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Abstract

Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy regulatory T 

cells (Tregs) to treat autoimmune arthritis as they have the ability to produce almost all cell types in 

the body, including Tregs. However, the right conditions for the development of antigen (Ag)-

specific Tregs from PSCs (i.e., PSC-Tregs) remain unknown. An ongoing project will determine the 

mechanisms underlying the Ag-specific PSC-Treg treatments that aim to modulate tolerance in 

autoimmune arthritis. The knowledge gained from these studies will provide new insights into 

cell-based therapies in autoimmune arthritis, and advance the understanding of fundamental 

mechanisms underlying Treg differentiation.
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Regulatory T cells (Tregs) are an integral component of the normal immune system and 

contribute to the maintenance of peripheral tolerance. Tregs can down-regulate immune 

responses and are essential for immune homeostasis. They can act as key effectors in 

preventing and treating rheumatoid arthritis (RA) [1,2].

Hematopoietic stem cell (HSC)-derived hematopoietic progenitors migrate into the thymus 

and develop into different types of T cells. The transcription factors Aire (largely expressed 

in thymic medullary epithelial cells - mTECs) and FoxP3 have key functions in clonal 

deletion and Treg selection [3]. There are links between Aire expression, FoxP3 upregulation 

and Treg selection; Aire deficiency affects the negative selection of self-reactive T cells, and 

FoxP3 controls the development and function of the naturally occurring Tregs (nTregs) [4]. 

Our laboratory has shown the development of stable Tregs from CD4+ T cells by over-

expressing FoxP3 and bcl-xL [5].

Recent advances in the use of large-scale in vitro expansion of Tregs followed by in vivo re-

infusion of these cells raises the possibility that this strategy may be successfully utilized for 
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the treatment of rheumatoid arthritis (RA) [6]. Although polyclonally expanded populations 

of Tregs exhibit suppressive activity, antigen (Ag)-specific Tregs are more efficient at 

suppressing local autoimmune disorders such as RA, type-1 diabetes (T1D), inflammatory 

bowel diseases (IBD), allergic reactions and graft-versus- host disease (GVHD) [7–11]. In 

addition, tissue/organ-associated Treg targeting stabilizes FoxP3 expression and avoids 

induction of a potentially detrimental systemic immunosuppression [12,13]. For Treg-based 

immunotherapy, in vitro generation of tissue/organ (e.g., synovium)-associated and non-

terminally differentiated effector Tregs for in vivo reinfusion is an optimal approach. 

However, current methodologies are limited in terms of the capacity to generate, isolate, and 

expand a sufficient quantity of such Tregs from patients for therapeutic interventions.

A number of challenges exist in Treg-based immunotherapy:

First

Only low numbers of Tregs can be harvested from the peripheral blood mononuclear cells 

(PBMCs). CD4 and CD25 have been used to isolate Tregs for ex vivo expansion. 

CD4+CD25+ T cells are not homogenous and contain both Tregs and conventional effector T 

cells (Teffs). Current expansion protocols activate both Tregs and Teffs, and because it takes a 

longer time for Tregs to enter the S phase of cell cycle, Teffs outgrow Tregs [14]. In addition, 

Tregs can lose suppressive activity after repetitive stimulation with α-CD3 plus α--CD28 

antibodies (Abs) with or without rIL-2 in vitro.

Second

No approach to date has demonstrated the capacity to isolate the entire Treg population with 

100% specificity from patients (the current clinical approach). Even FoxP3 or more recently 

Eos, a transcriptional factor that is considered the gold standard for identification of Tregs, is 

expressed transiently in some activated non-regulatory human T cells [15], highlighting the 

difficulty in both identifying and isolating a pure Treg population. The adoptive transfer of 

non-regulatory Teffs with Tregs has a potential to worsen autoimmune diseases.

Third

Gene transduction of CD4+ T cells from PBMCs with Ag-specific T cell receptor (TCR) 

[16] or chimeric Ag receptor (CAR) [17] and/or TCR with FoxP3 elicits the generation of 

suppressive T cell populations [8] and overcomes the hurdle of the limited numbers of Ag-

specific T cells. However, the engineered Tregs express endogenous and exogenous 

polyclonal TCRs, which reduce their therapeutic potential (the current experimental 

approach). Also, TCR mispairing is a concern with regards to the safety of TCR gene-

transferred Tregs for clinical use, because the formation of new heterodimers of TCR can 

induce immunopathology [18]. Therefore, there is a need to improve this strategy and 

generate monoclonal Tregs.
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Fourth

The differentiation state of Tregs is inversely related to their capacity to proliferate and 

persist. The “right” Tregs resist terminal differentiation, maintain high replicative potential 

(e.g., expression of common- γ chain- γc, CD132), are less prone to apoptosis (e.g., low 

expression of PD-1), and have the ability to respond to homeostatic cytokines [19], which 

facilitates their survival. In addition, the “right” Tregs express high levels of molecules that 

facilitate their homing to lymph nodes (LNs), such as CD62L and CC-chemokine receptors 

(e.g., CCR4, CCR7), and maintain stability or plasticity under certain inflammatory 

conditions. Furthermore, after an effective immune response, the “right” Tregs persist and 

provide protective immunity.

