 depicts classification accuracy as a function of smoothing and number of memory recall
repetitions. As can be seen, with the exception of non-smoothed data sets using only the first
memory recall run, all other permutations provided classification accuracy significantly above
chance levels. Classification accuracy was significantly better for smoothed vs unsmoothed
data sets regardless of memory recall repetitions. When using smoothed data sets, two recall
repetitions was not significantly better than just using the first run (p = .18), but using three
runs, four runs, and five runs were all significantly better than using two runs (all ps< .05).
Using four runs and five runs was not significantly better than three runs. As depicted in S1
Fig, classification accuracy for all participants was better than 60% when using at least two runs
for model training.

Reproducibility of SVM feature weight spatial maps
We then assessed how similar (using r-to-z transformed correlation coefficients) the SVM fea-
ture weights were for a given participant across the models using different numbers of memory
recall repetitions. Fig 2A depicts this approach for a single participant. This participant’s SVM
feature weights across GM voxels for the model trained using the first run was highly similar to
the SVM feature weights for the model trained using the first two runs (r = .65); by contrast,
similarity between SVM feature weights for the model trained with the first run and the model
trained with all five runs for this same participant was less robust (r = .29). When this approach
is repeated across all participants (Fig 2B), SVM feature weights trained with 3–4 memory rep-
etitions demonstrated greatest similarity across models. This was statistically tested by examin-
ing the median similarity for each model type (e.g., for the three run model, the median
similarity of the three run model with all other models), which demonstrated that the median
similarity across models for the model trained with the just the first run was significantly less
than the similarity across models for the two run model (p< .001). The two run model had sig-
nificantly less similarity across models than the three run model (p< .001), the three run
model overall similarity did not differ from the four run model similarity (p = .97), and the
four run model overall similarity was significantly greater than the five run model overall simi-
larity (p< .001).

Combined these results suggest that the three and four run models had the greatest classifi-
cation accuracy and yielded SVM feature weights with the greatest reproducibility. Given that
repeated presentation of the trauma memory yields non-stationary brain dynamics, it seems
that efficiency, reproducibility, and accuracy is best for the three run model. Thus, subsequent
analyses are constrained to just models trained with three memory recall repetitions.
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Sensitivity and Specificity
Beyond classification accuracy (hit rate), we also assessed sensitivity (proportion of trauma
narrative TRs correctly identified as trauma narrative TRs) and specificity (proportion of neu-
tral narrative TRs correctly identified as neutral narrative TRs) of the three run model. Mean
specificity across the 16 participants was 76%; mean sensitivity was 74%. There was no

Fig 1. Mean classification accuracy across participants (and standard error) as a function of number
of runs used to train the model and spatial smoothing.

doi:10.1371/journal.pone.0134717.g001

Fig 2. a) scatter plots for a single participant showing the spatial correlation between SVM feature weights
for each voxel when trained using a single run with SVM feature weights when trained using two runs (top)
and correlation between SVM feature weights when trained using a single run and SVM feature weights when
trained using 5 runs. b) spatial correlation across participants for the voxelwise SVM feature weights between
the different models.

doi:10.1371/journal.pone.0134717.g002
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significant difference between sensitivity and specificity (t = .82, p = .42), suggesting that the
classifier was not biased towards decisions of trauma or neutral memory recall.

Effect of brain mask
Fig 3 depicts classification accuracy as a function of the voxels used to train the model when
using three memory recall repetitions. Classification accuracy was significantly greater when
using all GM voxels compared to the model using only voxels within the ROIs implicated in
PTSD neurocircuitry models (p< .001) and the randomly generated ROIs (p< .001). Simi-
larly, classification accuracy was significantly greater when using all GM voxels except those
within ROIs implicated in PTSD neurocircuitry models compared to using only voxels within
ROIs implicated in PTSD models (p< .001) and the randomly generated ROIs (p< .001).
Finally, classification accuracy when using voxels only within ROIs implicated in PTSD models
did not significantly differ from using only voxels within 8 randomly generated ROIs (p = .08).

