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Meningiomas are the most the common primary brain tumors in adults, representing
approximately a third of all intracranial neoplasms. They classically are found to be more
common in females, with the exception of higher grades that have a predilection for males,
and patients of older age. Meningiomas can also be seen as a spectrum of inherited
syndromes such as neurofibromatosis 2 as well as ionizing radiation. In general, the 5-year
survival for a WHO grade I meningioma exceeds 80%; however, survival is greatly reduced
in anaplastic meningiomas. The standard of care for meningiomas in a surgically-
accessible location is gross total resection. Radiation therapy is generally saved for
atypical, anaplastic, recurrent, and surgically inaccessible benign meningiomas with a total
dose of ~60 Gy. However, the method of radiation, regimen and timing is still evolving and
is an area of active research with ongoing clinical trials. While there are currently no good
adjuvant chemotherapeutic agents available, recent advances in the genomic and
epigenomic landscape of meningiomas are being explored for potential targeted therapy.

Keywords: meningioma, targeted treatment, molecular diagnosis, immunotherapy, neurosurgery, clinical trials,
pathology, radiation therapy
INTRODUCTION

Epidemiology
Meningiomas arise from arachnoid cap cells in the brain, and represent 37.6% of all primary brain
tumors in adults, making them the most common type of intracranial tumor with an incidence of
8.83 per 100,000 in the most recent Central Brain Tumor Registry of the United States (1, 2).
Conversely, they are equally rare in children and adolescents of both sexes (0.4%–4.6%) (3). The
median age of diagnosis of meningioma is 65 years, likely due to the increasing incidence of
meningiomas with age (2). Additionally, in the adult population, there is a marked female bias with
a female:male ratio of 3:1 and increasing to 9:1 for spinal lesions (3). The rate of diagnosis of
meningiomas has increased due to better imaging facilities and ageing populations with one survey
showing a 3.9-fold increase in diagnosis of meningioma since 1943 (4). The calculated lifetime risk
of developing meningioma without any associated factors is approximately 1% (3).
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Clinical History
As with many of the lesions of the CNS, the symptoms
correspond to the location of the mass. Meningiomas are slow
growing and often not infiltrative in nature thus the symptoms
tend to be insidious in onset. Common presentations include
headaches secondary to increased intracranial pressure, focal
neurological (cranial nerve) deficits, and seizures caused by mass
effect and/or direct involvement by the tumor (5). A rare clinical
syndrome, Foster Kennedy syndrome coined in 1911 by Dr.
Robert Foster Kennedy, is characterized by ipsilateral optic
atrophy, papilledema in contralateral eye, central scotoma in
ipsilateral eye, and anosmia, secondary to a large olfactory
meningioma (6). Large frontal meningiomas may also present
with personality changes or altered mental status which can lead
to a misdiagnosis of dementia or severe depression (5).

Natural History
Understanding the natural history of meningiomas is imperative
for clinicians with a growing amount of incidental meningiomas
now detected secondary to advanced imaging studies. As
mentioned previously, meningiomas are generally slow
growing lesions with a linear growth rate of 2–4 mm/year for
asymptomatic meningiomas (7). In a retrospective study in
which incidental meningiomas were followed by imaging,
approximately a third of the tumors did not grow at all.
However, of those that grew, nearly 25% grew exponentially,
further underscoring the importance of surveillance imaging in
untreated patients (8). The natural course of symptomatic larger
lesions is deemed anecdotally to be a more aggressive growth
pattern, but these lesions are rarely left untreated, and therefore,
their true natural history remains ill-defined (9).

The estimated 10-year survival (overall 61.7%) for malignant
meningiomas is very much dependent on age; 10-year relative
survival is estimated to be around 76.8% for 20–44 year olds,
while it is only 39.5% for patients age 75 years and older (2).
Malignant meningioma of the spine has a higher 10-year relative
survival of 73.4% when compared to the survival rate of 55.7%
for intracranial tumors. Recurrence is a function of surgical
resection (and/or radiation typically as adjuvant therapy in a
subset), location and the histological grade of the meningioma
(2), although location and surgical resection are somewhat
interlinked. In terms of recurrence differences with grade, the
five-year progression free survival (PFS) for a WHO grade I
tumors is ~90% after gross total resection (GTR), Grade II are ~
60%–90%, whereas grade III PFS after GTR is 28% (10, 11).
These recurrences translate into meningioma-specific mortality
in these patients, with 10-year overall survival rates of 53% for
grade II patients and 0% for grade III patients, despite aggressive
therapeutic efforts (12).

Etiology
Syndromes
Interestingly, in children and adolescents, meningiomas show a
tendency for more aggressive subtypes. This may be secondary to
their occurrence in several associated hereditary syndromes, such
as Neurofibromatosis type 2 (NF-2) most commonly, but also
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less common causes such as Gorlin syndrome and Cowden
syndrome (13).

Loss of heterozygosity and inactivating mutations in the NF2
gene are seen in up to 60% of sporadic cases (14, 15). Germline
mutations in the same gene lead to neurofibromatosis 2 (NF2),
an autosomal disorder characterized by the occurrence of
schwannomas, mengingiomas, and gliomas. The mutation
often presents as a cytogenetically visible deletion of the long
arm of chromosome 22 at q12, leading to decreased functional
levels of the tumor suppressor gene, Merlin. More than half of
patients with NF2 will demonstrate at least one meningioma in
their lifetime, with initial diagnosis at the mean age of 30 (16, 17).
The associated risk of the meningioma corresponds to the type of
mutation seen. For example, a truncating mutation by frameshift
tends to cause a greater tumor burden with early initial onset of
meningioma. Most NF2 related meningiomas present as a
fibrous or transitional phenotype, which are the most common
histopathological subtypes of meningioma and are generally
more aggressive than sporadic tumors (18, 19).

Gorlin syndrome or nevoid basal cell carcinoma syndrome is
an uncommon autosomal dominant disease with an estimated
prevalence varying from 1/57,000 to 1/256,000, and affecting
males and females equally (20). Inactivation of the PTCH1 gene
located on chromosome 9q22.3-q31 is the hallmark of Gorlin
syndrome. A second hit mutation of p53 often results in the
formation of multiple BCC. PTCH1 gene mutations lead to a
hypersensitivity to radiation-induced tumorigenesis (21).
Another missense mutation of the downstream factor, SUFU
can be found rarely in families with hereditary multiple
meningiomas (22). A natural history study from NIH
speculated that patients affected by Gorlin syndrome have a
5% incidence of having a CT with radiological features suggestive
of meningioma (23).

