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Abstract: Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the human
population, for which there is currently no cure. The cause of AD is unknown; however, the toxic
effects of amyloid-β (Aβ) are believed to play a role in its onset. To investigate this, we examined
changes in global protein levels in a hippocampal synaptosome fraction of the Amyloid Precursor
Protein swe/Presenelin 1 dE9 (APP/PS1) mouse model of AD at 6 and 12 months of age (moa). Data
independent acquisition (DIA), or Sequential Window Acquisition of all THeoretical fragment-ion
(SWATH), was used for a quantitative label-free proteomics analysis. We first assessed the usefulness
of a recently improved directDIA workflow as an alternative to conventional DIA data analysis using
a project-specific spectral library. Subsequently, we applied directDIA to the 6- and 12-moa APP/PS1
datasets and applied the Mass Spectrometry Downstream Analysis Pipeline (MS-DAP) for differential
expression analysis and candidate discovery. We observed most regulation at 12-moa, in particular
of proteins involved in Aβ homeostasis and microglial-dependent processes, like synaptic pruning
and the immune response, such as APOE, CLU and C1QA-C. All proteomics data are available via
ProteomeXchange with identifier PXD025777.
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1. Introduction

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder.
There is currently no cure, and available medical treatments aim at alleviating symptoms.
While the cause of AD is under investigation, accumulation of amyloid-β (Aβ) derived from
the aberrant proteolytic cleavage of the amyloid precursor protein by γ- and β-secretases is
believed to play an important role in its pathogenesis [1,2]. Deposition of Aβ progresses
slowly throughout the brain, originating in basal cortical areas, spreading through the
hippocampus and ultimately affecting all areas of the cortex [3]. Additional pathological
changes in the brains of AD patients include the presence of neurofibrillary tau tangles,
astro- and microgliosis, synapse loss and neuronal death [3].

APPswe/PSEN1dE9 transgenic mice [4] express two human pathologically mutated
genes, the Amyloid Precursor Protein swe and Presenilin 1 dE9 (further mentioned as
APP/PS1). The APP/PS1 mouse model is one of the most widely used to study AD [5]
and specifically recapitulates the amyloid production aspect of the disease. For example,
APP/PS1 mice show early elevated Aβ production and plaque formation in the hippocam-
pus observed at 6 months of age (moa), which increases progressively with age [6]. In
addition, these mice show synaptic dysfunction [7,8], presence of reactive astrocytes [9] and
microglia [10], and multiple forms of memory impairments [8,11]. Studies have indicated
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synapse loss as early events in AD, which especially affect the hippocampus, and correlates
with cognitive decline [3,12]. Aβ exists in multiple forms and appears to play an important
role in synapse toxicity [3]. As synapse dysfunction and/or loss are believed to underlie
the early pathology of AD, it is necessary to unravel the temporal changes in molecular
and cellular processes encompassing the synapse in relation to the advancing Aβ challenge.
To this end, we performed proteomics analysis on hippocampal synapse enriched fractions
obtained from 6- and 12-moa APP/PS1 mice and their wildtype controls.

Alterations of molecular and cellular processes can be inferred from changes in protein
expression levels. Proteomics technology, capable of quantifying thousands of proteins
from a small sample size, is the method of choice to shed light on this. Data independent
acquisition (DIA), also referred to as Sequential Window Acquisition of all THeoretical
fragment-ion (SWATH) [13], is a quantitative proteomics methodology that offers quantifi-
cation of a high number of proteins with low technical variation and number of missing
values. Classical SWATH analysis requires a project-specific spectral library generated
from separate data-dependent acquisition (DDA) runs for protein identification. A recently
improved directDIA workflow now enables the creation of a spectral library directly from
the SWATH samples, bypassing the need for additional mass spec run-time and sample
fractionation [14,15].

In the present study, we used SWATH to examine differential protein expression levels
in hippocampal synaptosomes of 6- and 12-moa APP/PS1 mice. First, we compared the
use of directDIA versus a project-specific spectral library, and we revealed that directDIA
preferentially identifies high-intensity peptides, consistently across all sample replicates,
resulting in high data completeness. Importantly, using either method resulted in the
detection of a largely overlapping group of significantly regulated proteins, which, to-
gether, validates the directDIA workflow as a good alternative to the use of a DDA library.
Subsequently, we applied directDIA to both 6- and 12-moa datasets and used the Mass
Spectrometry Downstream Analysis Pipeline (MS-DAP) for differential expression analysis
and protein candidate discovery. We observed upregulation of multiple AD-associated
proteins in the 12-moa APP/PS1 mice. At 6 months, these proteins revealed no regula-
tion or lower levels of regulation. Proteins most differentially regulated between the two
ages were those that are implicated in Aβ homeostasis and microglial-dependent synaptic
pruning and/or immune activation such as APOE, CLU and C1QA-C.

