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Theoretical requirements for 
broadband perfect absorption of 
acoustic waves by ultra-thin elastic 
meta-films
Yuetao Duan1, Jie Luo1, Guanghao Wang1, Zhi Hong Hang1, Bo Hou1, Jensen Li3, 
Ping Sheng2 & Yun Lai1

We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved 
in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary 
effective mass density and a free space boundary, while the other requires a small value of almost 
pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or 
modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, 
even in the low frequency regime. Through a model analysis, we find that such almost pure 
imaginary effective mass density with required dispersion for perfect absorption can be achieved 
by elastic metamaterials with large damping. Our work provides a feasible approach to realize 
broadband perfect absorption of elastic waves in ultra-thin films.

Sound absorption within deep sub-wavelength space, especially in the low frequency regime, is an inter-
esting and challenging issue. Traditional methods such as porous materials, micro-perforated plates, 
and sound absorption wedges show severe limitation in this respect. Recently, the rapid development of 
acoustic metamaterials1–39, i.e. artificial acoustic materials with almost arbitrary mass density and mod-
ulus, has provided new possibilities to achieve sound absorption in unprecedented ways. Bestowed with 
the unusual parameters, acoustic and elastic metamaterials exhibit strong abilities to control acoustic and 
elastic waves, giving rise to novel phenomena like low frequency sound blocking1,2, negative refraction 
and lensing7–17, acoustic cloaking19–25, etc. Very recently, acoustic metamaterials have been applied to 
enhance the absorption of acoustic wave energy. A “dark” acoustic metamaterial composed of a resonant 
membrane structure has been realized to absorb sound waves with wavelengths much larger than the 
thickness of the stricture26. Further studies revealed that impedance matching is the mechanism leading 
to perfect absorption in such ultra-thin structures, which may be regarded as acoustic meta-surfaces, and 
demonstrated a high efficiency of converting acoustic energy into electricity27. Another novel design is a 
bubble metascreen which has been demonstrated to exhibit broadband absorption of sound in water28. 
In the picture of coherent perfect absorption, perfect absorption of acoustic waves has been theoretically 
proved29,30. Other designs to enhance acoustic absorption include porous lamella-crystals31, metama-
terial absorbers32–35, acoustic black holes36–41, etc. However, despite of so many designs, the theoretical 
requirements for broadband perfect absorption with a thin film has not been clearly addressed yet. In 
addition, the absorption of elastic waves is also an important issue with wide applications in seismic 
waves, damping systems, etc.
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In this work, we analyze the mechanism and theoretical requirements to achieve broadband perfect 
absorption for elastic waves by using an ultra-thin elastic meta-film. Based on transfer matrix theory, we 
find out two types of ultra-thin films with such possibility. One requires one a large value of almost pure 
imaginary effective mass density and a free space boundary, while the other requires a small value of 
almost pure imaginary effective modulus and a hard wall boundary. In the former case, the displacement 
is almost a constant across the ultra-thin film, while the stress tends to zero abruptly. In the latter case, 
the situation is the opposite with the stress being almost a constant and the displacement tending to 
zero abruptly. We further show that when the almost pure imaginary effective mass density is inversely 
proportional to frequency, or the almost pure imaginary effective modulus is proportional to frequency, 
the perfect absorption effect becomes broadband. Through a simple model analysis, we demonstrate that 
elastic metamaterials with large damping can be designed to realize such effective media with almost 
pure imaginary parameters with the required frequency dispersions in certain frequency regimes, there-
fore providing a feasible approach for broadband absorption of elastic waves.

We consider elastic waves with angular frequency ω propagating along the z direction, which are 
incident on an ultra-thin film embedded in a background. Here, we assume the background and the 
film are both composed of isotropic solids. Therefore, when the incidence is in the normal direction, 
the transverse and longitudinal waves are uncoupled. For simplicity, in the following we only consider 
longitudinal waves of normal incidence. Similar conclusions can be obtained for transverse waves.