Cowden syndrome is an autosomal-dominant syndrome that
predisposes the patient to developing benign and malignant
cancers of a variety of organ systems, including breast, thyroid,
uterus, and CNS. It is characterized by multiple hamartomas of
ectodermal, mesodermal, and endodermal origin (24).
Cytogenetically, it is associated with deletions on the
chromosome 10 (PTEN) gene on 10q23.31 (25, 26). It shows a
strong female dominance with an overall prevalence of one in
200,000 (27). The incidence of meningioma in patients with CS
was 8.25% in a systematic meta-analysis (28).

Several hereditary conditions are associated with germline
mutation of the SMARCB1 gene on 22q11.23, including
schwannomatosis, rhabdoid tumor predisposition syndrome
[atypical teratoid/rhabdoid tumor (AT/RT)], and Coffin-
Siris syndrome.

Germline mutation of the SMARCB1 gene on 22q11.23 causes
several hereditary conditions, such as rhabdoid tumor
predisposition syndrome (AT/RT) (29), schwannomatosis (30),
and Coffin-Siris syndrome (31). Schwannomatosis is associated
with a nontruncating mutation at the beginning of end of the
SMARCB1 gene, presenting as a bening tumor disposition
syndrome (32); 5% of patients with this syndrome will develop
a meningioma. SMARCB1 is very closely associated to NF2 on
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chromosome 22, and co-mutation of both genes has been seen
with tumorigenesis of meningiomas (33). Germline mutations
of SMARCE1 gene on 17q21.2, with nearly all mutations being
truncating characterized by loss of function mutations, was
identified in families with multiple spinal meningiomas, and
later alterations in SMARCE1 were also found in individuals with
intracranial and spinal clear cell meningiomas (34, 35).

BRCA1-associated protein 1 (BAP1) tumor predisposition
syndrome (BAP1-TPDS) is associated with a germline mutation
of the BAP1 gene on 3p21.1. These individuals are vulnerable to a
variety of neoplasms, including uveal and cutaneous melanomas,
pleural and peritoneal mesotheliomas, renal cell carcinoma, and
mesothelioma (36). Those affected develop meningiomas by the
time they reach 50 years of age (37). Meningiomas in BAP1-
TPDS tend to demonstrate rhabdoid morphology and show
aggressive clinical behavior (36). BAP1 encodes a ubiquitin
carboxyl-terminal hydrolase 1, which is involved in the
regulation of chromatin modification as a part of the polycomb
repressive complex (PRC), and response to DNA damage by
interacting with a tumor suppressor, BRCA1 (36).

Other familial syndromes associated with meningiomas
include Rubinstein-Taybi syndrome, Li-Fraumeni syndrome,
Gardner syndrome, multiple endocrine neoplasia type 1, and
Werner syndrome (Table 1).

Radiation
A primary modifiable risk factor for the development of
meningioma is exposure to ionizing radiation, resulting in a
six- to 10-fold increase in risk (38). For example, individuals who
underwent low dose radiation (1-6 Gy) for the treatment of tinea
capitis of the scalp were found to have a 2.3% lifetime risk over 35
years of developing one or more meningiomas (39). Likewise, a
large study conducted by the USA Childhood Cancer Survivor
Study (CCSS) reported on the incidence of secondary
malignancy estimated to be 3.1% for meningioma alone, in
which radiation exposure was identified as an independent risk
factor, with a relative risk of 2.7 (40). In a meta-analysis, the
mean intervals between primary cancer diagnosis (90% acute
Frontiers in Oncology | www.frontiersin.org 3
lymphoblastic leukemia (ALL) or brain tumor) and subsequent
meningioma diagnosis were 10.7 to 23.1 years (41). Of note,
these radiation induced meningioma have been found to have
more atypical features with a high proliferation index resulting in
a higher grade meningioma as well as being multifocal in nature
(42). However, a review of survivorship data found that 5-year
survival rates were similar to those with primary meningiomas
(41, 42). Among the survivors of the atomic bomb in Hiroshima
the incidence of meningiomas found on imaging in 5-year
intervals since 1975 were 5.3, 7.3, 10.1, and 14.9 cases per 10
(5) population, respectively (43). Data from the Hiroshima
Tumor Registry also showed that the incidence of meningioma
was relative to the distance of radiation source, showing that
individuals exposed within 1 km had three times higher risk than
among those exposed 2 km away (43).

Hormone Receptors
There has long been an association with hormone receptors
expressed on meningiomas and their increased frequency among
female patients, although the data has been highly variable. In a
large scale study of ~500 meningiomas, 88% were progesterone
receptor positive, 40% were positive for estrogen and 39% for
androgen receptors. Estrogen and androgen receptors were
significantly more common on lower grade (Grade I)
meningiomas compared to higher grade lesions. In addition,
estrogen-positive tumor samples showed a higher proliferation
index than those that were estrogen-negative (44). However, a
population-based, matched case-control study showed no
significant associated between the risk of meningioma and the
use of exogenous hormones (such as oral contraceptive use or
hormone replacement therapy) (45).

Location
Meningiomas are thought to arise from meningothelial cells
(arachnoid “cap” cells) and occur more frequently in areas
where cap cells are most numerous. Cap cells are especially
concentrated in the arachnoid granulations and are a common
site of origin for meningiomas, especially along the dural venous
sinuses where villi of arachnoid granulations are clustered.
Additional sites of origin include the arachnoid associated with
cranial nerves as they exit the cranial vault and even the choroid
plexus (since the arachnoid participates in its formation, i.e., tela
choroidea). Lesions in spinal locations constitute approximately
12% of all meningiomas. Of intracranial and juxtacranial
meningiomas, the most to least common locations for
occurrence of meningioma are: convexity (lateral hemisphere)
(20%–34%); parasagittal (medial area of hemispheres) (18%–
22%) (includes falcine meningiomas [5%], which account for
lesions adjacent/involving the superior sagittal sinus or in some
cases extending to both sides of sinus); sphenoid and middle
cranial fossa (17%–25%); frontobasal (10%); posterior fossa (9%–
15%), including the tentorium cerebelli (2%–4%), cerebellar convexity
(5%), cerebellopontine angle (2%–4%), and clivus (< 1%);
intraventricular (2%–5%) and orbital (<1%–2%) (Table 2) (46, 47).
Recognizing potential atypical locations of these neoplasms is critical
to ensure both proper diagnosis and treatment.
TABLE 1 | Familial syndromes associated with meningiomas.