2. Materials and Methods
2.1. Mice

The use of APP/PS1 mice in this study was approved by the animal ethical care
committee of the Vrije Universiteit Amsterdam. All wildtype and APP/PS1 mice of 12-moa
were males. Both conditional groups at 6-moa were a mix of males and females (3 of each
sex/condition).

2.2. Synaptosomal Enrichment

For all age and genotype conditions, synaptosomal fractions of 5 or 6 mice were indi-
vidually prepared and analyzed. Samples were prepared as previously described [14,16].
Mouse hippocampi were dissected and stored at −80 ◦C until further use. Per mouse, the
two hippocampi from both hemispheres were homogenized together in 6 mL of homoge-
nization buffer (0.32 M sucrose (VWR, Radnor, PA, USA), 5 mM HEPES (Sigma-Aldrich, St.
Louis, MO, USA) pH 7.4, Protease inhibitor cocktail (Roche, Basel, Switzerland)). Samples
were homogenized using a potter and pestle (Sartorius, Göttingen, Germany; 12 strokes,
900 rpm) and centrifuged at 1000× g for 10 min at 4 ◦C. Subsequently, 4.5 mL of super-
natant was loaded on top of a 0.85/1.2 M (6 mL each) sucrose gradient and centrifuged at
100,000× g for 2 h. Per sample, 1.5 mL synaptosomes were recovered between 0.85/1.2 M
sucrose interface, mixed with 3.5 mL 5 mM HEPES, pH 7.4, and centrifuged at 20,000× g
for 30 min to obtain the synaptosomal pellets. Synaptosomes were resuspended in 150 µL
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homogenization buffer, and protein concentration was determined with a Bradford assay
(Protein Assay, Bio-rad, Hercules, CA, USA).

2.3. Filter-Aided Sample Preparation

Samples were digested following the filter-aided sample digestion protocol [17] with
some modifications. In short, for each sample, 22 µg synaptosomes were solubilized in
100 µL 2% sodium dodecyl sulfate (Sigma-Aldrich, St. Louis, MO, USA) containing 1 µL
500 mM Tris (2-carboxyethyl) phosphine (Sigma-Aldrich, St. Louis, MO, USA) reducing
reagent, at 55 ◦C for 1 h. Next, cysteine residues were blocked with 0.5 µL 500 mM
methyl methanethiosulfonate (Fluka, Honeywell, Charlotte, NC, USA) for 15 min at room
temperature. After addition of 200 µL 8M urea (Sigma-Aldrich, St. Louis, MO, USA) in
tris buffer (Sigma-Aldrich, St. Louis, MO, USA), pH 8.8, the samples were transferred to
YM-30 filters (Microcon®, Millipore, Burlington, MA, USA) and centrifuged at 14,000× g
for 15 min. The samples were washed with 8 M urea solution four times by centrifugation
at 13,500× g for 14 min each, followed by four washes with 50 mM ammonium bicarbonate
(Sigma-Aldrich, St. Louis, MO, USA). Trypsin (Mass Spec Grade, Promega, Madison,
WI, USA; 0.6-g trypsin in 100 µL 50 mM ammonium bicarbonate) was added to the
proteins on filter and incubated overnight at 37 ◦C. The filters were centrifuged, and the
digested peptides were collected in a clean centrifuge tube. The samples were dried in
a speedvac (Savant, Thermo Scientific, Waltham, MA, USA) and stored at −20 ◦C until
Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) analysis.

2.4. Micro-LC and SWATH Mass Spectrometry

Peptides were analyzed by micro-LC MS/MS using an Ultimate 3000 LC system
(Dionex, Thermo Scientific, Waltham, MA, USA) coupled to the TripleTOF 5600 mass
spectrometer (Sciex, Framingham, MA, USA) as described previously [16,18,19]. Peptides
were trapped on a 5 mm Pepmap 100 C18 column (Dionex, Thermo Scientific, Waltham,
MA, USA; 300 µm i.d., 5 µm particle size) and fractionated on a ChromXP C18 column
(Eksigent, Sciex, Framingham, MA, USA; 3 µm particle size, 120A). The acetonitrile (VWR,
Radnor, PA, USA) concentration in the mobile phase was increased from 5 to 18% in 88 min,
to 25% at 98 min, 40% at 108 min and to 90% in 2 min, at a flow rate of 5 µL/min. The
eluted peptides were electro-sprayed into the TripleTOF 5600 mass spectrometer, with a
micro-spray needle voltage of 5500 V. SWATH experiments consisted of a parent ion scan
of 150 ms followed by a SWATH window of 8 Da with scan time of 80 ms, that stepped
through the mass range between 450 and 770 m/z. The collision energy for each window
was determined based on the appropriate collision energy for a 2+ ion, centered upon the
window with a spread of 15 eV.

