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Abstract

Purpose Methylenedioxymethamphetamine (MDMA, ecstasy) is used recreationally and frequently leads to sympathomimetic
toxicity. MDMA produces cardiovascular and subjective stimulant effects that were shown to partially depend on the norepi-
nephrine transporter (NET)-mediated release of norepinephrine and stimulation of «;-adrenergic receptors. Genetic variants,
such as single-nucleotide polymorphisms (SNPs), of the NET gene (SLC6A2) may explain interindividual differences in the acute
stimulant-type responses to MDMA in humans.

Methods We characterized the effects of common genetic variants of the SLC6A2 gene (rs168924, 1s47958, rs1861647,
1s2242446, and rs36029) on cardiovascular and subjective stimulation after MDMA administration in 124 healthy subjects in
a pooled analysis of eight double-blind, placebo-controlled studies.

Results Carriers of the GG genotype of the SLC6A2 rs1861647 SNP presented higher elevations of heart rate and rate-pressure
product after MDMA than subjects with one or no G alleles. Subjects with a C allele in the SLC6A2 rs2242446 SNP presented
higher elevations of the heart rate after MDMA administration compared with the TT genotype. Subjects with the AA genotype
of the SLC6A2 rs36029 SNP presented higher elevations of mean arterial pressure and rate pressure product after MDMA
administration than carriers of the G allele. The SLC6A2 rs168924 and rs47958 SNPs did not alter the response to MDMA.
Conclusions Genetic polymorphisms of the SLC6A2 gene weakly moderated the acute cardiovascular response to MDMA in
controlled studies and may play a minor role in adverse cardiovascular events when MDMA is used recreationally.
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Introduction 4]. However, MDMA produces adverse effects, including

cardio- and psychostimulant effects to varying degrees
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy)  [5—7]. The sympathomimetic effects of MDMA vary across
is used recreationally for its ability to enhance empathic  subjects, and high blood pressure responses were observed
feelings and sociability [1, 2]. MDMA has also been inves-  in a few subjects [6, 8]. The response to MDMA varies
tigated as a treatment for posttraumatic stress disorder [3,  between subjects, and genetic variations may explain some
of this interindividual variation [9-11]. For example, ge-
netic variations of the enzymes that are involved in
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of NE has been suggested to critically contribute to the
cardio- and psychostimulant effects of MDMA [7, 13, 18,
19]. The solute carrier family 6 (neurotransmitter trans-
porter, NE transporter [NET]), member 2 (SLC6A2) is a
crucial player in the noradrenergic system and involved
in the mechanism of action of MDMA in humans.
Inhibition of the NET significantly attenuated the sympa-
thomimetic stimulant-like effects of MDMA and other
stimulant-type substances [7, 20]. In a controlled study in
healthy subjects, the NET inhibitor reboxetine reduced the
MDMA-induced elevations of blood pressure and heart
rate and subjective stimulation and increased the pupil di-
ameter at rest and after light [7, 21], indicating a role for
the NET in mediating the MDMA response [22]. Similarly,
pretreatment with the NET inhibitor atomoxetine attenuat-
ed pD-amphetamine-induced elevations of blood pressure
and self-reported ratings of feeling “stimulated” [20].
Another study in humans showed a similar reduction of
cardiostimulant responses to cocaine after treatment with
the NET inhibitor atomoxetine [23].

Several genetic variations of the SLC6A2 gene that are
caused by single-nucleotide polymorphisms (SNPs) are as-
sociated with different functional phenotypes. However,
the roles of these genotypes in the effects MDMA have
not yet been investigated. Therefore, we focused on vali-
dated, polymorphic (minor allele frequency in Caucasians
>0.1), and potentially functionally relevant variants of
SLC6A2. Specifically, the G allele of the SLC6A2
rs168924 SNP was associated with hypertension in
Japanese patients [24] but lower blood pressure in
Caucasians [25]. Subjects with the AA genotype of the
SLC6A2 rs1861647 SNP or CC genotype of the SLC6A2
rs47958 SNP had higher subjective elation scores in re-
sponse to D-amphetamine compared with carriers of the
G allele [26] or A allele [27], respectively. The SLC6A2
152242446 SNP was shown to influence blood pressure
during exercise [28]. Additionally, an association was
found between the rs2242446 SNP and recurrent depres-
sion [29] and antidepressant response to the S-HT/NE
transporter inhibitor milnacipran [30]. Finally, the
SLC6A2 1536029 SNP was shown to be significantly asso-
ciated with alcohol dependence [31].