Familial syndrome Gene Chromosome
locus

Neurofibromatosis type 2 NF2 22q12
Familial schwannomatosis SMARCB1 22q11.23
Multiple spinal meningiomas SMARCE1 17q21.2
BAP1 tumor predisposition syndrome BAP1 3p21.1
Gorlin syndrome (nevoid basal cell carcinoma
syndrome)

PTCH1 9q22.3
SUFU 10q24.32

Familial multiple meningiomas SUFU 10q24.32
Rubinstein-Taybi syndrome CREBBP 16p13.3
Cowden disease PTEN 10q23.31
Li-Fraumeni syndrome TP53/

CHEK2
17p13.1/22q12.1

Gardner syndrome APC 5q21-22
Multiple endocrine neoplasia type 1 MEN 11q13
Werner syndrome LMNA 1q21.1
Specific gene and chromosome locus are illustrated in the table.
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Imaging Characteristics
The standard modality of radiological diagnosis of meningiomas
is magnetic resonance imaging (MRI). However, in the cases in
which a patient cannot undergo an MRI (e.g., pacemaker or
other MRI incompatible device), a contrast-enhanced computed
tomography (CT) may be utilized. Of meningiomas harbor
regions of intralesional calcifications which can be observed, as
well as bony changes, including hyperostosis resulting in a
“beaten brass” appearance of the remodeled skull, this is
particularly true of lesions along the sphenoid wings and
convexity which can be more avidly seen on CT imaging. On
MRI meningiomas may have the hallmark dural tail, and overall
the lesion should have homogeneous enhancement and be well-
circumscribed (Figure 1). Benign lesions additionally are
isodense to surrounding gray matter on noncontract
sequences. Nearly all meningiomas are extraaxial in nature and
some may have CSF cleft adjacent to the meningioma. The
majority of patients with meningiomas present with a solitary
tumor, multiple meningiomas may be seen, particularly in NF2,
however, multiple extra axial lesions could also be a result of
metastatic disease (48).

Although the dural tail mentioned before is a hallmark of a
meningioma—it is not pathognomonic and may also be observed
with metastases or solitary fibrous tumor/hemangiopericytoma,
but is frequently useful in distinguishing meningioma from other
lesions (such as schwannoma) where it is absent (48).
Infrequently peritumoral edema on T2 or FLAIR imaging may
also be noted, in more aggressive meningiomas and in
association with secretory and angiomatous histological
phenotypes (12). Areas of central necrosis (hypointense T1,
nonenhancing, cystic appearing) are not specific for malignant
or higher grade meningiomas this finding can be seen on
imaging in lower grade lesions as well (48). In fact, necrosis
can commonly be seen after intravascular embolization of the
meningiomas, which can be utilized and warranted in
meningiomas that appear hypervascular pre-operatively to
decrease blood loss. Lesions of the skull base may abut or
encase the carotid or basilar arteries and their respective
branches, and often an MR angiogram will be obtain to
visualize these structures prior to any treatment. Likewise, MR
Venograms are thus used for parafalcine meningiomas that are
Frontiers in Oncology | www.frontiersin.org 4
near or involving the superior sagittal sinus to determine if the
lesion has direct invasion of the sinus, is causing sinus
compression secondarily to mass effect, or has caused
thrombosis of the sinus. Despite advancements in MR aiding
in the diagnosing of meningiomas, it is not yet predictive of
pathological grade or other measure of the aggressive nature of
the lesion. Some have shown that there is an inverse correlation
between the ADC and Ki-67 proliferation index values in
meningiomas, and thus associate the ADC values of the low-
grade and high-grade meningiomas (49). PET imaging
technology is serving to circumvent the some of the issues with
MRI to discern early recurrence versus treatment-related
radiographic changes with utilization of a 68- Gallium-labeled
somatostatin-receptor analogue (68-Ga-DOTATE) (50).
Another PET imaging advancement has been the utilization of
tryptophan metabolism via a-[(11)C]-methyl-L-tryptophan
PET (AMT-PET), in which early studies has been shown that
it may be able to delineate tumor grade among meningiomas and
other primary brain tumors (51). However, in AMT-PET the
(11) C labeled for visualization has a half-life of only 20 minutes
(52). As with other primary brain tumors, MR spectroscopy
(MRS) studies have features of increased choline peak combined
with decreased N-acetyl aspartate and creatinine peaks in
comparison with normal brain (53). A distinct alanine peak is
a hallmark of meningiomas with variable sensitivity (54). The
presence of alanine in meningiomas may be due to partial
oxidation of glutamine (55) or conversion from an increased
TABLE 2 | Frequency of meningioma depending upon location.

Location Frequency

Convexity 20–34%
Parasagittal 18–22%
Falcine 5%
Sphenoid and middle cranial
fossa

17–25%

Frontobasal 10%
Posterior fossa 9–15%
Tentorium cerebelli 2–4%
Cerebellar convexity 5%
Cerebellopontine angle 2–4%
Clivus <1%
Intraventricular 2–5%
Orbital <1–2%
Ectopic <1%
FIGURE 1 | (A) Axial T1-post contrast MRI demonstrating an anterior clinoid
meningioma with a characteristic dural tail. (B) Axial T1-post contrast MRI
demonstrating a convexity meningioma with dural tails. (C) Axial T1-post
contrast MRI demonstrating a meningioma with irregular edges abutting the
superior sagittal sinus. (D) Axial T1-post contrast MRI demonstrating
cerebellopontine angle meningioma.
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pool of pyruvate secondary to inhibitions of the enzyme pyruvate
kinase by L-alanine (56). As with the other technologies listed the
ability of MRS to determine to tumor grade is not well
established; however, it has been shown that an elevated lactate
more often seen in atypical meningioma. Likewise, the absolute
concentrations of total alanine and creatine have been shown to
be decreased in high-grade when compared with low-grade
meningiomas, as was the ratio of glycine to alanine (57).

Pathology
Antoine Louis in 1774, a French surgeon, described a tumor-like
meningioma and called it “fungus durae matris”. However, it was
Harvey Cushing an American neurosurgeon that was the first to
use the term “meningioma” in 1922 (58, 59). Dr. Kepes’s work on
the tumor’s biology, pathology and differential diagnoses has
further helped advance this field (60). The histologic feature of a
meningioma that is pathognomonic is “whorl” formation by
meningothelial cells, which can mineralize to harbor
“psammoma bodies” (concentric dystrophic calcifications).
Additionally intranuclear cytoplasmic pseudoinclusions, which
are cytoplasmic invaginations in the nuclei, nuclear clearing and
nuclear grooves are often observed. Nonetheless, these features
can be absent or often unassuming in a subset of meningiomas.
Immunohistochemistry may be utilized for confirmation in such
examples, with the most widely marker being epithelial
membrane antigen (EMA). More recent studies have clearly
shown that somatostatin receptor 2A (SST2A) is a superior
immunostain target due to its higher sensitivity (61).

