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Abstract

Aim: The updated mean HbA1c has been used in risk estimates of diabetic complications, but it does not take into account
the temporal relationship between HbA1c and diabetic complications. We studied whether the updated mean HbA1c
underestimated the risk of diabetic complications.

Method: Continuous HbA1c curves for 10,000 hypothetical diabetes patients were simulated over an average of 7 years.
Simulations were based on HbA1c values encountered in clinical practice. We assumed that each short time interval of the
continuous HbA1c curves had a long-lasting effect on diabetic complications, as evidenced by earlier studies. We tested
several different HbA1c variables including various profiles, e.g. different duration, of such a long-lasting effect. The
predictive power of these variables was compared with that of the updated mean HbA1c.

Results: The predictive power of the constructed HbA1c variables differed considerably compared to that of the updated
mean HbA1c. The risk increase per standard deviation could be almost 100% higher for a constructed predictor than the
updated mean HbA1c.

Conclusions: The importance of good glycemic control in preventing diabetic complications could have been
underestimated in earlier hallmark studies by not taking the time-dependent effect of HbA1c into account.
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Introduction

Good glycemic control is essential in preventing diabetic

complications [1,2]. The level of glycosylated hemoglobin (HbA1c)

provides a measure of the glycemic control of diabetes patients

during the previous 2–3 months [3]. Besides the average level of

HbA1c, certain changes in HbA1c levels and HbA1c at different

points in time can possibly have different implications for the

clinician and in studies of the relation between HbA1c and

diabetic complications. The term HbA1c-variable is used to

describe how different combinations and weighting of HbA1c-

values relate to diabetic complications [4].

The HbA1c variable updated mean HbA1c has been used in

several hallmark studies of diabetic complications, as it has a

greater predictive power than baseline HbA1c [4–6]. Updated

mean values are often used in the Cox regression model [7,8]. In

such a model, the same importance is given to all the HbA1c

values, regardless of when they were measured. This model is thus

not suitable when a value or function is expected to both increase

and decrease with time. Recent studies indicate that HbA1c levels

have a persistent effect on complications several years after their

measurement [9–12].

In the present study a model was used to determine whether

using the updated mean value of HbA1c could substantially

underestimate the risk of diabetic complications. As clinical studies

of new HbA1c variables require large numbers of patients and the

development of new methods, it is important to ascertain whether

there is any advantage in using new variables. This can be

achieved by simulation. If simulations show that the predictive

difference between the updated mean and another predictive

variable of HbA1c is small, it will not be necessary to implement

changes in clinical practice.

Methods

Ethics Statement
The study was approved by the Ethics Committee of the

University of Gothenburg.

Model of analysis
The model of analysis was based on the fact that each diabetes

patient has a continuous HbA1c curve. An infinite set of HbA1c

variables can be constructed from a continuous HbA1c curve. We

assumed that in this infinite set of HbA1c variables there is one

‘‘optimal variable’’, which takes into account the way in which

different levels of HbA1c at different times influence the risk of

developing diabetic complications. Contrary to this, the updated

mean HbA1c implies that the HbA1c value has the same

importance at all points in time. Thus, we constructed HbA1c
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variables that we believed could be realistic candidates for the

optimal HbA1c variable. These variables included scenarios that

we believed realistic of how HbA1c during a short time interval

affects diabetic complications now and in the future. Hence, no

real diabetic complications were used in the model. A mathemat-

ical relationship between the predictive power of two variables and

the correlation coefficient between them was the basic tool for the

comparisons.

The study consisted of three main parts:

1) Simulation of HbA1c values that can be linked together to

form a continuous HbA1c curve.

2) Construction of candidates for the optimal HbA1c variable

by describing how each short time interval of the continuous

HbA1c curves affects diabetic complications now and in the

future.

3) Comparison of the predictive power of the HbA1c variables

constructed and the updated mean HbA1c.

Simulation of continuous HbA1c curves
Continuous HbA1c curves were simulated for 10,000 hypo-

thetical diabetes patients. Monthly HbA1c values were simulated

on the basis of HbA1c values from clinical practice and connected

by lines to form the continuous curves (Figure 1). The HbA1c

measurements from clinical practice were collected from a patient

record system called Diab-Base [13–15] and were used to

determine the correlation coefficient for two values from the same

individual as a function of the time interval between them

(Figure 2). The coefficient did not differ for type 1 or type 2

diabetes or duration of diabetes. Using this function made the

simulations more realistic. The period of the simulated continuous

HbA1c curves was varied randomly, and uniformly distributed

over the interval 0–14 years, and the average period was 7 years.