2.5. SWATH Data Analysis

Spectronaut 14 (Biognosys, Schlieren, Switzerland) was used for data analysis of the
raw files. All SWATH runs of the 12-moa experimental sample set were analyzed against
both the spectral library and an internal spectral library using the directDIA function
in Spectronaut 14. Analysis against the spectral library was done in the Analysis Per-
spective of Spectronaut by uploading all raw files, assigning the spectral library to each
file and applying the Biognosys (BGS) Factory Settings. Analysis using the directDIA
function in the Analysis Perspective of Spectronaut was performed by uploading raw
files and assigning the mouse reference proteome files (the 2018_04 Uniprot release of
UP000000589_10090.fasta and UP000000589_10090.additional.fasta). Additionally here,
the Biognosys Factory Settings were applied. The 6-moa runs were analyzed only using
directDIA, the same way as the 12-moa dataset. Before exporting data from Spectro-
naut, all filters were disabled. The dedicated spectral library was created with crude
hippocampal synaptosomes containing spiked-in indexed Retention Time peptides (Biog-
nosys, Schlieren, Switzerland), analyzed with the Triple TOF 5600 in DDA mode. The
obtained library data were searched against the mouse proteome (the 2018_04 Uniprot
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release of UP000000589_10090.fasta and UP000000589_10090.additional.fasta) in Maxquant.
Methyl methanethiosulfonate (C) was set as fixed modification. In the Library Perspective
of Spectronaut, the dedicated spectral library was generated by uploading the Maxquant
evidence.txt and modifications.xml files, the used fasta files, and assignment of the Shotgun
Files (raw files).

The Mass Spectrometry Downstream Analysis Pipeline (MS-DAP) (available at https:
//github.com/ftwkoopmans/msdap; version beta 0.2.5.1) was used for quality control and
candidate discovery. In MS-DAP, peptide intensities without normalization in Spectronaut
were taken for downstream analysis. For differential expression analysis, the 6- and 12-
moa datasets were analyzed separately. Peptides present in at least 75% of the wildtype
or APP/PS1 groups were used for differential testing, with the limma emperical Bayes
algorithm after rollup to proteins. Shared peptides were removed, and the Variation Within
Mode Between and modebetween_protein algorithms were used for normalization. All
proteomics data used here have been deposited to the ProteomeXchange Consortium via
the PRIDE [20] partner repository with the dataset identifier PXD025777.

3. Results

We first investigated the enrichment of synaptic proteins in the synaptosomal sample
preparation and suitability of directDIA to reveal the effects of APP/PS1 Aβ expression
on synaptic protein levels in animals at 6 and 12 moa. Synaptosomes were isolated using
a standard protocol that in the past showed high reproducibility [21–24]. We performed
GO-enrichment analysis on all proteins identified in the synaptosomal preparations under
investigation in the current study. Using total brain genome as background, this revealed
‘synapse’ as strongest enriched term in both 6- and 12-moa datasets (Figure S1).

We continued investigating the suitability of directDIA for the analysis of our datasets.
Label-free quantification mass spectrometry can be performed in DDA or DIA/SWATH
mode. The classic approach of SWATH analysis uses a spectral library generated from
extensive DDA analysis for protein identification. Recent developments in data analysis
enable the construction of a library directly from the SWATH data in a workflow called
directDIA [14,15]. Here we performed SWATH analysis and used the new software suite
Spectronaut 14 containing the directDIA (2.0) workflow.

For comparison, we first searched the 12-moa APP/PS1 dataset (n = 6/condition)
against our standard in-house hippocampal DDA-based spectral library in Spectronaut for
peptide and protein identification and quantification, and we ran the data through MS-DAP,
a recently released downstream analysis pipeline for quantitative proteomics (available at
https://github.com/ftwkoopmans/msdap; version beta 0.2.5.1). This newly developed
all-in-one analysis tool provided extensive quality control plots, allowed filtering and
normalization of data, and revealed significantly changed proteins between experimental
conditions by differential testing. The analysis resulted in the detection of 31,670 peptide
precursors on average per sample. A sizeable fraction of peptides fell below the 0.01
confidence threshold and represents potential false positives (Figure 1a; Figure S2). Filtering
out the low-quality precursors with a q-value > 0.01 removed, on average, 11,058 precursors
(35%) per sample. On average, 20,612 (65%) precursors were retained per sample that were
mapped to 19,413 target peptides and 3374 proteins (Figure S3a). A total of 15,306 peptides
were quantified in all samples (Figure 1b).