Meningiomas are heterogeneous in their histopathologic
features. Currently, 15 variants exist that are classified into
three histologic grades. The WHO grade I (benign) includes
nine variants, and the most frequent are meningothelial (Figure
2), fibrous, and transitional variants. Psammomatous,
angiomatous, microcystic, secretory, lymphoplasmacyte-rich,
and metaplastic variants are also included in grade I. Atypical,
chordoid, and clear cell variants are included in grade II,
whereas anaplastic, papillary, and rhabdoid variants are
included in grade III (Table 3).

Meningiomas are classified as grade II “atypical” tumors if the
lesion contains 4 or more mitoses per 10 consecutive high-power
fields (using a 40× objective) or brain invasion, latter defined as
meningioma infiltration into the underlying brain parenchyma
without an intervening layer of connective tissue (62). In prior
WHO classifications, invasion was considered a staging feature
rather than a grading feature; however, it is recognized in the new
grading that the presence of brain invasion in a WHO grade I
meningioma confers recurrence and mortality rates similar to
those of a WHO grade II meningioma (63). If neither feature is
present, at least three of the following five histologic criteria must
be evident to arrive at a grade II diagnosis: spontaneous
intratumoral necrosis; patternless pattern or sheeted
architecture; prominent nucleoli; high cellularity; and small cell
change (tumor cells with scant cytoplasm relative to nuclear
size) (62).

It has been documented that a Ki67 proliferation index over
4% has also been correlated with increased recurrence risk,
Frontiers in Oncology | www.frontiersin.org 5
however, it is most commonly used as an adjunct to standard
WHO grading, rather than as an independent indicator of grade
(64). As mentioned elevated mitoses and invasion are both
regarded as sufficient for grade II classification, however,
multiple grade II features can usually occur within the same
atypical meningioma, i.e., invasion plus increased mitoses, sheet-
like growth pattern and areas of high cellularity with small
cell changes.

The other two subtypes of grade II meningiomas, clear cell
and chordoid, may not show additional findings like elevated
mitotic activity, necrosis and invasion and are in need of
additional datasets to clarify their prognostic implications.
Larger meningiomas require microscopic examination of
several blocks to ensure lack of atypical features as well as
absence of specialize variants (12). Assessment of brain
invasion may also be apparent only by histologic evaluation,
most often following thorough lower power scanning the
periphery of the meningioma; an immunostain for glial
fibrillary acidic protein can additionally be used to confirm
minuscule foci of brain-invasion (12).

Grade III or anaplastic meningiomas can often resemble
high-grade sarcomas, carcinomas or melanomas. While they
often display atypical features of grade II lesions, the mitotic
threshold differs, i.e., presence of > 20+ mitoses per 10
consecutive high-power fields. Thus, all meningiomas with 4–
19 mitoses are still within the grade II spectrum. Rhabdoid and
papillary morphologic variants are also considered to be grade III
(12). Of meningioma with documented WHO grade, 80.5% were
WHO grade I, 17.7% were WHO grade II, and 1.7% were WHO
grade III (2).

Genetics and Molecular Characteristics
The first genetic alteration found in association withmeningiomas
was observed by FISH in the deletion of Chromosome 22q, later
determined to be the gene involved in NF2 on 22q12 (15, 65). The
tumor suppressor, Merlin from 22q12 is inactivated in nearly two-
thirds of meningiomas and is a member of the protein 4.1
superfamily of cytoskeleton linker proteins that includes erzin,
radixin, and moesin (ERM) (14, 66, 67). Interestingly,NF2mutant
meningiomas appear to have more histopathological findings of
fibrous or transitional rather than some meningothelial histologic
variants, likely due to lack of cytoskeleton linker resulting in a
more mesenchymal phenotype (68, 69). Merlin is also involved in
various developmental and survival signaling pathways with loss
resulting in the dysregulation of cell proliferation, growth, and
motility. Merlin enables Hippo-dependent YAP/TAZ destruction,
restrains nuclear b-catenin activity in the WNT pathway,
regulates TGF-b signaling activation, suppressor of mammalian
target of the rapamycin (mTOR) pathway restricts activation of
PGFR and EGFR, and controls the level of Notch receptor
availability (70, 71). Therefore, it is not surprising that NF2-
mutated meningiomas have been found to harbor more genetic
alterations than the NF2-wildtype, despite both meningiomas
within the same benign grade, which has continued the
suggestion that a NF2 mutation results in greater chromosomal
instability overall (72).
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Several studies have shown that a loss of 18q is associated
higher WHO grade meningiomas and recurrence rates (73).
The DAL-1 (differentially expressed in adenocarcinoma of the
lung) gene located at 18q has been purported to act as a potential
tumor suppressor gene as a critical regulator of proliferation and
apoptosis in meningiomas (74). Decreased expression of Dal-1 is
also observed in up to 60%–76% of sporadic meningiomas, with
loss of expression of either Dal-1 or merlin seen in 92% (75). The
loss of merlin or Dal-1 are thought to be early events in the
development or initiation of tumorigenesis in meningiomas (76).
The loss of chromosome 10 has been found in a small study
primarily in WHO Grade III but not in WHO Grade II
specimens, suggesting that chromosome 10 loss may serve as a
diagnostic and perhaps a prognostic marker (77).
Frontiers in Oncology | www.frontiersin.org 6
Recent next-generation sequencing has elucidated a number of
recurrent genetic alterations in NF2-nonmutated meningiomas
which are driven by four mutually exclusive pathways:
increased hedgehog signaling (through SMO, SUFU or
PRKAR1A mutations); TRAF7 (with either KLF4 mutation or
PI3K pathway activation); RNA polymerase II subunit A
(POLR2A) mutations; and other (i.e., AKT1) mutations (68,
78). The majority of these mutations are usually found in WHO
grade I meningiomas and also appear to not coexist with
mutations in NF2 (16). However, mutations in TRAF7 can be
present in isolation, though often they can co-occur
with KLF4, AKT1, or PIK3CA mutations, whereas mutations
in SMO and POLR2A are usually mutually exclusive (16, 79)
Interestingly, the meningiomas arising from SMO and AKT1-
MTOR aberrations often arise in the skull base (68). In contrast,
meningiomas driven by the inactivation of NF2 tend to localize
primarily to the convexity (80). Likewise, there are associations
between some mutations seen and with specific histopathologic
variants of meningioma, for example NF2 in fibroblastic and
transitional meningiomas (68, 69), KLF4 and TRAF7 in
secretory meningiomas (81), and AKT1 mutations in grade I
meningothelial meningiomas particularly of the base of the
skull and spine (82). Mutations in BRAF V600E have been
associated with rhabdoid meningiomas WHO grade III and
recurrent meningiomas (83, 84). Alteration of the telomerase
reverse transcriptase (TERT) promoter has been shown to be
associated with an increased risk of recurrence (16, 85).