If we define ru (rτ) and tu (tτ) as the transmission and reflection coefficients through the ultra-thin 
elastic meta-film, with respect to the displacement (stress), respectively. Then, the transmission and 
reflection may be classified into four cases. In case 1, both the stress τ and displacement u are almost 
constants across the film. In this case, the transmission is almost unity and the reflection is almost zero. 
And there is no absorption. In case 2, the displacement u is almost a constant across the film, while the 
stress τ varies abruptly across the film. In this case, we have
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In case 3, the stress τ is almost a constant across the film, while the displacement u varies abruptly 
across the film. In this case, we have
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In case 4, both the stress τ and displacement u vary abruptly across the film. In this case, we have 
1 +  rτ ≠ tτ and 1 +  ru ≠ tu. Actually, case 4 indicates that the wavelength inside the film is generally com-
parable to the thickness of the film, therefore resulting in a non-negligible phase change across the film. 
In this work, we will focus on cases 2 and 3. As we shall show later, such cases exhibit interesting possi-
bilities of achieving broadband perfect absorption, while case 4, though also capable of achieving perfect 
absorption, is usually limited to a narrow bandwidth due to the resonance effect.

In the following, we first analytically derive the conditions for the elastic waves to be perfectly absorbed 
based on a transfer matrix approach42,43. We denote the mass density, Lamé’s first and second parameters 
of the ultra-thin film (background medium) to be ρ(ρ0), λ(λ0) and μ(μ0), respectively.

We define a transfer matrix as,
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Here kp is the wave number of longitudinal wave, d is the thickness of the ultra-thin film. And δp 
(= kpd) is the phase change across the film. Thus, the reflection and transmission coefficients can be 
derived as,
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where Mp,mn is the element in m-th row and n-th column of the transfer matrix Mp. kp,0 
20 0 0( )ω ρ λ μ= /( + )  is the wave number in the background medium. Here, we assume the phase 

change δp across the film is negligible, i.e.
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Thus, Eq. (5) can be simplified to
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Now, we investigate the requirement of the parameters of the ultra-thin film and background in the 
cases 2 and 3 mentioned before. By substituting the reflection and transmission coefficients in Eq.  (7) 
into Eqs (1) and (2), we obtain,
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for cases 2 and 3, respectively. Since the ultra-thin film has ωd ≪  1, thus traditional solids have 2ω2ρd ≈  0 
and k d2 2 2 0s0 0

2
0

2λ μ λ μ( + ) /( + ) ≈, . This indicates that an ultra-thin film made of traditional solids 
will exhibit almost constant displacement and stress across the film, leading to case 1 with no absorption. 
In order to realize cases 2 and 3 with absorption, from Eqs (8) and (9), we find that either the effective 
mass density of the film must be unusually large (case 2), or the effective modulus must be unusually 
small (case 3).

However, in cases 2 and 3, when the environment is symmetric (i.e., the media in the incident and 
transmitted regions are the same), from Eqs (1) and (2), we can easily find that the ultra-thin film has a 
maximal absorption rate of 50% with − ru ≈  tu ≈  0.5 or − rτ ≈  tτ ≈  0.544.

In order to obtain perfect absorption, we must break the symmetry. Here, we employ a free space 
boundary or a hard wall boundary attached to the ultra-thin elastic meta-film, as illustrated in Fig. 1(a,b). 
Free space boundary enforces zero stress, while hard wall boundary enforces zero displacement. Therefore, 
free space boundary is associated with case 2, in which the displacement is almost a constant while the 
stress can decrease sharply to zero across the film. Hard wall boundary is associated with case 3, in which 
the stress is almost a constant while the displacement can decrease sharply to zero across the film. When 
the free space boundary is applied, the total reflection coefficient of the whole system is Ru t

t
3 2
2

u

u= −
−

 for 
case 244. This implies that when the ultra-thin elastic meta-film satisfy tu =  tτ =  2/3 and ru =  − rτ =  − 1/3, 
perfect absorption can be achieved. On the other hand, when the hard wall boundary is applied, perfect 
absorption can be obtained when the ultra-thin elastic meta-film satisfies tu =  tτ =  2/3 and ru =  − rτ = 1/3. 
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Thus, from Eqs  (7)–(9), the effective parameters of the ultra-thin film for perfect absorption can be 
derived as,
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for case 2 with a free space boundary, and case 3 with a hard wall boundary, respectively.
From Eqs  (10) and (11), we can see that when the imaginary effective mass density is inversely 

proportional to frequency, or the effective modulus is proportional to frequency, the perfect absorption 
condition can be satisfied in a broad range of frequencies, leading to broadband perfect absorption. As 
we shall prove later in model analysis, this type of dispersion is possible in damping elastic metamate-
rials. Two schematic graphs are shown in Fig. 1(a,b) to describe the physical picture of the two types of 
ultra-thin films, respectively.