https://github.com/ftwkoopmans/msdap
https://github.com/ftwkoopmans/msdap
https://github.com/ftwkoopmans/msdap
https://github.com/ftwkoopmans/msdap
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Figure 1. Comparison between the use of a Data Dependent Acquisition (DDA)-based spectral library or directDIA for
protein identification and quantification. (a) Exemplary histogram of one sample (wildtype 1) showing both target (blue) and
decoy (grey) confidence scores (cscores), indicating the level of confidence of peptide identification using the DDA-based
spectral library. The q-value confidence threshold of 0.01 is shown as a dotted line, and the associated cscore and number
of peptides quantified above this threshold are reported. (b) Cumulative distribution showing the number of peptides
consistently identified across the range of samples, using the DDA-based spectral library. The exact number of peptides
identified are shown at 100% or 50% of samples. (c) Analogous to panels a and b: an exemplary histogram of the same
sample is shown to visualize target and decoy cscores obtained after identification of peptides in the raw SWATH data
using directDIA. (d) A cumulative distribution showing the number of peptides consistently identified across the samples,
using directDIA. Cscore histograms of all individual samples run against the DDA-based spectral library or directDIA
library are reported in Figures S2 and S4, respectively.

To assess the performance of directDIA for analysis, we generated an internal spectral
library with the same 12-moa dataset using the directDIA feature in Spectronaut 14. Using
the library from directDIA, we detected on average 22,600 precursor peptides per sample.
When the precursors were filtered on quality, per sample, an average of 4972 precursors
(22%) with a q-value > 0.01 were removed, and 17,628 (78%) identifications were retained.
These retained precursor identifications mapped to an average of 12,473 unique peptides
and 2304 proteins per sample (Figure S3b). This is 36% and 32% fewer peptides and
proteins than observed in the search against the project-specific spectral library. Against
this apparent disadvantage of directDIA, the confidence score distributions clearly showed
that the relative number of potential false-positive identifications, and loss of identifications
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after filtering for quality, was much lower using directDIA (Figure 1c; Figure S4). Of interest,
the use of directDIA results in a high data completeness with nearly all identified peptides
(98%) consistently observed across all sample replicates (Figure 1d).

Using directDIA a total of 12,517 peptides with a q-value ≤ 0.01 were identified in
the entire 12-moa dataset, and 23,061 using the spectral library (Figure S5a). The large
number of peptides uniquely identified using the spectral library (11,574) (Figure S5a) were
of lower intensity (Figure S5b) and quality (Figure S5c) than the peptides identified in
both the spectral library and directDIA (11,487). The intensities of peptides shared by both
searches showed a high correlation (R2 = 0.95) (Figure S5c), suggesting these peptides are
based on the same peaks, and both workflows perform, to a large extent, equally.

To compare the effects of peptide identification using the DDA-based spectral library
or directDIA on further downstream analysis, we first ran a differential expression analysis
(DEA) on the 12-moa APP/PS1 experimental group and their wildtype controls searched
against both types of libraries. For each search, DEA was performed using peptides
detected with a q-value ≤ 0.01 in at least 75% of the samples in each experimental group.
In addition, peptides shared between proteins were removed. DEA using the DDA-
based spectral library and directDIA was performed on 17,153 peptides that mapped to
3039 proteins, and 12,441 peptides mapped to 2300 proteins, respectively (Figure 2a). Most
proteins retained for DEA were observed in both dataset searches (74%) (Figure 2b). Those
proteins observed only using the DDA-based spectral library were, for the largest part,
based on one peptide (67%) (Figure 2c) and, as expected based on the earlier peptide
analysis, of lower abundance (Figure S6).
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Figure 2. Characterization of proteins used for differential expression analysis in MS-DAP obtained
by a DDA-based spectral library or directDIA. (a) Number of proteins and peptides that remain after
filtering for differential expression analysis. (b) Number of unique and shared proteins used for
downstream analysis identified by the DDA-based spectral library or directDIA. (c) The percentage of
shared or uniquely identified proteins, using the spectral library or directDIA, that is represented by
the specified number of peptides. (d) The number of regulated proteins identified using the different
library searches and the specified empirical Bayes cut-offs for statistical significance.
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Differential testing of protein expression levels revealed 23 and 32 regulated proteins
with statistical significance (empirical Bayes corrected p-values, or q-values ≤ 0.01) in
APP/PS1 mice versus their wildtype controls using the DDA-based spectral library search
and directDIA, respectively (Figure 2d). Importantly, the majority of these proteins (21)
were found significantly altered within both searches (Figure 2d). Of the two proteins
detected as regulated uniquely in the DDA-based spectral library searched dataset, one
showed significance with directDIA search when relaxing the criteria to a q-value ≤ 0.05
(Figure 2d). Relaxing the criteria to a q-value ≤ 0.05 revealed a substantial number of
proteins reaching significance only in the DDA-based spectral library (49) or the directDIA
library (33) (Figure 2d). Of the 49 significant proteins observed only using the DDA-based
spectral library, 16 were not detected with directDIA, and the additional 33 revealed higher
fold-changes than observed using directDIA (0.20 ± 0.11 versus 0.15 ± 0.1 log2 fold-change,
respectively), which is therefore likely the cause of reaching significance at a q-value ≤ 0.05
using the DDA-based spectral library only. Variation in abundance for these proteins was
the same between the two libraries (0.15 ± 0.08 versus 0.15 ± 0.1 SD, respectively). Of the
33 proteins only found significant using directDIA, two were not identified using the DDA-
based spectral library. The additional 31 proteins revealed lower variation than observed
with the DDA-based spectral library (0.15 ± 0.06 versus 0.27 ± 0.48 SD, respectively),
while revealing the same log2 fold-changes (0.18 ± 0.16 and 0.18 ± 0.17, respectively).
As directDIA gives high confident peptides, and showed a higher number of significant
proteins at a q-value ≤ 0.01, we proceeded with directDIA for our 6-moa dataset in a
subsequent analysis.