Growing evidence in the last two decades has shown that
epigenetic modifications may have a pivotal function regarding
tumorigenesis, progression and reoccurnce of meningiomas (Table
4) (86, 87). Moreover, several studies have propose methylation
status of DNA within meningiomas may more accurately reflect
the aggressiveness of the tumor and thus their anticipated
recurrence rate compared with WHO grade of the lesion and/or
extent of surgical excision (88–90). Numerous genes have been
identified that are silenced by focal DNA hypermethylation in
meningiomas include TIMP3, TP73, MEG3, GSTP1, several
homeobox (HOX) family members (HOXA7, HOXA9, HOXA10
HOXA6 and HOXA9), CDKN2A, WNK, TMEM30B, and MAL2
(91). In the case of hypermethylation of TIMP3, studies have shown
that this methylation event inhibits matrix metalloproteinases and
has been associated more aggressive and higher grade meningiomas
(92, 93). Likewise, the inactivation of tumor suppressor gene, TP73
by hypermethylation has been found in higher grade lesions and is
thought to be associated with malignant transformation (94).
Promoter methylation of MEG3, GSTP1, and MAL2 has been
shown to more commonly in higher grade meningiomas (92,
95, 96).

Various groups have subdivided meningiomas into distinct
subsets based on the extent of the global DNA methylation
profile, the have been various definitions but the results
remained consistent which is the lesions within specific
methylation classes (MCs) correlated particular mutations,
histological variants, cytogenetic alterations and concluded
that a DNA methylation-based classification system may
provide a more accurate prognostication of clinical outcomes
FIGURE 2 | H&E of meningothelial meningioma with prominent whorled
architecture (400×; H&E, hematoxylin and eosin stain).
TABLE 3 | WHO Grade with their associated histopathological subtypes.

Grade Histopathologic features

WHO Grade I
Meningothelial
Fibrous (fibroblastic)
Microcystic
Transitional
Psammomatous
Angiomatous (includes hemangioblastic, angioblastic)
Secretory subtypes
Metaplastic
Lymphoplasmacyte rich

WHO Grade II
Clear cell
Choroid
Atypical

WHO Grade III
Rhabdoid
Papillary
Anaplastic
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(88–90). For example, one group has been shown that WHO
grade I meningiomas with intermediate level of methylation
status have a worse clinical outcome than the average outcome
of WHO grade I meningiomas (89). Similarly a WHO grade II
meningiomas with a benign methylation classification profile
appear to have an improved overall survival than the average of
WHO grade II meningiomas (89). Taken together, one study
has developed a DNA methylation-based model for predicting
the risk of early (5-year) recurrence of meningiomas which
combines the methylation status, with extent of resection and
WHO grade in the hopes of tailoring ongoing surveillance and
therapy (90).

Modifications in histones known to result in remodeling key
complexes on chromatin have been reported for various
malignancies in the recent years. It has been reported that
meningiomas with the loss of trimethylation of lysine 27 of
histone H3 (H3K27me3) via immunohistochemistry was
associated with lesion that had documented rapid progression
(97). In a large molecular profiling study have reported
overexpression of the histone cluster H1 family member C
(HIST1HIc) genes (6p) to be associated with recurrent
meningiomas (98). In addition HIST1Hic has been shown
mediate chromatin transcription by blocking chromatin
acetylation (99) and aid maintenance or establishment of
specific DNA methylation patterns (100). In addition, nearly
10% of non-NF2meningiomas harbor loss of function mutations
of KDM5C and KDM6A, encoding histone lysine-specific
demethylases, resulting in alterations in histone function and
epigenetic regulation in meningiomas (68). As discussed earlier
mutations of two core subunits of the SWI/SNF complex,
SMARCB1 and SMARCE1, have been identified in familial
syndromes at risk of developing meningiomas (101). However,
within anaplastic meningiomas the PRC2 histone methyltransferase
complex, an antagonist of SWI/SNF complex, is upregulated result
in aggressive disease and stemness and epithelial-to-mesenchymal
transition (102).
Frontiers in Oncology | www.frontiersin.org 7
There is increasing evidence for the role of microRNAs
(miRNAs) as a regulator of epigenetic mechanisms as well as
in the initiation, progression, and recurrence of meningiomas
(103). For instance, some studies have shown that miR-200a may
act as a tumor suppressor and that the downregulation of miR-
200a may promote the development of meningiomas, as miR-
200a has been found to be downregulated in meningiomas (104).
In higher grade meningiomas, it has been shown that the
downregulation of miRNA-145 has also indirectly associated
with the overexpression of the COL5A1 gene (encoding collagen
type V alpha) thus miRNA-145 may account for the aggressive
and invasive nature of these higher grade gliomas (105).
Likewise, the upregulation of miR-21 has been demonstrated
among WHO grade II or III meningiomas to a greater extent
than that found in WHO grade I meningiomas (106). In
meningiomas with high rates of recurrence it has been sown
that there is an upregulation of miR-190a and downregulation of
miR-29c-3p and miR-219-5p (107). The expression of miRNA-
224 has been shown to correlate with advanced pathological
grade and has been suggested that its expression could be used to
predict the overall survival and recurrence-free survival of
patients (106, 108).

Treatment
Surgery
In an age of increased incidentally found meningiomas due to
enhanced and improved imaging studies, when patients are
asymptomatic, observation with routine surveillance imaging is
an acceptable strategy. However, if the meningioma is growing
and/or causing symptoms that could be related to the lesion, then
maximal safe surgical resection is the standard of care.
Nevertheless, the ability to achieve a GTR may be limited due
to tumor location, involvement or invasion of nearby dural
sinuses, arteries, cranial nerves and extent of brain invasion,
especially in eloquent areas as well as patient specific factors
affecting the safety of the procedure.
TABLE 4 | Genes associated with meningiomas with corresponding chromosomal location and product (86).