The present study investigated the impact of geno-
types within the noradrenergic system on the effects of
MDMA. We evaluated whether the SLC6A2 rs168924,
rs47958, rs1861647, rs2242446, and rs36029 SNPs influ-
ence the cardiovascular and subjective stimulant effects
of MDMA. MDMA-induced peak increases in the rate-
pressure product (RPP) and subjective ratings of stimu-
lation were considered the two primary endpoints.
Plasma concentrations of MDMA and NE were deter-
mined to exclude possible confounding effects on the
influence of genotype.
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Methods
Study design

This was a pooled analysis of eight Phase I double-blind,
placebo-controlled, crossover studies in healthy subjects that
used similar methods [7, 13, 21, 32-36]. These studies includ-
ed a total of 136 healthy subjects. Seven studies included 16
subjects each, for a total of 112 subjects, who received 125 mg
MDMA twice, once alone, and once after pretreatment with a
medication [7, 13, 21, 32-36]. An additional study included
24 subjects who received 125 mg MDMA once alone, place-
bo, or other treatments [36]. In the present analysis, only data
from the MDMA -alone and placebo sessions were used. In all
of the studies, the washout periods between single-dose ad-
ministrations of MDMA were at least 7 days to exclude carry-
over effects. The studies were all registered at ClinicalTrials.
gov (NCT00886886, NCT00990067, NCT01136278,
NCTO01270672, NCT01386177, NCT01465685,
NCTO01771874, and NCT01951508). All of the studies were
approved by the local ethics committee and Swiss Agency for
Therapeutic Products (Swissmedic). The studies were
conducted in accordance with the Declaration of Helsinki.
MDMA administration in healthy subjects was authorized
by the Swiss Federal Office for Public Health (BAG), Bern,
Switzerland. Informed consent was obtained from all of the
participants who were included in the studies. All of the
subjects were paid for their participation. Pharmacokinetic
and safety data from these studies have been reported
elsewhere [6, 9, 10]. In all studies, test sessions took place in
a quiet hospital research ward with no more than two research
subjects present per session. The participants were
comfortably lying in hospital beds and were mostly listening
to music and did not engage in physical activitiecs. MDMA
was given without food in the fasting state in the morning at 8:
00-9:00 a.m.. A small standardized lunch was served at 12:
00-1:00 p.m.

Subjects

A total of 136 healthy European/Caucasian subjects, 18—
44 years old (mean+ SD =24.8 +4 years), were recruited
from the University of Basel campus and participated in the
study. One genotyping sample was missing, three participants
did not give consent for genotyping, and eight subjects partic-
ipated twice, and only the first participation was included,
resulting in data from 124 subjects. The mean + SD body
weight was 68 = 10 kg (range 46-90 kg).

The exclusion criteria included a history of psychiatric dis-
orders, physical illness, a lifetime history of using illicit drugs
more than five times (with the exception of past cannabis use),
illicit drug use within the past 2 months, and illicit drug use
during the study, determined by urine tests that were
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conducted before the test sessions as reported in detail else-
where [13, 21, 32, 33]. Thirty-eight subjects had prior illicit
drug experiences (1-5 times), of which 16 subjects had pre-
viously used MDMA (1-2 times), 7 amphetamine or metham-
phetamine (1 time), 9 cocaine (1-3 times), 6 lysergic acid
diethylamide (1 time), and 11 psilocybin (1-4 times).