In the 6-moa dataset (n = 6/condition), quality control using MS-DAP showed a clear
outlier in the wildtype group possibly due to a technical issue of the high-performance
liquid chromatography run, and was removed from further analysis (Figure S7a–c). Like
the 12- moa dataset run with directDIA, the 6-moa dataset showed high data completeness
across samples (Figure S8a), and similar numbers of peptides and proteins were detected
after filtering for DEA (12,010 and 2469 on average per sample, respectively) (Figure S8b).
Both 6- and 12-moa datasets showed low coefficients of variation, ranging between 8 and
12.3%, per experimental condition (Figure S8c), and the majority of proteins used for DEA
were detected and tested in both age groups (78%) (Figure S8d).

In the 6-moa dataset, only a few proteins showed significant regulation with a q-value
≤ 0.01 (Figure 3a). These included NCSTN (one of the subunits of the gamma-secretase
PS1 complex), DOCK9 and TXNRD1 that had higher levels in APP/PS1 mice, and GPC4
that showed a decrease in expression (Figure 3b). The level of APP itself was also increased,
but at a higher p-value of 0.026 (Figure 3b). In contrast, the 12-moa dataset showed
30 proteins up and 2 down (MTMR1 and GAK) in the APP/PS1 group (Figure 3a). At 12-
moa APP showed an increased level, and similar to the 6-moa dataset, a strong increase
was observed for NCSTN and DOCK9 (Figure 3b). Besides APP and NCSTN, several of
the additional most regulated proteins are known AD risk factors or proteins related to
AD pathology, including APOE, CLU and C1QA-C (Figure 3b, Table S1). Indeed, Gene
Ontology enrichment analysis in gProfiler using the mouse proteome as background
revealed multiple significant terms associated with AD, including “regulation of amyloid
fibril formation” (Biological Process) and “Alzheimer’s disease” (WikiPathways) (Figure 4a).
Using our custom total list of proteins detected at 12-moa as background, Gene Ontology
analysis showed enrichment of terms such as “Membrane proteolysis” (Biological Process)
and “lysosome” (Cellular Component) (Figure 4b). Both terms were largely based on
APP, APOE and NCSTN. In addition, the lysosomal term included VTl1B, ARL8B, EPDR1,
HEXB, SYT11 and the AD-associated proteins PLD3 and LAMP2 (Table S1). An additional
known AD-protein not annotated to Aβ, Alzheimer or lysosome-related terms, which was
regulated here, was AQP4 (Figure 4b, Table S1).
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implicated in human AD in previous reports, see Table S1.
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the whole mouse genome as background results in terms related to Aβ and AD. (b) The use of the total list of proteins
detected at 12-moa as background results in enrichment terms related to proteolysis and lysosome.

To reveal possible specific subsynaptic compartments affected in APP/PS1 mice, we
performed enrichment analysis with the Synaptic Gene Ontology (SynGO) knowledge
base [25]. The list of 34 regulated proteins at 6- or 12-moa contained 11 proteins that were
annotated to SynGO (Table S2). The additional proteins were not annotated in SynGO yet,
or they came from non-synaptic impurities of the synaptosomal sample preparation with
similar biochemical properties. The regulated synaptic proteins were equally annotated to
the pre- and post-synapse (Figure S9), without significant enrichment towards a specific
subsynaptic localization or function (Tables S3 and S4).