We used 65,534 HbA1c values from 12,980 type 1 and type 2

diabetic patients; the mean value of HbA1c was 8.1 (SD 1.3). The

values had been obtained by laboratory analysis of HbA1c at local

laboratories, with nationwide quality assurance through regular

calibration with the high-performance liquid chromatography

Figure 1. Simulated HbA1c curves. Two examples of simulated HbA1c curves. One of the patients was followed for 7.6 years (black curve) and
the other patient for 10.0 years (red curve).
doi:10.1371/journal.pone.0004412.g001

Figure 2. Correlation coefficient between HbA1c values at
different points of time. The estimated correlation coefficient
between two HbA1c measurements from the same patient, as a
function of the time between the measurements.
doi:10.1371/journal.pone.0004412.g002

Simulations of HbA1c Variables
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Mono-S method. In this study, all HbA1c values were converted to

the Diabetes Control and Complication Trial (DCCT) standard

values using the following formula: A1C (DCCT) = 0.9236A1C

(MonoS)+1.345; r2 = 0.998 [16].

Construction of HbA1c variables
We assumed that the maximum harmful effect of HbA1c on

diabetic complications is not necessarily manifested at the same

time as the current value of HbA1c. We constructed HbA1c

variables consisting of an integral of the product of two functions g

and f depending on the continuous HbA1c curves (see Supplement

S1). The function g reflected how the effect of HbA1c persisted by

time and f the relation between the level of HbA1c and diabetic

complications.

The function g comprised three parameters: 1) time to

maximum effect on the development of diabetic complications,

2) the rate of increase in the effect until the maximum is reached,

and 3) the rate of decrease in the effect after the maximum

(Figure 3).

The persistent effect profiles applied to the simulated continuous

HbA1c curves are given in Table 1. Completely flat effect profiles

were investigated, i.e. a short interval of HbA1c has a consistent

effect on diabetic complications. Profiles with a maximum effect

on diabetic complications after 0.5, 2 and 4 years were also tested.

The increase in the effect to these maxima was widely varied as

was the following decreasing phase.

The function f comprised a fourth parameter, which reflected

that the risk increase could be different in the interval above 8.7%

and 6.0–8.7%. The value 1 of this parameter corresponds to equal

risk increase in these two intervals. The function f is defined and

illustrated in the Supplement S1.

Comparison of the predictive power of the updated
mean HbA1c value and the HbA1c variables constructed

As a measure of the goodness of the predictors we used the

gradient of risk per 1 standard deviation. Due to the existence of

a mathematical relationship, which we have derived, between

the gradients of two variables and the correlation coefficient

between them, we could perform the comparison between the

gradients by studying the correlation coefficients between them,

see below.

Statistics
A general measure of the goodness of a predictor is the gradient of

risk per standard deviation, which is the relative increase in the hazard

function when the value of the variable is changed by 1 standard

deviation in the direction of risk. This allows comparisons between

the goodness of different predictors. The best predictor of the risk

of developing a complication based on the complete HbA1c curve

during the follow-up period is assumed to be a variable calculated

by superimposing an infinite set of curves. Considering one such

curve, the corresponding function is assumed to be the product of

a function f of a single value of HbA1c at time t and a function g of

the time since t.

We assume that f is continuous everywhere and piece-wise

linear. For HbA1c values below 6.0 the function f is assumed to be

0, and between 6.0 and 8.7 to increase at a rate b. Above 8.7, the

rate of increase is assumed to be b multiplied by a factor c. In the

tables below, the factor c is referred to as ‘‘Parameter in function

f’’.

The correlation coefficient between a certain HbA1c value and

later values was calculated using linear regression. Wiener

processes, which have Markovian properties, were used to

simulate HbA1c values at monthly intervals [17]. It was assumed

that HbA1c values without measurement errors could be well

approximated by a Wiener process. For each hypothetical patient

we calculated the value of the HbA1c variable as an integral

comprising the functions g and f (see Supplement S1) at the end of

the follow-up period; the updated mean was also calculated. The

correlation coefficient between the two variables was then

calculated. Finally, we applied the relationship given below to

compare the gradients of risk.

If a predictor A comprises all predictive information that

another predictor B comprises, then the following relationship

between their gradients is true, provided that A and B have

normal distributions:

Figure 3. Study model of the temporal relationship between HbA1c and diabetes complications. Relative contribution to the
constructed variables at different periods after an HbA1c value was present. The time to maximal effect was A which was reached after a period of
increase B and followed by a period of decrease C.
doi:10.1371/journal.pone.0004412.g003

Simulations of HbA1c Variables
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Gradient of A~ Gradient of Bð Þ1= rj j

where r is the correlation coefficient between A and B.