Another interesting fact that is worth noting is that Eqs (10) only requires a particular value of imag-
inary effective mass density for the case of constant displacement, while the effective modulus of the film 
can vary within a relatively large range, as long as Eqs (1) and (8) are satisfied. Similarly, Eq. (11) only 
requires a particular value of imaginary effective modulus for the case of constant stress. Any effective 
mass density is fine as long as Eqs (2) and (9) are satisfied. This property allows us to focus on only one 
parameter instead of both of them, which greatly simplifies the design process.

Likewise, we can also derive the requirement of effective parameters for transverse waves as

i
d 12
0 0ρ
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ω
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and

μ ω ρ μ= − ( )i d 130 0

for the cases with almost constant displacement and shear stress, respectively.
From Eqs  (10)–(13), one may also find that generally the longitudinal and transverse waves cannot 

be perfectly absorbed simultaneously. In order to achieve perfect absorption, we require the effective 
mass density of the film to be anisotropic for case 2, or the effective modulus of the film to satisfy 

i d 2 20 0 0 0 0( )λ ω ρ μ ρ λ μ= − ( + )  and μ ω ρ μ= − i d 0 0  for case 3.
In order to verify the analytical results, we perform numerical simulations based on finite element 

software, COMSOL Multi-physics, as shown in Fig. 2. The background material in the incident region is 
selected as epoxy with λ0 =  4.428 ×  109 Pa, μ0 =  1.590 ×  109 Pa and ρ0 =  1180 kg/m3. The incident waves 
from left are longitudinal waves with a working frequency of 500 Hz. Therefore, the wavelength in epoxy 

Figure 1.  Schematic graph of perfect absorption by using an ultra-thin film (a) with free space for u-
constant case, (b) with a hard wall for τ-constant case.
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is about 5.08 m. In the simulation, we placed a ultra-thin elastic film with thickness of d =  0.1 m at the 
position about z =  5 m.

First, we consider the u-constant case. From Eq.  (10), we obtain the required large imaginary mass 
density as ρ =  i9538 kg/m3. Since there is no strict requirement on the modulus, we choose the same 
values of epoxy, i.e., λ =  4.428 ×  109 Pa and μ =  1.590 ×  109 Pa. In Fig. 2(a,b), we show the distributions 
of real part of displacement Re(uz) (color), normalized amplitudes of stress |τzz|/|τzz,in| (red solid lines) 
and displacement |uz|/|uz,in| (blue solid lines). uz,in and τzz,in are, respectively, the normal displacement 
and normal stress of incident waves. Figure  2(a) demonstrates the transmission of longitudinal waves 
through the ultra-thin film embedded in epoxy, while Fig. 2(b) demonstrates the perfect absorption of 

Figure 2.  Simulations of perfect absorption. Snapshots of the real part of displacement Re(uz) (color), and 
normalized amplitudes of stress |τzz|/|τzz,in| (red solid lines) and displacement |uz|/|uz,in| (blue solid lines) 
for cases of (a) an ultra-thin film of imaginary mass density in epoxy, (b) with free space on the right side 
of the film. The parameters of the ultra-thin film are λ =  4.428 ×  109 Pa, μ =  1.590 ×  109 Pa, ρ =  i9538 kg/m3 
and d =  0.1 m. Snapshots of real part of stress Re(τzz) (color), and normalized amplitudes of stress |τzz|/|τzz,in| 
(red solid lines) and displacement |uz|/|uz,in| (blue solid lines) for cases of (c) an ultra-thin film of imaginary 
bulk modulus in epoxy, (d) with hard wall on the right side of the film. The parameters of the ultra-thin film 
are λ =  μ =  − i3.138 ×  108 Pa, ρ =  1180 kg/m3 and d =  0.1 m. (e) Dependence of absorptance on the incident 
angle for the u-constant case (green lines) and τ-constant case (magenta lines) with the same material 
parameters as those in (b) and (d), respectively. The incident waves are longitudinal waves with working 
frequency 500 Hz.
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wave energy when a free space boundary is attached to the right side of the film. From the normalized 
amplitudes in Fig. 2(a), it is observed that the transmission coefficient is about 2/3. The displacement is 
almost a constant across the film while the stress experiences an abrupt change due to large mass den-
sity. In Fig. 2(b), it is observed that when a free space boundary is attached, almost all the incident wave 
energy is absorbed. There are almost no reflected waves, as can be deducted from the nonexistence of 
variance in the normalized amplitudes in the incident region in Fig. 2(b).