Gene Full name Locus Product

NF2 Neurofibromin 2 22q12.2 Merlin
TRAF7 TNF receptor-associated factor 7 16p13.3 TNF receptor-associated factor 7
KLF4 Kruppel-like factor 4 9p31 Kruppel-like factor 4
AKT1 v-Akt murine thymoma viral oncogene homolog 1 14q32.33 AKT1 kinase (serine/threonine protein kinase)
SMO Smoothened, frizzled class receptor 7p32.1 Smoothened, G protein-coupled receptor
PIK3CA Phosphadidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 3q26.32 Catalytic subunit of kinase, PI3K
POLR2A RNA polymerase II subunit A 17p13.1 RNA polymerase II subunit A
BAP1 BRCA1-associated protein 1 3p21.1 Ubiquitin carboxyl-terminal hydrolase 1
SMARCB1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b,

member 1
22q11.23 Subunit of SWI/SNF complex

SMARCE1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e,
member 1

17q21.2 Subunit of SWI/SNF complex

BRAF
V600E

B-Raf proto-oncogene 7q34 Serine/threonine kinase

NOTCH2 Notch receptor 2 1p12 Notch2 (notch receptor family)
PTEN Phosphatase and tensin homolog 10q23.31 Phosphatidylinositol-3,4,5-triphosphate 3-

phosphatase
CDKN2A Cyclin-dependent kinase inhibitor 2A 9p21.3 p16(INK4A), p14(ARF)
CDKN2B Cyclin-dependent kinase inhibitor 2B 9p21.3 p15(INK4B)
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The surgical approach of meningiomas is dictated by the
neuroanatomic location and surrounding structures. Convexity
meningiomas are straightforward in their approach and often have
GTRs. However, meningiomas in this location only account for
about one sixth of meningiomas. Parasagittal meningiomas are
more complex to resect and obtain a GTR as they often arise near
the superficial sagittal sinus and can involve or invade this major
intracranial draining sinus. In suspected cases of superficial sagittal
sinus invasion, the surgical resection might not extend to remove
that portion of the tumor due to an increased risk of air embolism,
large blood loss and/or post-operative sinus thrombosis. Tumors
of the skull base (sphenoid wing, olfactory groove, tuberculum
sella, cerebellopontine angle or petroclival region) require more
advanced surgical techniques and approaches to safely access the
tumor without extensive brain retraction, injury to cranial nerve
and vasculature. Advances in endoscopic technology and
techniques have enabled the resection of skull bases
meningiomas through an endoscopic endonasal approach that
can be done alone or in combination with a traditional
craniotomy, but risks associated with this location generally
outweigh those in the convexity (109).

Several strategies might be leveraged pre- or intra-operatively
for better outcomes. For example, coagulation and/or preoperative
embolization could be employed to limit blood loss and to
maintain good visualization throughout the procedure in
hypervascular meningiomas. For meningiomas that are firm or
calcified, a technique of debulking centrally or in piecemeal status
through the resection can limit the need for retraction of the
surrounding brain, cranial nerves, and corresponding vasculature.
If the tumor forms a capsule in the arachnoid plane, performing the
dissection while remaining in this plane can protect the pia of
surrounding brain from injury. Similarly, cranial nerves and
arteries may be enveloped or encased by skull base meningiomas,
but the tumors rarely invade them and identification of the
arachnoid plane can allow for safe dissection of the meningioma
from normal structures. This technique of debulking, coagulation,
and dissecting along the periphery are repeated until a GTR is
achieved. As the adjacent dura is often involved with meningiomas,
a dural graft is used in reconstruction. Additionally, the
meningioma may invade adjacent bone of the skull. If
involvement is limited, it may be possible to drill to the point of
normal bone matrix; if there is more extensive involvement
rendering the flap unsalvageable, the use of mesh or a cranial
plating system instead should be considered. As mentioned, there
are several factors that may preclude a GTR from occurring
especially in skull base meningiomas (e.g., venous sinus
involvement, arterial or cranial nerve envelopment and extensive
involvement of the base of the skull). These circumstances may
account at least in part for the improved survival of patients with
convexity meningiomas over those with parasagittal and skull base
meningiomas (110).

The extent of resection has been shown to be crucial to the rate
of recurrence in the treatment of meningiomas. The extent of
resection is defined by the Simpson grading system which is
denoted by postoperative imaging as well as the assessment by
the neurosurgeon during the procedure (Table 5) (111). A biopsy
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is a Simpson grade 5, subtotal resection of the meningioma is a
grade 4, macroscopic resection without dural excision or
coagulation is a Simpson grade 3, GTR with dural coagulation is
a Simpson grade 2, and GTR including adjacent dura and bone is a
Simpson grade 1 (111). Recurrence rates of Simpson grade I
resection in a WHO grade I meningioma are low; they rise
substantially with an increasing pathologic grade. In a
retrospective study, 5 year recurrence rates after a Simpson
grade I GTR in WHO grade I meningiomas are reported as 7%–
23%, whereas the same resection in a WHO grade II results in a
50%–55% and inWHO grade III 72%–78% recurrence (9, 112). As
the extent of resection decreases, there in an increase rate of
recurrence (9, 113). However, the recurrence-free survival of
Simpson grade 1–3 resection compared to Simpson grade 4
resection was more pronounced for tumors of the convexity
than for parasagittal, parafalcine or skull base tumors as well as
for meningiomas with high levels of proliferation (MIB-1 labeling
index >3%) (114). Therefore, it is reasonable after a GTR of WHO
grade I meningiomas to follow with routine surveillance imaging.
However, in the case of a subtotal resection (Simpson grade 4–5)
of WHO grade I meningioma, and generally all higher grade
meningiomas comprised by WHO grade II and III, adjuvant
treatment is necessary to delay or curtail recurrence.

Radiation Therapy
Radiation therapy has been the primary treatment for growing
meningiomas that are deemed nonsurgically resectable based on
location and/or patient co-morbidities which preclude surgical
resection. Additionally, radiation therapy is employed as an
adjuvant therapy after surgical resection, for recurrence after a
resection, and some consider an upfront treatment approach if
subtotal resection or operative morbidity is likely. Treatment can
be delivered as a single-fraction stereotactic radiation (SRS) or
fractionated external beam radiotherapy (EBRT). There is a
scarcity of prospective studies comparing these different
radiation therapy delivery regimens (techniques, doses, etc.)
and comparing a single regimen to surgical resection, and
therefore, most of the data is based on retrospective studies.
Likewise, evaluating different radiation modalities via an
outcome measure of recurrence rates or meningioma volume
are plagued with over simplification of diverse meningioma
population, genetics and treatment specific toxicities.