Results

The correlation coefficient between the predictive power of the

updated mean HbA1c and the constructed variables, which take

the time-dependent effect of HbA1c into account, ranged from

0.53 to 0.78 (Table 1). Figure 4 shows the corresponding gradient

of risk per SD increase in the constructed HbA1c variables for the

correlation coefficients 0.5, 0.6, 0.7 and 0.8, in relation to the

gradient of risk per SD for the updated mean HbA1c.

For a certain diabetic complication with a gradient of risk per 1

SD higher updated mean HbA1c of 1.3, a correlation coefficient of

0.5 means that an optimal variable would instead have the

gradient 1.69. For another complication, when the gradient is,

e.g., 2 per SD higher updated mean HbA1c, a correlation

coefficient of 0.5 instead means that an optimal variable would

have the gradient 4. A gradient of risk per 1 SD higher of an

HbA1c variable of e.g. 1.3 for a certain diabetic complication

means that the risk increases by 30% when the HbA1c variable

increases 1 SD and a gradient of 4 that the risk increases by 300%.

Discussion

The practice of using baseline HbA1c in studies on diabetes

complications can lead to underestimation of the importance of

HbA1c as a risk factor, as only one value is used [4]. Calculation of

the updated mean of HbA1c using several values has been found

to be better and is widely used [4–6]. However, this variable may

Figure 4. Gradients of risk. Gradient of risk for the updated mean
HbA1c and the corresponding estimated gradient for an assumed
optimal HbA1c variable. The correlation coefficient between the
constructed variables versus the updated mean ranged from 0.53–
0.78 and the figure illustrates the cases 0.5, 0.6, 0.7 and 0.8.
doi:10.1371/journal.pone.0004412.g004

Table 1. The correlation coefficients between the constructed HbA1c variables and the updated mean HbA1c.

Increasing phase (B)
Decreasing
phase (C) Parameter in function f Correlation coefficients

Time to doubling
(years)

Half life time
(years)

Risk increase at higher
versus lower HbA1c

Time to maximum
= 0.5 years (A)

Time to maximum
= 2 years (A)

Time to
maximum = 4
years (A)

2 4 20 0.70 0.67 0.62

2 4 1 0.69 0.65 0.56

2 8 1 0.64 0.60 0.53

2 2 1 0.74 0.69 0.61

2 2 8 0.74 0.72 0.66

‘ 2 8 0.74 0.73 0.72

1 2 8 0.74 0.71 0.63

2 4 4 0.73 0.70 0.63

4 4 4 0.73 0.71 0.66

4 4 8 0.73 0.71 0.67

1 1 8 0.73 0.71 0.64

2 1 1 0.78 0.73 0.63

‘ 1 8 0.73 0.73 0.72

2 4 2 0.71 0.67 0.59

‘ ‘ 1 0.57 0.57 0.57

‘ ‘ 8 0.65 0.65 0.65

Columns 1 and 2, together with the headings of columns 4, 5 and 6 characterize the functions g in the constructed variables. The values in the columns 4–6 are the
correlation coefficients between the constructed variables and the updated mean HbA1c.
doi:10.1371/journal.pone.0004412.t001
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also result in substantial underestimation of the importance of

glycemic control, as the updated mean value of HbA1c gives equal

weight to all historical HbA1c measurements. In several of our

simulations we found that the increase in risk per standard

deviation of an optimal HbA1c variable could be up to twice as

high as that predicted by the updated mean HbA1c.

The more complex HbA1c variables investigated here,

considering the time-dependent effect of HbA1c, have not been

used previously [4]. Although the results of this study are from

simulated data, they provide evidence that the updated mean

HbA1c is not an optimal variable. The updated mean HbA1c is

just one value in an infinite series of possible HbA1c variables, and

it has not been constructed empirically [4]. Furthermore, the

assumptions in our model of a persistent effect of HbA1c on

diabetic complications are strong, whereas there is no evidence

that HbA1c values at different points in time will be of the same

importance for the development of diabetic complications, which

is the case when the updated mean HbA1c is used [4].