Study drug

(£)MDMA hydrochloride (Lipomed AG, Arlesheim,
Switzerland) was administered orally in a single dose of
125 mg, prepared as gelatin capsules (Bichsel Laboratories,
Interlaken, Switzerland). Similar amounts of MDMA are
found in ecstasy pills [37] and have been used in clinical
studies in patients [3, 4]. The doses were not adjusted for body
weight or sex. The dose per body weight (mean + SD) was 1.9
+0.3 mg/kg (1.7 + 0.2 mg/kg for men and 2.1 +0.3 mg/kg for
women, range 1.4-2.7 mg/kg).

Cardiovascular effects

Blood pressure and heart rate were assessed repeatedly before
and0,0.33,0.67,1,1.5,2,2.5,3,4, 5, and 6 h after MDMA or
placebo administration. Systolic and diastolic blood pressure
and heart rate were measured using an automatic oscillometric
device (OMRON Healthcare Europe NA, Hoofddorp,
Netherlands). The measurements were performed in duplicate
at an interval of 1 min and after a resting time of at least
10 min. The averages were calculated for the analysis. Mean
arterial pressure (MAP) was calculated as diastolic blood pres-
sure + (systolic blood pressure — diastolic blood pressure) / 3.
The RPP was calculated as systolic blood pressure x heart
rate and was considered the primary cardiovascular measure
that reflected overall cardiovascular stimulation.

Subjective effects

To assess subjective stimulation, a visual analog scale of
“stimulated” was presented as a 100-mm horizontal line (0—
100%), marked from “not at all” on the left to “extremely” on
the right [1]. The scale was administered before and 0, 0.33,
0.67, 1, 1.5, 2,25, 3,4, 5, and 6 h after MDMA or placebo
administration.

Plasma concentrations of MDMA and norepinephrine

Plasma levels of MDMA were determined before and 0.5, 1,
1.5, 2, 3, 4, and 6 h after drug administration [34]. Plasma
levels of NE were measured before and 2 h after drug admin-
istration as described previously [7, 38].

Pupillometry

Pupillometry was performed 1 h before and 0, 0.33, 0.66, 1,
1.5,2,2.5,3,4,5, and 6 h after MDMA or placebo adminis-
tration. Pupil function was measured under standardized dark-
light conditions using a hand-held PRL-200 infrared
pupillometer (NeurOptics, Irvine, CA) as reported previously
in detail [21]. Dark-adapted pupil diameter and minimal pupil
diameter after a light stimulus were assessed.

Genotyping

Genomic DNA was extracted from whole blood using the
QIAamp DNA Blood Mini Kit (Qiagen, Hombrechtikon,
Switzerland) and automated QIAcube system. Genotyping
was performed using commercial TagMan SNP genotyping
assays (LuBio Science, Lucerne, Switzerland) and the
TagMan Genotyping Master Mix. Fluorescence was detected
using the ViiA7 real-time PCR system. We assayed the fol-
lowing SLC6A2 SNPs: rs168924 (assay: C__ 581568 10),
151861647 (assay: C__ 1232469 30), rs47958 (0.39, assay:
C__ 3020083 _10), rs2242446 (assay: C_ 26354911 10),
rs36029 (C__ 1232432 10). We also assayed the following
ADRATA SNP: rs1048101 (assay: C__ 2696454 30).
However, due to inconsistency with the Hardy-Weinberg
equilibrium, we excluded the ADRA1A rs1048101 SNP from
further analysis. The rs1861647 genotype could not be deter-
mined in one subject.