We then performed an Expression Weighted Cell-type Enrichment (EWCE) analy-
sis [26] on the significantly upregulated proteins at 12-moa to distinguish the possible
contributions of different cell types to the changed expression levels. This is based on the
notion that these proteins will be non-equally expressed over all cell types. For EWCE
analysis we used previously published single-cell RNAseq gene expression profiles ob-
tained from mouse hippocampus [27]. We observed overrepresentation of microglial and,
to a lesser extent, astrocytic proteins, albeit not significant (Figure 5a), which are therefore
likely the major source of the observed increase in protein expression. Proteins with high
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microglial expression include C1QA-C and HEXB, and proteins showing high astrocytic
expression include AQP4, GPC4, CLU and ATP1A2 (Figure S10).
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(a) Expression Weighted Cell-type Enrichment performed using single cell RNAseq level 1 cell-type
data obtained from [27], on the upregulated proteins at 12-moa. * p-value < 0.01. (b) Fold-change
ratios are shown for all proteins regulated in at least one of the two datasets demonstrating their
level of regulation over time. Proteins labeled with a + have been implicated in human AD in earlier
reports, see Table S1. The top 10 most regulated proteins over time are highlighted in orange.

The level of APP expression showed an increase over time, and additional protein
regulations were also stronger at 12-moa than at 6-moa (Figure 3b). To visualize the
progressive temporal changes in expression of regulated proteins directly, we derived the
fold change ratios of proteins significant in at least one of the two datasets (Figure 5b).
Here we observed that the top 10 of proteins with the highest changing expression levels
over time include APP, C1QB/C, APOE, CLU and AQP4 (Figure 5b).

4. Discussion

Toxicity and accumulation of Aβ is believed to play important roles in AD pathogen-
esis [1,2], starting in basal cortical areas spreading through the hippocampus and other
areas of the cortex [3]. In addition, synapse loss has been indicated as early events in AD
that correlate strongly with cognitive impairment [3,12]. Studies have shown that Aβ is
important for synaptic failure [3]. As synapse loss especially affects the hippocampus [12],
this structure was our brain area of interest.

Because aberrant molecular and cellular changes in and around the synapse are
considered to play a part in the cause of AD progression, it is necessary to unravel their
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temporal changes in relation to the advancing Aβ challenge. To reveal changes in protein
expression that may result from the overexpression and aberrant processing of APP into
Aβ, we examined the hippocampal proteome of 6- and 12-moa APP/PS1 mice and their
wildtype controls. For our study we employed SWATH technology [13]. Current studies
indicate that SWATH yields small variations and few missing values among samples that
together enable the detection of subtle changes in expression, and may therefore be the
preferred method of choice [16,19].

A typical SWATH experiment requires a project-specific spectral library for peptide
identification during a database search. Building a spectral library requires extensive DDA
analysis, preferably on the same or similar samples, and measured under comparable
conditions to the measurements done on the samples of interest. This increases measure-
ment time, and the conditions to generate the library are often not an exact copy of those
while measuring the samples, leading to an increased chance of spectra mismatching. In
contrast, directDIA assembles the precursor ions and fragment ions into pseudo–tandem
Mass Spectrometry spectra, which can be built into a spectral library by the search against
a conventional reference proteome database. The project-specific spectral library search
in this study produced more peptides than did a directDIA library search. However,
among the uniquely detected peptides, many of these were of lower intensity and quality
compared to those identified by both workflows. These peptides are likely causing the
reduced consistency observed in peptide detection across the sample replicates. Within
the shared peptides generated from directDIA and the project-specific spectral library we
revealed a high correlation in peptide intensity. This suggests these peptides are based on
the same peaks and implicates that both approaches quantified peptides in similar ways.
Importantly, downstream analysis showed that the directDIA protocol detected more
significantly regulated proteins with high confidence, in addition to the shared proteins,
demonstrating the usefulness of directDIA for database search.

We continued using directDIA for the analysis of protein changes in APP/PS1 mouse
hippocampal synaptosomes of 6- and 12-moa. Synaptosomes were isolated with a standard
protocol, which in the past has shown enrichment of synaptic proteins with high repro-
ducibility [21–24]. Additionally, in the synaptosomal preparation under investigation, we
observed enrichment of synaptic proteins, as revealed by GO-enrichment analysis. In addi-
tion, the synaptosomal fraction may contain structures with similar biochemical properties
or structures of contacting non-neuronal cells. For instance, microglia have been implicated
in the elimination of synapses during development and under pathological conditions such
as exposure to Aβ oligomers [28]. Synapse engulfment and pruning by microglia occurs
in a complement factor dependent manner [28,29]. Indeed, highest regulated proteins
observed in our dataset are strongly expressed in microglia, as reflected in the cell-type
enrichment analysis, and include the complement factors C1QA-C.