Similarity of SVM feature weight maps across participants
Voxelwise univariate analyses within the GMmask failed to identify significant clusters of vox-
els where the SVM feature weights either differed significantly from zero or significantly scaled
with PTSD symptom severity. However, the ROI analyses (Fig 4A) demonstrated that the con-
tribution of the left hippocampus to the SVM decision function was generally consistent across
participant (i.e., its mean SVM feature weight across participants differed significantly from
zero) (p = .007). Similarly, the ROI analyses demonstrated that the contribution of the left
amygdalohippocampal ROI to the SVM decision function scaled linearly with the severity of
PTSD symptoms (p = .008, when controlling for age, comorbid depression, and comorbid sub-
stance use disorders) (Fig 4B).

Control Classification Analyses
As indicated in Fig 5, mean classification accuracy for the three run model differentiating
trauma vs neutral memory recall (M = 76.1%, SD = 10%) was significantly greater than the
three run model differentiating high vs low motion TRs (M = 55.7%;SD = 5%); t = 7.2, p<
.001. Similarly, there was significantly greater spatial correlation between the three run model
feature maps and two run model feature maps differentiating trauma vs neutral memory recall
compared to the spatial correlation of the feature maps between the three run model differenti-
ating memory recall and three run model differentiating motion (t = 16.35, p< .001).

Discussion
The purpose of the present study was to test 1) whether a multivariate set of brain regions
could reliably discriminate between trauma and neutral memory recall among women with
PTSD, 2) the methodological parameters that affect this classification accuracy, and 3) the cor-
respondence between the brain regions that differentiate trauma recall and the brain regions
predicted by PTSD neurocircuitry models. In regards to the first goal, we found that trauma
memory recall could be differentiated reliably from neutral memory recall across women with
PTSD based only on a snapshot (a single TR) of brain function. Mean classification accuracy
across participants ranged from ~69%-77% for spatially smoothed data sets and were all signif-
icantly greater than chance. These basic results demonstrating significantly reliable classifica-
tion accuracy have general implications. These data demonstrate that it is possible, and
statistically reliable, to map a given individual with PTSD’s brain network encoding trauma
memory recall. In a traditional univariate analyses, one would assess the statistical relationship
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between the task (e.g., trauma vs neutral memory recall) and the activity in a voxel, and this is
repeated across all voxels. While this approach identifies the effect of the task on individual
voxel activity, it does not provide information regarding 1) co-activity across spatially distrib-
uted voxels (i.e., a network level analysis), nor 2) the predictive validity of a voxel’s or set of
voxels activity in differentiating the task. By contrast, these present results demonstrate both
the spatially distributed patterns of voxel co-activity related to trauma memory recall and also
the predictive validity of this network in differentiating trauma from neutral memory recall.
Accordingly, the current study provides proof-of-concept evidence for applications of real-
time fMRI neurofeedback to identify, and then target for volitional control, a brain-wide net-
work encoding the trauma memory identified specifically for each individual.

In regards to the methodological parameters that optimize classification accuracy, we
observed that spatial smoothing had a marked advantage over non-spatial smoothing. This is
counterintuitive in the sense that most MVPA analyses use nonsmoothed data sets and a puta-
tive strength of MVPA is utilizing spatial information that is lost during spatial smoothing

Fig 3. Mean classification accuracy across participants, trained using three runs, as a function of the
brain mask used to select voxels: all GM voxels, only voxels within PTSD-related ROIs, all GM voxels
except the PTSD-related voxels, and voxels within randomly generated ROIs.

doi:10.1371/journal.pone.0134717.g003

Fig 4. a) Mean SVM feature weights across participants with PTSD-related ROIs. b) scatter plot depicting
negative linear relationship between PTSD symptom severity and mean SVM feature weight within the left
amygdalohippocampal (p value comes from robust regression analysis also controlling for age, comorbid
depression, and comorbid substance use disorders).

doi:10.1371/journal.pone.0134717.g004
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[38–41]. Nonetheless, spatial smoothing is also widely known to increase statistical power to
detect univariate activations [38] and two separate studies have shown that spatial smoothing
does not hurt, and might actually increase, the accuracy of MVPA classification analyses
[42,43]. While the current study spatially smoothed with a uniform 8mm kernel across the
brain, it is important to note this effectively lowers spatial resolution and affects interpretation
of smaller subcortical structures, such as the amygdala or hippocampus. Future research
focused on classification of trauma recall brain states or real-time neurofeedback might benefit
from additional research testing the impact of the extent of spatial smoothing on classification
accuracy and/or neurofeedback efficacy.