Statistical analysis

The statistical analyses were performed using Statistica 12
software (StatSoft, Tulsa, OK, USA). For repeatedly mea-
sured data, peak effects (E,.x) and areas under the effect-
time curve (AUEC) from 0 to 6 h values were determined
for MDMA and placebo. Differences in E,,x and AUEC
values (MDMA-placebo) were then analyzed using one-way
analysis of variance (ANOVA), with genotype as the between-
group factor, followed by the Tukey post hoc test. The primary
analysis did not control for the multiple comparisons, but a
secondary analysis was conducted using Bonferroni correc-
tion for the five SNPs. To account for differences in plasma
concentrations of MDMA that were caused by differences in
body weight, dosing, or metabolizing enzymes [9, 10], the
area under the MDMA plasma concentration-time curve from
0 to 6 h (AUC) was included as a covariate in the ANOVAs,
and we report the corrected statistics. Additionally, moderat-
ing effects of sex were explored by adding sex as a between-
subjects factor in the ANOVAs. E,.x values were obtained
directly from the observed data, and AUC and AUEC curves
were calculated using the linear-log trapezoidal method in
Phoenix WinNonlin 6.4 (Certara, Princeton, NJ).
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Results

Effects of the SNPs on the maximum response (E.x) to
MDMA are shown in Table 1. Supplementary Table S1 shows
the data without adjustment for MDMA plasma concentra-
tions. Supplementary Table S2 shows effects of the SNPs on
the overall response to MDMA (AUEC values).

Genotyping

The distribution of the alleles and genotypes did not differ
from the distributions that were reported elsewhere in
Caucasian cohorts (Ensembl database release 88, Mar 2017).
The minor allele frequencies for rs168924, rs47958,
rs1861647, rs2242446, rs36029, and rs1048101 were G (29
[13%]), A (112 [45%]), A (79 [32%]), C (80 [33%]), G (100
[40%]), and G (107 [43%]), respectively. The tested genetic
variants were consistent with the Hardy-Weinberg equilibrium
(p>0.05) with the exception of rs1048101 (» =0.01).

Plasma concentrations of MDMA and norepinephrine

Plasma concentrations of MDMA and norepinephrine did not
differ between the different genotype groups (Table 1 and
Supplementary Table S1).

Subjective effects

None of the examined polymorphisms influenced subjective
stimulation that was induced by MDMA (Table 1,
Supplementary Tables S1 and S2).

Pupillary effects

None of the examined polymorphisms influenced the
MDMA-induced change in pupillary size before and after
light stimulus (Table 1 and Supplementary Tables S1 and S2).

Cardiovascular effects

The effects of the polymorphisms on elevations of MAP, heart
rate, and RPP in response to MDMA (adjusted for differences
in plasma MDMA concentrations) are shown in Table 1 and
Fig. 1. The rs1861647 SNP located in SLC6A?2 significantly
altered the elevations of heart rate and RPP after MDMA
administration. The effect on the heart rate remained signifi-
cant after Bonferroni correction for multiple testing (p < 0.05).
Subjects with the GG genotype had significantly higher ele-
vations of heart rate and RPP after MDMA administration
than subjects with the AG genotype. When we combined the
AA and AG genotype groups, subjects with the GG genotype
presented higher elevations of heart rate and RPP than carriers
of the minor A allele (£ ,120=9.79, p <0.01 and Fy 150 ="7.53,
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p<0.01, respectively). These effects remained significant af-
ter Bonferroni correction for multiple testing (p <0.02 and
p <0.04, respectively).

The 152242446 SNP significantly moderated the elevation
of RPP after MDMA administration, which was attributable to
significant moderating effects on MDMA-induced changes in
MAP and heart rate. The CC genotype presented elevations of
heart rate, MAP, and RPP after MDMA administration com-
pared with the TT genotype. When we combined the
1s2242446 CT and CC genotype groups, subjects with the
TT genotype presented lower elevations of heart rate and
RPP than carriers of the C allele (15, =7.81, p<0.01 and
F 151 =5.64, p<0.05, respectively). The difference between
the genotype groups and the combined groups (TT and CT/
CC) in the effects of MDMA on heart rate remained signifi-
cant after Bonferroni correction for multiple testing (p < 0.04
and p < 0.04, respectively).