Despite enriching for synaptic proteins, surprisingly, only a few synaptic proteins
are regulated in the APP/PS1 mice at 6- and 12-moa (e.g., SYT11 and GABRB3). SynGO-
analysis revealed no enrichment of these proteins towards a specific subsynaptic com-
partment or biological process. In contrast, a recent proteomics study on the human
(pre-clinical) AD cortex revealed changes in proteins related to the secretory pathway and
synaptic vesicle endocytosis (e.g., SYT2 and SH3SGL2) [30], supporting the relevance of
synaptic homeostasis in AD disease pathology. Proteins related to these pathways were
among early responding, late responding and progressively changing protein groups [30].
In the APP/PS1 mouse model of AD, stronger changes in synaptic vesicle endocytosis
proteins have been observed at 3-moa [4,31], suggesting the APP/PS1 model recapitulates
especially early synaptic changes induced by Aβ. This is in line with a recent cross-species
meta-analysis on human AD transcriptomics and mouse models of AD [32]. Among dif-
ferent human AD studies, the meta-analysis revealed consistent downregulation of gene
groups enriched for neuronal genes [32]. The strongest overlap of regulated neuronal genes
was observed in mice with a mild pathological burden [32].
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In the current study, strongest (up-)regulation of proteins was observed in the 12-moa
dataset and contained multiple microglial proteins. At 6-moa we observed no regulation
of microglial proteins. In contrast, microglial activation has been observed in multiple
amyloidosis mouse models of AD as one of the earliest phenotypes [33–35]. For example, a
recent transcriptomics study on microglial cells enriched from AppNL-G-F mice [36] revealed
upregulation of microglia in an activated state already at 3-moa [35]. This activated group
of microglia was characterized by increased expression of Apoe [33–35], an apolipoprotein
involved in lipoprotein homeostasis and clearance of Aβ [37,38]. Removal of Apoe resulted
in suppression of microglial recruitment to Aβ-plaques, revealing a pivotal role for this
transcript in Aβ-related microglial activity [35]. At 12-moa, we also observed increased
levels of APOE and other proteins previously detected in activated microglia, including
HEXB, EPDR1, ERP29, RER1, GLG1 and PLD3 [33,35].

Lack of observed microglial protein regulation at 6-moa in the current study may be
caused by several aspects. First, previous transcriptomics and proteomics studies isolated
microglia before protein or transcript extraction [33–35]. As synaptosomes were used in
the current study, there is reduced sensitivity towards changes that occur in this specific
cell type. For example, APOE is expressed in both microglia and astrocytes, but Apoe
mRNA was particularly shown to increase in microglia upon exposure to Aβ [35]. More
subtle increases of microglial APOE at earlier timepoints may remain undetected due to
dilution of protein changes. In addition, strong, early microglial effects were observed
using amyloidosis mouse models, different from the APP/PS1 model used here [33–35].
Of interest, in AppNL-G-F mice [36] the relative number of reactive microglia increased
over time from 6% at 3-moa, to 33% at 6-moa and 52% at 12-moa [35]. The same report
also revealed an increase in reactive microglia in the APP/PS1 mouse model [4,35], the
same model that was used in our current proteomics study [4]. This confirms activation of
microglia as a consistent phenotype [35]. However, the APP/PS1 mouse only revealed a
15% increase at 18-moa [35], suggesting activation of microglia in different models follows
distinct timelines or differences in severity.

A difference in microglia activation rate may be due to differences in Aβ pathophysiol-
ogy between amyloidosis mouse models, as suggested in a previous report [33]. In a recent
study, APP/PS1 mice (bearing the APPswe and PSEN1L166P mutations) [39] were shown
to contain fibrillar Aβ plaque cores at 3-moa, along with protein abundancy alterations
in isolated microglia [33]. In contrast, fibrillar Aβ was barely detectable in AppNL-G-F

mice [36] of the same age with similar plaque load, and showed no microglia proteome
alterations [33]. At higher age, both models expressed dense core fibrillar Aβ and an
altered microglial proteome [33]. In line with this, the cross-species meta-analysis showed
upregulation of human AD gene groups enriched for microglial genes, most strongly and
consistently in mice with severe Aβ pathology [32].