Treatment of recurrent WHO grade I and radiographically
defined (presumed grade I) meningiomas is typically with a total
dose of 50–54 Gy with a clinical target volume (CTV) margin of
TABLE 5 | Simpson grade for surgical resection of meningiomas.

Simpson
Grade

Definition (extent of resection)

Grade I Complete removal including resection of underlying bone and
associated dura

Grade II Complete removal and coagulation of dural attachment
Grade III Complete removal without resection of dura or coagulation
Grade IV Subtotal resection
Grade V Simple decompression with or without biopsy
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0–5 mm (115, 116). For more advanced, WHO grade II-III
meningiomas, treatment is typically 59.4–60 Gy with a wider 10–
20 mm gross tumor volume (GTC) to CTV anisotropic
expansion while respecting anatomic barriers to tumor growth
(116). For smaller tumors with a diameter of less than 3–4 cm
and at least 2-mm separation from critical normal structures
(such as optic nerves), single fraction SRS is a feasible option.
EBRT has been utilized for some tumor locations in which a GTR
may cause significant morbidity to the patient (116). For
example, one series of patients with optic nerve sheath
meningiomas had ~25% of patients treated with EBRT alone
and they showed no failures and improved or stable vision in 86%
at a median of 8.3 years of follow-up (117). Another series of ~100
patients with presumed WHO grade I skull base meningiomas
received EBRT only (65%) or following STR (35%), and showed
local control of 95% for all patients at a median follow-up of 5
years (118). Studies of particle therapy are limited, although there
are phase I and phase II trials underway to look at the role of
proton radiation in a variety of settings with meningiomas [UPCC
24309 (NCT01117844)] (119). As well as a combined phase I/II
study (NCT02693990) is investigating proton therapy with dose
escalation for atypical meningiomas that underwent STR and
anaplastic meningiomas following surgical resection (116).
Brachytherapy is infrequently used, with the largest cohort being
42 patients receiving I-125 permanent seed implant during
resection of atypical or malignant meningiomas. Eight-five
percent of patients had a history of prior radiation therapy with
a median time to progression of 11.4 months and numerous
complications including radiation necrosis, wound breakdown,
wound infection, and pseudomeningocele (116, 120). Ongoing
studies will be needed to determine its utilization in the treatment
of meningiomas.

The toxicities of radiation are dependent on the technique and
dosing of radiation therapy implemented. EBRT toxicities are
location dependent but are known to include alopecia. Side of
effects of SRS are primarily limited to fatigue which is often
transient and abated with a steroid regimen (119). Late toxicities
for cranial radiation therapy include endocrinopathies, cognitive
effects, increased cerebrovascular events, and secondary neoplasm
risks as mentioned earlier (121). While the rate of these
complications is low, they warrant discussion with patients
given that the tumors are frequently benign.

When considering radiation therapy as a primary modality,
there are several factors to take into account. First, radiation therapy
is not as effective at relievingmass effect or tumor-associated edema,
neurological deficits, or symptoms. However, if a patient is a poor
surgical candidate or has lesions that are inaccessible for safe
resection, radiation therapy is frequently employed for mitigation
of local tumor growth. Second, the use of radiation therapy upfront
precludes surgical biopsy, preventing histological confirmation of
tumor grade andmolecular features. This decreases the opportunity
for targeted therapy, as well as limits understanding of the natural
history of the meningioma and the risk of recurrence.

Add into the recent controversy of radiation therapy not as an
adjuvant treatment but primary treatment, a recent RANOworking
group performed a systematic literature review; WHO Grade I
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meningiomas when treated to 50–54 Gy in 27–30 fractions EBRT
had control rates of 87%–100%. Likewise, WHO grade I
meningiomas treated with 12–16 Gy SRS had 10-year control
rates greater than 90%, but this was location specific as parasellar
and skull base meningiomas had lower rates of control (69%–90%)
(9). The PFS in meningiomas less than 35 mm was better with SRS
(mean dose 17.7 Gy) compared with Simpson grade 2–5 resection,
although not for Simpson grade I (122). As expected, for larger
meningioma volumes, there is decreased control especially in single
fraction SRS as well as increased (5%–23%) radiation-related
complications (123). Therefore, some centers hypofractionated
SRS (up to 5 fractions) treatments for larger volume tumors,
typically for those tumors >10 mm (3) which has abated some of
the complications (edema and radiation necrosis) as well as mitigate
development of toxicity by allowing repair of normal tissues (9,
124). Local control rates in which hypofractionated SRS has been
utilized grade I and II meningioma was reportedly 95 and 71%,
respectively, with no acute toxicities (125, 126). However, more
studies need to conducted to determine the role of hypofractionated
SRS in comparison to EBRT for similar pathological grades and
sizes. Interestingly, a small study of patients that underwent either
SRS or EBRT suggested that necrosis may be a negative predictor of
radiation response regardless of radiation timing or modality (127).

For the majority of the cases, radiation therapy is adjuvant after
surgical resection to decrease recurrence rates. In retrospective
studies the addition of EBRT (to 59.4 Gy) demonstrated only
20% recurrence at 6 years versus 65% without radiation therapy
following surgery (128). However, there is no consensus on the
dosage and/or the timing of adjuvant radiation for high grade
aggressive meningiomas. A recent cooperative group trial NRG/
RTOG 0539 (NCT00895622) grouped patients into three risk
categories in a nonrandomized fashion based on tumor grade and
resection status. Patients with newly diagnosed grade I tumors
following either gross total (Simpson grade 1–3) resection or
subtotal (Simpson grade 4–5) resection were identified as being
low-risk. This group showed a recurrence-free survival of 86% based
on preliminary data. These findings support withholding adjuvant
radiation for gross totally resected grade I tumors (129).

The National Comprehensive Cancer Network (NCCN)
provides guidelines for the use of radiation therapy in the
management of meningiomas, with most recommendations
having Level 2A evidence (130). Radiation therapy should be
considered for small (<30 mm) asymptomatic meningiomas at
presentation if grade II and subtotally resected or grade III
regardless of resection volume, and in grade I tumors when
sub-totally resected if there is a ”potential” symptom. Radiation
therapy should be pursued for large (>30 mm) asymptomatic
tumors if grade III and considered if WHO grade II or
incompletely resected grade I. For all asymptomatic
meningiomas, observation alone (with serial imaging) is also
an acceptable option. For symptomatic meningiomas at initial
presentation, radiation therapy is recommended following
surgery for any grade III and should be considered for any
grade II tumors or large (>30 mm) incompletely resected grade I
tumors. For surgically inaccessible tumors or surgically
contraindicated patients, radiation treatment alone is also
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recommended. Upon recurrence, surgery (if accessible) followed
by radiation treatment or re- radiation treatment, or radiation
treatment alone (if inaccessible) is recommended (130). Of note,
these guidelines do not take into account tumor location, patient
age, or any molecular pathologic markers.