Second, we consider the τ-constant case. From Eq. (11), we obtain the required small imaginary mod-
ulus as λ +  2μ =  − i9.413 ×  108 Pa. In the simulations in Fig. 2(c,d), we choose λ =  μ =  − i3.138 ×  108 Pa. 
Since there is no strict requirement on the mass density, we choose the same value of epoxy as ρ =  1180 kg/
m3. In Fig. 2(c,d), the distributions of Re(uz), |τzz|/|τzz,in|, and |uz|/|uz,in| are presented. Figure 2(c) shows 
the transmission of longitudinal waves through the ultra-thin film embedded in epoxy, while Fig. 2(d) 
demonstrates the perfect absorption of wave energy when a hard wall boundary is attached to the right 
side of the film. From the normalized amplitudes in Fig. 2(c), it is observed that the transmission coef-
ficient is also about 2/3. However, unlike the case in Fig. 2(a), the stress is almost a constant across the 
film, while the displacement experiences an abrupt change due to the small modulus. In Fig. 2(d), it is 
observed that when a hard wall boundary is attached, almost all the incident wave energy is absorbed. 
There are almost no reflected waves, which can be deducted from the nonexistence of variance in the 
normalized amplitudes in the incident region in Fig. 2(d).

Moreover, we calculate the incident angle-dependent absorptance in Fig.  2(e) for the u-constant 
case (green lines) and τ-constant case (magenta lines) with the same material parameters as those in 
Fig. 2(b,d), respectively. It is seen that large absorption can be obtained in a wide range of incident angle. 
Therefore, the above numerical simulations coincide excellently with our analytical results. Although we 
only verify the longitudinal waves, the perfect absorption of transverse waves can be easily confirmed 
in a similar process.

Previously we have demonstrated that an ultra-thin film can with large imaginary mass density and 
a free space boundary, or with small imaginary modulus and a hard wall boundary can achieve perfect 
absorption of elastic waves. When the imaginary mass density is inversely proportional to frequency, or 
the imaginary modulus is proportional to frequency, such perfect absorption effect can be broadband. 
However, how to realize such imaginary parameters remains an unresolved issue. It is known that pos-
itive imaginary value of mass density and negative imaginary value of modulus correspond to absorp-
tion29. However, in most natural materials, the absorption is relatively small, rendering the parameters 
having relatively larger real parts than imaginary parts. In the following, we will propose a model of 
damping elastic metamaterials exhibiting effective mass density proportional to i/ω, therefore enabling 
the ability of broadband perfect absorption of elastic waves.

As illustrated by the inset of Fig. 3(a), we propose a simple one-dimensional mass-spring-mass model 
composed of a background mass MI embedded with an inner mass MII, with large damping induced by 
the frictional losses between the two masses. We assume that the frictional losses are proportional to the 
velocity. Thus, according to Newton’s second law, we have,

Figure 3.  Effective mass of a one-dimensional lossy mass-spring-mass model as a function of the 
angular frequency ω. Effective mass of the model with (a) MII =  1000MI =  0.1 kg, K =  20 N/m, γ =  50 Hz, 
(b) MII =  1000MI =  0.1 kg, K =  20 N/m, γ =  3 Hz. Blue and red solid lines show the real and imaginary parts 
of effective mass Meff obtained from Eq. (15). Green dashed lines in (a) and (b) show the imaginary part of 
effective mass obtained from Eq. (16) and Eq. (17), respectively. The inset in (a) is the schematic graph of 
the model.
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where zI and zII are the displacements of masses MI and MII, respectively. K is the spring constant. Γ  is 
damping constant, and F is an external force. We note that in Eq. (14), zI, zII and F are assumed to vary 
time-harmonically with term e−iωt.
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 and γMII/ω ≫ MI, the effective mass of 
the model is,
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Equation  (16) indicates that it is possible to obtain an effective mass density proportional to i/ω in 
the mass-spring-mass model, implying that such a model has the ability to achieve perfect absorption of 
elastic waves in a broad frequency regime.