Fifth

Because there are too few cells, harvesting sufficient numbers of tissue-associated Tregs from 

PBMCs for TCR gene transduction can be problematic.

Taken together, strong arguments support the development of Treg-based therapies in 

autoimmune arthritis using engineered Tregs. While clinical trials show safety, feasibility, 

and potential therapeutic activity of Treg-based therapies using this approach, concerns about 

autoimmunity due to cross-reactivity with healthy tissues remains a major safety issue 

[20,21]. In addition, genetically modified Tregs using current approaches are usually 

intermediate or later effector Tregs [22], which only have short-term persistence in vivo.

To date, pluripotent stem cells (PSCs) are the only source available to generate a high 

number of the “right” Tregs [23,24]. Human induced PSCs (iPSCs) can be easily generated 

from patients’ somatic cells by transduction of various transcription factors and exhibit 

characteristics identical to those of embryonic stem cells (ESCs) [25]. Many genetic 

methods as well as protein-based approaches have been developed to produce iPSCs with 

potentially reduced risks, including that of immunogenicity and tumorigenicity [26]. 

Because of the plasticity and the potential for an unlimited capacity for self-renewal, iPSCs 

have high potential for advancing the field of cell-based therapies.

Our laboratory was the first to show that the development of Ag-specific iPSC-CTLs or 

iPSC-Tregs can be used for cell-based therapies of cancers and autoimmune disorders 

[23,24,27–30] other groups reported similar results[31–33]. We demonstrated that 

genetically modified iPSCs with Ag-specific TCR and the transcriptional factor FoxP3, 

followed by differentiation driven by Notch signaling can enable iPSCs to pass 

hematopoietic and T lineage differentiation checkpoints, resulting in the development of Ag-

specific CD4+Tregs. We have developed a novel system to generate stable Ag-specific iPSC-

Tregs. Our ongoing studies will validate this system and provide new insights into the 

methodologies and mechanistic requirements for efficient development of inflamed tissue-

associated iPSC-Tregs. Once such strategies become available, there is potential to facilitate 

the generation of tolerance for autoimmune arthritis. Thus, important advances towards Treg-

based immunotherapy in autoimmune arthritis are anticipated from the proposed studies.
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PSCs are exposed to a number of signals responsible for their progression. Although the 

exact signals are not fully understood, part of the mechanism known to be critical for 

directing T-cell fate occurs via Notch signaling. The Notch is evolutionarily conserved; 

regulating cell fate decisions in a number of cell and tissue types. Ligand binding by 

members of the Jagged or Delta-like (DL) families results in the proteolytic cleavage and 

release of the intracellular fragment of the Notch heterodimer. Translocation to the nucleus 

then allows for its regulation of gene expression. Notch-1, specifically, is critical for the 

establishment of T-cell fate. The loss of function results in the blockade of T cell 

development and enhanced B cell production, while over-expression results in the blockade 

of B cell lymphopoiesis and leads to the generation of T cells [34]. However, the 

intracellular signaling pathways by which Notch signaling regulates the differentiation of 

Ag-specific PSC-Tregs remain unknown. PSCs co-cultured on a monolayer of the bone 

marrow (BM) stromal cell line OP9 cells transfected with the Notch ligand DL1 or 4 

exhibits the ability to differentiate into most hematopoietic lineages and T cells [31]. Our 

studies will determine the critical regulations of Hes1 [35], Runx1 [36], and surviving [37] 

by Notch signaling during the development of autoAg-specific PSC-Tregs.

Although Ag-specific human iPSC-Tregs may have promising therapeutic effects in cell-

based therapies, their efficiency is limited by the need to generate a large number of such 

cells using complex and expensive in vitro differentiation. In addition, the lengthy duration 

for generating human iPSCs may limit their use in individualized therapies. Alternatively, 

we will perform cell-based therapies using the TCR/FoxP3 gene-transduced iPSCs, which 

can differentiate into auto Ag-specific iPSC-Tregs in vivo and suppress autoimmune arthritis. 

We will perform arthritis induction before or after the adoptive transfer of the gene-

transduced iPSCs. We will inject Notch agonists or recombinant cytokines (e.g., rIL-7, 

rFlt3L) to boost in vivo development of auto Ag-specific iPSC-Tregs.

In summary, a current roadblock to progress in the field is the lack of an efficient system to 

generate the “right” autoAg-specific Tregs that could be used for cell-based therapies in 

autoimmune arthritis. We propose the use of PSC-Tregs to address this limitation, allowing 

derivation of a large number of stable autoAg-specific PSC-Tregs for cell-based therapies. 

Development of such an approach provides an important step toward personalized therapies 

for autoimmune arthritis.
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