Significant main effects of the rs36029 SNP on MDMA-
induced elevations of MAP and RPP were found. When we
combined the rs36029 AG and GG genotype groups, subjects
with the AA genotype presented higher elevations of MAP,
heart rate, and RPP than carriers of the G allele (<} 5, =
9.870, p< 0.01; F1!121 =4.24, p< 0.05; and F1’121 =6.91,
p<0.01, respectively). The difference in the effects of
MDMA on MAP between the genotype groups and difference
in the effects of MDMA on MAP and RPP between the com-
bined groups (AA and AG/GG) remained significant after
Bonferroni correction for multiple testing (p <0.05, p <0.02,
and p < 0.05, respectively).

The effects of the rs1861647, rs2242446, and rs36029
SNPs on the peak response to MDMA were similar when
the analyses were performed without using MDMA plasma
concentrations as covariate in the ANOVAs (Supplementary
Table S1). However, none of the SNPs altered the overall
cardiovascular response to MDMA as expressed by the
AUEC values (Supplementary Table S2) with the exception
of the effect of the rs36029 SNP on the MAP.

The rs168924 and rs47958 SNPs did not alter the effects of
MDMA. When we applied Bonferroni correction for multiple
testing (for five SNPs), none of the statistical findings
remained significant in the additive genotype group models
(Table 1) with the exception of the effect of the rs2242446
SNP on heart rate, and sex did not alter the influence of the
SNPs on the response to MDMA (Supplementary Table S3).

Discussion

The present study investigated the effect of interindividual
differences in the SLC6A2 gene on the cardiovascular and
subjective stimulant response to MDMA. None of the inves-
tigated SNPs moderated the subjective stimulant effects of
MDMA. Three SNPs of the SLC6A2 gene (rs1861647,
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Table 1  Effects of the SLC6A2 SNPs rs168924, rs47958, rs1861647, 152242446, and rs36029 on the maximum response to MDMA (mean + SD and