Proteins regulated in the APP/PS1 datasets observed in the current study were over-
represented by those involved in APP processing and Aβ formation. For example, NC-
STN is an integral component of the γ-secretase complex comprising PS1-NCSTN-APH1-
PSENEN, which cleaves APP to produce Aβ peptides [40]. Upregulation of NCSTN
suggests increased levels of γ-secretase, likely due to overexpression of the PSEN1 gene in
the APP/PS1 mouse model. PS1, APH1 and PSENEN were not detected in the proteomics
dataset. The increased expression of APP is also most likely the direct consequence of the
over-expression of the human APP gene.

RER1 also showed elevated levels in the APP/PS1 mice. This protein regulates the re-
trieval of endoplasmic reticulum membrane proteins from the early Golgi compartment [41].
Correspondingly, RER1 was revealed to affect γ-secretase assembly by regulating retention
and retrieval of NCSTN and PSENEN [42–44]. Increased levels of RER1 expression cause
reduced maturation of APP, negatively regulating the production of Aβ [44]. This suggests
in the APP/PS1 mice, elevated levels of RER1 work to compensate for increased APP and
NCSTN levels.
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APOE and CLU (APOJ) were highly up-regulated in our dataset, and they are well-
established genetic risk factors of late-onset AD [45]. Although these are two distinct
proteins, they show many similarities. Both APOE and CLU are apolipoproteins mediating
lipid transport between cells in the brain [37,46]. These proteins are mainly secreted
by astrocytes, in healthy brains, and are associated with immune modulation including
activation of microglia [47], and are possibly involved in microglia-associated phagocytosis
of Aβ [38]. Thus, increased levels of APOE and CLU in the APP/PS1 dataset may reflect
cellular responses towards increased Aβ clearance.

GO analysis revealed additional enriched terms including “Complement Activation,
Classical Pathway” as well as “synapse pruning”. These are based on C1QA-C, three
complement factors that initiate the classical complement immune response [48]. These
proteins are highly expressed by microglia and, together with other complement factors, are
found in human and mouse Aβ plaques [49,50]. Increasing evidence shows a detrimental
role of C1Q in AD pathogenesis, as it can enhance Aβ fibrillogenesis [51–53], block Aβ

uptake by microglia [54] and are involved in aberrant synaptic pruning [28]. Thus, C1Q
upregulation observed here likely contributes to AD pathology.

In the APP/PS1 mouse we also observed GO enrichment of proteins expressed in the
lysosome, for instance HEXB and LAMP2. Lamp2 revealed high expression in microglia
in the single-cell RNAseq data [27]. In addition, Pld3 transcripts and HEXB revealed
enriched expression in reactive microglia in AD mice [33,35]. Microglia may be the main
source of increased lysosomal proteins observed in the APP/PS1 dataset. Of interest, an
AD study on the microglial proteome revealed enrichment of phagocytic and lysosomal
proteins alongside impaired microglial phagocytotic capabilities [33]. As the authors
suggested, increased phagocytic and lysosomal protein expression in microglia may be part
of a compensatory mechanism to enhance microglial phagocytosis of Aβ. This response
eventually fails to improve capabilities for the removal of Aβ [33].

Taken together, regulation of proteins involved in APP and Aβ processing (NCSTN,
APOE, CLU and RER1), microglial activity (C1QA-C, APOE, HEXB, PLD3, LAMP2, EPDR1,
ERP29, RER1 and GLG1 and PLD3) and the endo-lysosome (PLD3, VTI1B, EPDR1, HEXB,
ARL8B and LAMP2) in this APP/PS1 mouse model reflect multiple aspects of AD-related
processes. Regulation of these proteins in the APP/PS1 mouse model reinforces their
importance in Aβ-induced pathology.

In addition, we observed proteins not linked to AD previously. Several of these have
been associated with other neurodegenerative disorders (ZDHHC17 with Huntington’s
disease [55], SYT11 and GAK with Parkinson’s disease [56] and GABRB3 with dementia
with Lewy bodies [57]), and may be of special interest for future studies. We also detected
dysregulated proteins with no reported relation to AD or neurodegeneration (e.g., AKAP
or PIP4P2). Of special interest is DOCK9, which shows significant and high upregulation
at both 6- and 12-moa. This suggests a role of DOCK9 as early responder to increased
Aβ levels or participation of this protein in the production of Aβ. DOCK9 is a guanine
nucleotide-exchange factor (GEF) that activates CDC42, a small effector protein involved
in variety of cellular responses including cell migration [58]. Of interest, CDC42 activity
has recently been shown to facilitate the microglial migration response to Aβ, downstream
of TREM2 [58]. TREM2 is a receptor expressed by microglia and is a risk factor for AD [59].
Although speculative, DOCK9 may be involved in similar migratory pathways. In addition,
family members DOCK2 and 3 have shown involvement in the regulation of Aβ plaque
load [60] and phosphorylation of tau [61], respectively, making DOCK9 an interesting
candidate for future studies.
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