For instance, we chose that parameters MII =  1000MI =  0.1 kg, K =  20 N/m and γ =  50 Hz. In Fig. 3(a), 
we plot the real part of effective mass Re(Meff) (blue solid lines) and its imaginary part Im(Meff) (red solid 
lines) with respect to the angular frequency ω, as obtained from Eq.  (15). In addition, the imaginary 
part of effective mass calculated from Eq.  (16) is also plotted as the green dashed lines in Fig.  3(a). It 
is found that Re(Meff) ≪ Im(Meff) and Im(Meff) ~ iγMII/ω for ω > 100 Hz. From Eq. (15), it can be found 
that when ω0 ≪ γ and MII ≫ MI, Eq.  (16) applies to a large frequency region between γ and γMII/MI. 
Therefore, if damping elastic metamaterials described by such a simple model can be realized, broadband 
perfect absorption can be achieved. We note that the working frequency is far away from the resonance 
frequency of the effective mass, which contributes to the broadband absorption effect.

There are other cases of perfect absorption in the above model, but they are all of narrow band. For 
instance, when ω0 ≫ γ and MII ≫ MI, from Eq. (15), it can be found that at around frequency 2 0ω ω= , 
where the resonance occurs, the effective mass density is

M i M
2

17eff
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2

ω
ω
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In Fig.  3(b), we plot the effective mass of a model with MII =  1000MI =  0.1 kg, K =  20 N/m and 
γ =  3 Hz. Blue and red solid lines denote the real and imaginary parts of effective mass Meff obtained from 
Eq. (15). And green dashed lines denote the imaginary part of effective mass obtained from Eq. (17). We 
can see that the effective mass has a resonance at Hz2 200ω = , contributing to an abnormal dispersion 
of the real part and an enhancement of the imaginary part. Interestingly, in a narrow band falling in the 
abnormal dispersion region, the imaginary part of the effective mass dominates and satisfies Eq.  (17). 
The absorption of such a model is a resonant absorption with most of energy transferring to heat through 
drastic friction. Compared with the model in Fig. 3(a), the model in Fig. 3(b) exhibits perfect absorption 
at a much narrower frequency regime.

In fact, if there is some way to fix the displacement of MII, i.e. zII, to be always zero, e.g. by connecting 
it with stiff materials to the earth, and if there is no spring connecting MII and MI (there is only frictional 
forces between them), then from the first equation in Eq. (14), we can obtain ω( ) = + γ

ωΙ ΙΙM M i Meff . 
In this case, when ω →  0, ω( ) ≈ γ

ω ΙΙM i Meff , indicating possibility of achieving broadband perfect absorp-
tion at extremely low frequencies.

The practical realization of such meta-film with natural materials requires careful design with the 
consideration of many minor effects such as nonlinearity as well as experimental verification. The diffi-
culty mainly lies in finding natural materials of suitable mass density and realizing friction force that is 
proportional to velocity. Although we have developed our theory in the framework of elastic waves, it 
can also be applied to acoustic waves. Comparing with electromagnetic waves, for which we recently 
developed a theory to achieve perfect absorption with ultra-thin films44–46. The absorption of acoustic 
and elastic waves in ultra-thin films exhibits certain disadvantages and advantages. For electromagnetic 
waves, conductive films with almost pure imaginary permittivity imε ≈

σ
ω

 can be easily achieved with 
conductive materials like metals, where σ is the conductivity. The Drude plasma property of metal ena-
bles perfect absorption of low frequency electromagnetic waves. However, there are no natural materials 
for elastic and acoustic waves and damping elastic metamaterials have to be designed. Extremely low 
frequency broadband absorption is difficult as it either requires a fixed mass or a resonant system with 
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large contrast masses and small γ. Especially, our analysis only applies to the linear regime with small 
displacements. However, there are also some advantages for elastic waves. For electromagnetic waves, the 
perfect magnetic conductor boundary is required, which is inherently narrow band46–49. However, for 
elastic waves, both free space and hard wall boundaries are naturally broadband, which makes the real-
ization of broadband absorption of acoustic and elastic waves with an ultra-thin film easier than that of 
electromagnetic waves.

For conclusions, we have theoretically proved and numerically demonstrated the absorption of elastic 
waves in ultra-thin films with either imaginary large mass density and a free space boundary, or imag-
inary small modulus and a hard wall boundary. Broadband perfect absorption can be achieved when 
the frequency dispersions of the imaginary mass density or modulus can be inversely proportional to or 
proportional to the frequency in a certain frequency regime. We demonstrate that elastic metamaterials 
with large damping provides a feasible approach to realize the imaginary mass density with suitable 
dispersions for broadband absorption. Therefore, ultra-thin films composed of such metamaterials can 
in principle achieve broadband perfect absorption of elastic waves.
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