Systemic Treatment
As with radiation treatment there is a paucity of large and/or
randomized trials to determine the efficaciousness of systemic
therapy for the management of meningiomas. Thus, the NCCN
recommends the use of only three classes of medical therapy: a-
IFN, somatostatin receptor agonists and vascular endothelial
growth factor (VEGF) inhibitors for the treatment of
meningioma (130, 131). The guidelines by European Association
of Neuro-Oncology (EANO) consider the use of systemic
pharmacotherapy to be experimental with Level C evidence and
thus do not recommend any specific agents or class of therapeutics
for the management of meningiomas (Table 6) (132).

The utilization of IFN-a in the treatment of recurrent WHO
grade I and in higher grade meningioma has shown some promise
with PFS at 6 months of 54% and 17%, respectively (133, 134).
However, these were small studies and IFN-awas moderately toxic,
additional studies will need to performed to determine it efficacy.

However, there are more encouraging results with the use with
antiangiogenic agents targeting VEGF. Sunitinib, a small molecule
inhibitor of VEGF signaling was used in a Phase II trial of 36
patients with grade II/III refractory meningioma had a PFS at 6
months of 42%, however, had a high toxicity profile (60% with
severe adverse events) (135). Bevacizumab, anti-VEGF monoclonal
antibody, has been shown to have a PFS at 6 months of 87%, 77%,
and 46% in recurrent grade I, II, and III tumors, respectively (136).
A Phase II prospective trial of bevacizumab is ongoing
(NCT01125046) for recurrent or progressive meningiomas.

Pasireotide, an alternative somatostatin analog, was utilized in
a Phase II trial in recurrent meningioma that failed prior surgical
or radiation treatment, although it only had a PFS at 6 months of
17% in the high grade (WHO grade II/III) cohort and 50% in the
WHO grade I cohort and was well tolerated (137)). A recent
retrospective chart review study, found that the use of
sandostatin (octreotide) was especially effective in prolonging
PFS at 6 month in estrogen negative progesterone positive
tumors to 87.8% while patients with estrogen negative
Frontiers in Oncology | www.frontiersin.org 10
progesterone negative meningiomas had PFS at 6 months of
62.5% (138). However, in a trial of nine high grade meningioma
patients treated with octreotide and in a larger trial of
pasireotide, no radiographic response was observed and no
significant benefit in PFS was detected (139).

Very much like gliomas, meningiomas often demonstrate
immune evasion with T cell exhaustion resulting in
decreased levels of PD-1+ T cells. However, trials of the
inhibitory PD-L1 antibody-based therapies, prembrolizumab
(NCT03016091 , NCT03279692) , n ivo lumab a lone
(NCT02648997), or nivolumab with hypofractionated SRS in
combination with or without ipi lumumab (CTLA4
inhibitor NCT03604978) and avelumab (in combination with
proton radiotherapy, NCT03267836) are ongoing (12, 139). A
recent case report demonstrated a remarkable response to
nivolumab in a patient with recurrent, treatment-refractory
meningioma and homozygous deletion of the DNA mismatch
repair gene, MSH2 (140). Application of agents targeting the
mTOR-pathway is currently being examined in trials with
everolimus (NCT01880749 and NCT01419639) and vistusertib
(AZD2014, NCT03071874, and NCT02831257). Everolimus is
also being studied in combination with the somatostatin receptor
analog octreotide (CAVOREM, NCT02333565) in recurrent
meningioma (Table 7) (12, 139).
TABLE 6 | Recommendations for the management of meningiomas of WHO
grades I–III.

Histology, degree of resection Recommendations for the
therapeutic management

WHO grade I, gross total resection Observation
WHO grade I, subtotal or partial
resection

Observation or sterotactic radiosurgery/
fractionated radiosurgery

WHO grade II, gross total resection Observation or fractionated radiosurgery
WHO grade II, subtotal or partial
resection

Fractionated radiosurgery

WHO grade III Fractionated radiosurgery, experimental
chemotherapy or peptide receptor
radionuclide therapy
TABLE 7 | Active recruiting of clinical trials for treatment of meningioma,
updated and modified from Al-Rashed (139).

Drug (Trade Name) Target ClinicalTrials.gov
Identifier

Immunotherapies
Pembrolizumab (Keytruda) PD-1 NCT03279692

NCT03016091
Avelumab and Hypofractionated Proton
Radiation Therapy

PD-1 NCT03267836

Nivolumab (Opdivo) with or without
Ipilimumab (Yervoy)

PD-1 NCT03604978

Nivolumab (Opdivo) PD-1 NCT03173950
Targeted small molecules
Vistusertib (AZD2014) mTORC1/

mTORC2
NCT03071874

Alpelisib (Piqray) and Trametinib
(Mekinist)

PI3K/MEK NCT03631953

Ribociclib cyclin D1/
CDK4 & CDK6

NCT02933736

Brigatinib (Alunbrig) NF2 NCT04374305
Selumetinib NF2 NCT03095248
Abemaciclib CDK4/6 NCT03220646

Peptide receptor radionuclide therapy
(PRRT)
177Lu-DOTATATE (Lutathera) SSR NCT03971461

NCT04082520

Somatostatin receptor (SSTR)
SOM230C pasireotide

LAR
NCT00859040

Tumor Treating Field
NovoTTF-110A (Optune) and
Bevacizumab (Avastin)

N/A NCT02847559
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CONCLUSION

While meningiomas are a benign tumor, they nonetheless cause
significant impact to patients and can challenge clinicians with
their ongoing surveillance and management. Surgical resection
remains the gold standard when GTR can be achieved. In cases
where maximal resection cannot be obtained safely, inoperable
cases, residual tumor remains, and/or the tumor is an aggressive
high-grade lesion, adjuvant therapy is required. As reviewed,
there are drawbacks to many of these adjuvant therapies and few
Frontiers in Oncology | www.frontiersin.org 11
systemic therapies have been approved or shown to be
efficacious. Ongoing research and clinical trials will be needed
to address these treatment gaps.
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