We also observed that using data from multiple runs was superior to using a single run, and
that there appeared to be diminishing returns of increasing the number of runs after three
runs. Beyond the observation that more data is clearly helpful in training the classifier to iden-
tify and separate the signal of interest, it is informative that increasing the number of runs
beyond three does not improve classification performance. As noted above, the previous study
from which these data come [22] demonstrated that neural networks during repeated exposure
to the traumatic memory are not stationary; thus, for the purpose of mapping a given individu-
al’s brain network encoding the trauma memory, one would need enough data to ensure accu-
rate model building but one would not want to acquire so much data that one begins to change
the network being targeted. In further support of this, we observed a decreased spatial correla-
tion between the SVM feature weights of the one run model and models using more than two

Fig 5. top) Mean classification accuracy across participants for the three run model and the model trained to
differentiate high- and low-motion TRs. Bottom) Spatial correlation between the three and two run models
trained to differentiate trauma from neutral memory recall, and spatial correlation between three run model
trained to differentiate trauma recall and three run model trained to differentiate motion.

doi:10.1371/journal.pone.0134717.g005
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runs. Similarly, we also observed decreased spatial correlation between SVM feature weights of
the five run model and models using less than four runs. By contrast, models trained using
three runs and four runs appeared to retain greatest similarity across all models. Overall, these
data suggest that spatial smoothing in this context is beneficial for classification accuracy, and
that there is a trade-off between acquiring enough data for accurate model building and acquir-
ing too much data that alters the structure of the network being identified.

We also investigated the correspondence between brain regions differentiating trauma from
neutral memory recall and the brain regions predicted by PTSD neurocircuitry models. We
found that a whole-brain approach (all GM voxels) was superior to an ROI approach. Further,
while we found better than chance classification accuracy when using only voxels within PTSD
neurocircuitiry-related regions, we also found that classification using PTSD neurocircuitry-
related regions was no better than randomly generated ROIs, and that removing voxels with
PTSD neurocircuitry-related ROIs did not weaken performance when using all other GM vox-
els. These results provide strong evidence that the brain networks encoding recall of the trauma
memory cannot be reduced to regions canonically implicated in PTSD; rather, these data
emphasize that distributed and brain-wide information processing mediates trauma memory
recall. The GM voxel-wise group-level analyses failed to identify significant clusters of voxels
where the SVM feature weights were similarly strong across individuals; however, the ROI
analyses focused on PTSD neurocircuitiry-related ROIs demonstrated that the feature weights
for the left hippocampus significantly differed from zero, and that SVM feature weights for the
left amygdalohippocampal ROI were significantly negatively correlated with PTSD symptom
severity. It is widely known that interpretation of SVM feature weights when using a non-linear
kernel is difficult [12,44]. Nonetheless, it is interesting that hippocampal activity was reduced
during the trauma memory (negative SVM weight) and that PTSD symptom severity was nega-
tively related to SVM weight of the amygdalohippocampal (greater PTSD was associated with
more negative SVM weight) in light of prior research demonstrating reduced limbic activity
during acute stress exposure [45]. However, the analyses manipulating which voxels were used
in the classification analyses demonstrates that the PTSD-related ROIs are useful (classification
accuracy differed from chance when using them) but not necessary (removing them did not
affect classification accuracy). Overall, the current results highlight the need to further define
the brain-wide network organization, and their disruptions, that mediate trauma memory
recall in PTSD.