The simulated HbA1c curves were based on a result derived

from a large number of patients with quality-controlled measure-

ments of HbA1c. The stotchastic procedure used with Wiener

processes to simulate the curves has been widely used for

randomization procedures [17]. Hence we believe the curves are

a good presentation of real diabetic patients in the general

population. The time period for the simulated curves was on

average 7 years. This could be compared with the Diabetes

Control and Complications Trial (DCCT) of 6.5 years, the United

Kingdom Prospective Diabetes Study (UKPDS) of 10 years,

average duration of type 2 diabetes of roughly 10 years and of type

1 of 25 years [1,2,18,19]. With longer periods of the simulated

curves the correlation coefficients would have been even lower and

hence the difference of the constructed variables and updated

mean HbA1c even greater with respect to predictive power.

The function g in the constructed HbA1c variables reflected

how an HbA1c value relates to the risk of developing diabetic

complications at the moment and in the future. It can probably

not exactly mimic the true relation between HbA1c and a certain

diabetic complication. It is only composed of three parameters, but

these make it possible to vary how fast the effect increases and

decreases, when the maximum is reached, and can in a rough way

mimic all possible and likely scenarios. The real curve might

however be more smooth e.g. at its peak and shapes of the slopes.

The function was widely varied so that the effect had peak at

different points of time and the time until the effect became less

than the initial effect varied from 0.75 to 20 years.

Evidence of a persistent effect of HbA1c such as those used in

the constructed variables has been presented in the Epidemiology

of Diabetes Interventions and Complications (EDIC) studies [9–

11], as well as in the recently presented follow-up of the UKPDS

[12]. The EDIC study shows that the HbA1c level over a period of

6.5 years is of the same importance during the next 4 years

regarding the development of retinopathy, and for the next 8 years

concerning micro- and macroalbuminuria [9–10]. Concerning

myocardial infarction and stroke, it was shown that the values had

a substantial average influence during the next 11-year period,

although it was not shown how the effect varied during this period

[11]. In the post-UKPDS study, the effect of intensive treatment

did not become evident until the 10-year follow-up after the end of

randomization [12]. Other studies also support the persistent effect

of HbA1c, showing that the maximum effect on complications is

probably not exhibited when a specific HbA1c value is measured,

but rather some years later [2,4,9,10,20].

The function f, included in the constructed HbA1c variables,

was introduced to allow different risk increase per unit of HbA1c

in different intervals. The updated mean HbA1c does not allow

different increase of the risk per unit HbA1c. For several examples

of constructed variables we let this relation be similar as for the

updated mean HbA1c. Then mainly the persistent effect of HbA1c

reflected by the function g in the constructed variables differed

from the updated mean HbA1c. For other constructed variables

the relative risk increase for one unit higher HbA1c was greater

above HbA1c 8.7%. The predictive power differed substantially,

as reflected by the correlation coefficient, for all constructed

variables compared to up-dated mean HbA1c. Hence the

persistent effect of HbA1c had a strong influence on the difference

in predictive power.

Knowledge about the relationship between HbA1c and the risk

of diabetic complications is important when evaluating expensive

forms of treatment [21]. Small effects of treatment on HbA1c can

easily be overlooked. The cost of treating diabetes patients

constitutes a large part of the total health care budget, and it is

thus important from the economic perspective to have a sound

knowledge of the effects of glycemic control on complications [22–

24]. The risk engines in use today are based on a mean value of

two measurements, and the risk of a particular complication will

thus probably be much lower than that given by an optimal

variable [25]. This could lead to inappropriate decisions by both

the clinician and the patient.

Underestimating the role of a risk factor may also lead to

incorrect conclusions regarding etiology. Since the updated mean

is employed in the widely used Cox regression model, the

underestimation of risk factors may be common in other medical

fields. Using an optimal predictor would, for example, be of

importance when correlating blood lipids and blood pressure to

stroke and myocardial infarction [26–27].

The role of different risk factors in medicine in general could

probably be better assessed by studying the correlation between

measurements of the risk factor at different points in time and the

outcome. The model of the constructed variables presented here

could be used by an optimization procedure determining the

functions g and f for an optimally predictive variable. Patient

materials with frequent measurements of HbA1c and evaluations

of diabetic complications would be preferable to use. The function

g will reflect how long time it takes until an improvement in

glycemic control becomes salatory in preventing diabetic compli-

cations. Hence, besides a more accurate estimation of the risk

gradient between HbA1c and diabetic complications the presented

method can be of importance in the clinic for prognosis and

pathogenesis understanding which HbA1c values in time relate to

any developed diabetic complications. In the design of clinical

trials knowledge of the temporal relationship between HbA1c and

diabetic complications is essential so that an appropriate study

length is chosen and an improvement in glycemic control can lead

to beneficial effects on diabetic complications.
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