statistics)
SNP rs168924 Number of AA AG GG F p value p value
genotypes (Bonferroni corr.)
N (%) 95 (77) 26 (21) 3(2)
Female, N (%) 52 (55) 12 (46) 0 (0)
MDMA plasma concentration AUC (ng/ml) N 95,26,3  956+201 957 +226 784126 1.03 NS NS
Norepinephrine Aplasma concentration N68, 14,2 05+0.6 0.8+0.7 05+1.0 0.73 NS NS
at 2 h (pg/ml)
Subjective stimulation, AE ., (%) N95,26,3 63+33 72+33 41+42 1.07 NS NS
Mean arterial pressure, AE,.x, (mmHg) N95,26,3 18+10 20+9 13£15 0.66 NS NS
Heart rate, AE . (bpm) NO95,26,3 19=+15 18+ 15 17+£17 0.04 NS NS
Rate pressure product, AE, ., (mmHg/min) N 95,26,3  4678+2976 4869+3093 3937+3316 0.05 NS NS
Pupil size, AE;,x (mm) N93,25,3 09+0.5 1.0+04 0.7+0.4 0.62 NS NS
Pupil size after light, AE,x (mm) N 93,253 2.0+0.7 2.1+0.6 1.5+£0.6 1.04 NS NS
SNP rs47958 Number of  AA AC CcC F p value p value
genotypes (Bonferroni corr.)
N (%) 27 (22) 58 (47) 3931
Female, N (%) 13 (48) 29 (50) 22 (56)
MDMA plasma concentration AUC (ng/ml) N 27,58,39 941+177 954+234 957+181 0.06 NS NS
Norepinephrine Aplasma concentration N18,41,25 04+0.8 05+0.7 0.6+0.6 0.29 NS NS
at 2 h (pg/ml)
Subjective stimulation, AE ., (%) N 27,58,39 62+34 64+34 67+32 0.13 NS NS
Mean arterial pressure, AE,,x (mmHg) N 27,58,39 21+10 17+£8 18£11 1.99 NS NS
Heart rate, AE,x (bpm) N27,58,39 21+14 20+16 14+14 241 NS NS
Rate pressure product, AE ., (mmHg/min) N 27, 58,39 5391+2654 4882+3127  3950+2898 236 NS NS
Pupil size, AE;,x (mm) N 27,57,37 0.8+0.3 1.0+£04 0.9+0.6 1.48 NS NS
Pupil size after light, AE . (mm) N27,57,37 19+0.5 2.1+06 1.9+1.0 0.72 NS NS
SNP rs1861647 Number of  AA AG GG F p value p value
genotypes (Bonferroni corr.)
N (%) 12 (10) 55 (45) 56 (46)
Female, N (%) 6 (50) 28 (51) 29 (52)
MDMA plasma concentration AUC (ng/ml) N 12, 55,56 917+172 943+213 966 =205 036 NS NS
Norepinephrine Aplasma concentration N6,39,38 03+0.6 0.6+0.6 0.6+0.8 0.52 NS NS
at 2 h (pg/ml)
Subjective stimulation, AE ., (%) N 12, 55,56 73+29 62+32 64436 0.79 NS NS
Mean arterial pressure, AE, ., (mmHg) N 12,55,56 17+11 17+9 19+£10 042 NS NS
Heart rate, AE,,,x (bpm) N 12,5556 13+11 15+ 145 23+15 490 0.009 0.045
Rate pressure product, AE, ., (mmHg/min) N 12, 55,56 402542235 4018+3099* 5527+2851 374 0.027 NS
Pupil size, AE,;,x (mm) N 12,53,55 0.8+0.3 09+0.5 09+0.4 0.37 NS NS
Pupil size after light, AE,,.x (mm) N 12,53,55 2.1+0.6 1.9+0.8 2.1£0.6 0.94 NS NS
SNP rs2242446 Number of CC CT TT F p value p value
genotypes (Bonferroni corr.)
N (%) 15 (12) 50 (40) 59 (48)
Female, N (%) 6 (40) 26 (52) 32 (54)
MDMA plasma concentration AUC (ng/ml) N 15, 50,59 956+174 942 +217 960 =205 0.09 NS NS
Norepinephrine Aplasma concentration N 10, 36,38 0.3+0.8 0.6+0.7 0.6+0.6 0.55 NS NS
at 2 h (pg/ml)
Subjective stimulation, AE ., (%) N 15,50,59 72+33 65+31 61+36 0.77 NS NS
Mean arterial pressure, AE,,x (mmHg) N 15,50,59 24+11 17 + &#** 17 £ 10%%*%* 3.61 0.030 NS
Heart rate, AE,,,x (bpm) N 15,50,59 26=+18 2116 14 & 12%%* 5.08 0.008 0.038
Rate pressure product, AE,, (mmHg/min) N 15, 50,59 6205+2997 5042+3191 4027 +£2642*** 435 0.015 NS
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Table 1 (continued)

N 15, 48, 58
N 15, 48, 58

0.7+0.2
1.9+0.5

Pupil size, AE,;,x (mm)
Pupil size after light, AE . (mm)

SNP rs36029 Number of  AA
genotypes
N (%) 46 (37)
Female, N (%) 19 (41)
MDMA plasma concentration AUC (ng/ml) N 46, 56,22 911+180
Norepinephrine Aplasma concentration N33,37,14 0.7+£0.7
at 2 h (pg/ml)
Subjective stimulation, AE, ., (%) N 46, 56,22 65+33
Mean arterial pressure, AE ., (mmHg) N 46,56,22 20+10
Heart rate, AE, . (bpm) N 46,56,22 21+16
Rate pressure product, AE, .« (mmHg/min) N 46, 56,22 5419+2974
Pupil size, AE,x (mm) N 46,54,21 09+0.3
Pupil size after light, AE,,, (mm) N46,54,21 19405