The current results have implications for the use of rtfMRI neurofeedback in the treatment
of PTSD. Based on prior meta-analyses of either generic cognitive-emotional tasks or symptom
provocation specifically [8,9], one might predict that training individuals to decrease amygdala
(or increase pgACC) activity would be helpful in modulating putative downstream re-
experiencing symptoms. The current results suggest that targeting the individual regions impli-
cated in PTSD neurocircuitry models would have only limited efficacy, as these brain regions
have only limited predictive validity in discriminating trauma memory recall. Instead, the cur-
rent results suggest that it might be more efficacious to build an idiosyncratic brain-wide map
and train an individual to modulate this entire network. Indeed, it has previously been argued
[12] that an idiosyncratic brain-wide approach has the advantages of 1) better matching the
distributed information processing patterns in the brain, 2) being less dependent on inter-sub-
ject variability in cognitive strategy or anatomy, and 3) being more robust to fMRI signal chal-
lenges. In support of the feasibility of modulating an entire brain map, as opposed to an
individual ROI, previous research has successfully trained individuals to modulate brain-wide
maps identified during motor tapping, mood induction, language, and covert counting tasks
[13,46]. rtfMRI-based neurofeedback in PTSD might then entail a series of training runs,
where the patient undergoes at least two trauma and neutral memory recall repetitions that is
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used to build a whole-brain model of that individual’s brain network encoding of the trauma
memory. The testing run would then entail providing some type of visual feedback to the
patient about the activation of this brain network and allowing the individual to learn to modu-
late the level of activation. Once mastery is built in modulating the brain network, one might
then complete additional trauma recall repetitions with concurrent neurofeedack to train the
individual to modulate the brain network during recall of the trauma memory. A design that
includes sham neurofeedback would be helpful in testing the efficacy of rtfMRI-based neuro-
feedback in reducing clinical symptoms. However, there is an important caveat to a brain-wide
approach for rtfMRI neurofeedback: it is difficult to determine if any region or sets of regions
are adaptive (e.g., regulatory) or dysfunctional. As such, it is not necessarily clear what func-
tional impact training individuals to modulate the entire network would have. By contrast, an
ROI-based approach might foster clearer interpretation of the specific function that is being
trained with the feedback. This is an issue that can be addressed empirically with a clinical trial
that randomly assigns individuals to ROI-based vs brain-wide rtfMRI neurofeedback and dif-
ferences in efficacy and impact on function outcomes between the approaches can be directly
compared.

The present results demonstrate the feasibility of using MVPA to identify whole-brain net-
works that differentiate trauma from neutral memory recall among women with PTSD. We
also demonstrate the methodological parameters that seem to optimize classification accuracy,
with spatial smoothing and repeated memory presentations (with diminishing returns after a
certain point) emerging as important factors affecting accuracy. We also found that whole-
brain networks, rather than PTSD-specific ROIs, led to optimal classification accuracy, which
emphasize the distributed nature of trauma memory recall and highlight that re-experiencing
symptoms cannot be reduced to a few ROIs. These results also have practical implications for
application of rtfMRI neurofeedback in PTSD. Nonetheless, the current study is not without
limitation. First, this was an offline MVPA analysis, and thus any speculation regarding neuro-
feedback efficacy, with respect to either modulating a whole-brain vs ROI target or modulating
clinical symptoms, is purely speculative. Second, the sample was limited to a small sample of
women with assault-PTSD. The focus on women with assault-related PTSD makes the degree
to which these results generalize to other samples of PTSD (e.g., men, other types of trauma,
etc) is unknown, and the small sample size accordingly tempers inferences and calls for addi-
tional research to replicate and extend the current findings. Similarly, the lack of a trauma-
exposed group without PTSD precludes any inferences regarding the degree to which the iden-
tified brain regions are unique to PTSD vs common to trauma-exposure per se cannot be
made. While this is a limitation in making inferences regarding whether the neurocircuitry in
PTSD differs from trauma-exposed without PTSD, note that this is not a limitation regarding
the application of MVPA to the problem of differentiating trauma memory recall in PTSD. In
light of these limitations, future work along these lines is needed to further probe the brain net-
works that mediating trauma memory recall in PTSD, the unique differences in these networks
among PTSD samples (vs trauma-exposed controls), the methodological factors that optimize
identification of the brain networks, and the efficacy of rtfMRI-based neurofeedback in modu-
lating these networks and downstream clinical symptoms.

Supporting Information
S1 Fig. Histogram showing the distribution of classification accuracy across the 16 partici-
pants as a function of number of runs used to train the model.
(TIF)
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