09+04 09+0.5 1.81 NS NS
1.9+0.5 2.1£0.9 097 NS NS
AG GG F p value p value
(Bonferroni corr.)
56 (45) 22 (18)
32 (57) 13 (59)
972+212 989+230 1.58 NS NS
0.4+0.7 05+0.5 2.57 NS NS
64+33 62+38 0.50 NS NS
1610 17+9 482 0.010 0.049
17+15 16+14 2.12 NS NS
4317+£3067 4169 +2608 347 0.034 NS
09+04 0.8+0.6 0.62 NS NS
2.1+0.7 1.9+1.0 1.25 NS NS

F and p values are from ANCOVAs (except for the MDMA concentrations) with MDMA AUC as covariate to account for differences in MDMA

concentrations

N number of subjects, SNP single nucleotide polymorphism, £,,,, peak effect, AUC area under the concentration-time curve from 0 to 6 h, NS not

significant, A values are change scores from placebo (mdma-placebo)

*p <0.05; **p < 0.01 compared to rs1861647 GG; ***p < 0.05 compared to rs2242446 CC

1s2242446, and rs36029) influenced the cardiovascular re-
sponse to MDMA. However, the effect sizes for these genetic
variants were rather small and not very robust. In fact,
Bonferroni correction of the data for the five SNPs resulted
in the loss of most statistical significance. Thus, although the
NET has been implicated in the stimulant-type response to
MDMA [7], the genetic variants of the NET gene (SLC6A2)
that were evaluated herein only minimally influenced the re-
sponse to MDMA.

To our knowledge, the present study was the first to
explore the role of SNPs of the SLC6A2 gene in the re-
sponse to MDMA. Thus, no comparisons can be made
with other studies that tested MDMA. In a previous study,
C-allele carriers of the SLC6A2 152242446 SNP presented
higher blood pressure after physical exercise [28], which
is consistent with the greater blood pressure response in
the present study following the administration of a phar-
macological stimulant. Additionally, plasma NE concen-
trations after exercise differed between different
152242446 genotypes [28]. In the present study, however,
no differences in NE levels after MDMA administration
were found between genotype groups. The effects of the
SLC6A2 rs1861647 and rs47958 SNPs on the response to
D-amphetamine have previously been reported [26, 27,
39]. Initial studies showed that subjects with the AA ge-
notype of rs1861647 had higher vigor scores after D-am-
phetamine administration [26]. Additionally, subjects with
the CC genotype of rs47958 had higher positive mood
scores [27]. However, a subsequent larger replication
study found no influence of the different rs1861647 and
rs47958 genotypes on the response to D-amphetamine
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[39] as similarly documented in the present study for the
subjective response to MDMA. However, the effects of
SLC6A2 SNPs on the cardiovascular response to D-am-
phetamine or MDMA have not been studied previously;
therefore, the role of the rs1861647 SNP in the cardiovas-
cular stimulant effects of MDMA that was identified in
the present study needs further investigation.

Additionally, none of the NET genotypes moderated the
MDMA-induced increase in pupil size [21].

The present study has several limitations. First, the sample
size was relatively small when considering the mostly small
effect sizes for the influence of genetic variants on the MDMA
response. Additionally, significant findings in the additive ge-
notype models were mostly lost after Bonferroni correction.
Confirmation in studies with larger samples is needed.
However, we unlikely missed very large effect sizes for the
influence of these genetic variants or possible haplotypes.

Fig. 1 Effects of common genetic variants of the SLC6A2 gene P>
(rs168924, rs47958, rs1861647, rs2242446, and rs36029) on
cardiovascular stimulation after MDMA administration in 124 healthy
subjects. Homozygous carriers of SLC6A2 rs1861647 G allele
presented higher elevations of heart rate and rate-pressure product after
MDMA than subjects with one G allele. Subjects with the CC genotype
of the SLC6A2 152242446 SNP presented higher elevations of heart rate,
mean arterial pressure, and rate-pressure product after MDMA
administration compared with the TT genotype group. The SLC6A2
rs168924 and rs47958 SNPs did not significantly alter the response to
MDMA. The corresponding maximal effects and statistics are shown in
Table 1. The data are expressed as mean + SEM. MDMA or placebo was
administered at time =0
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Second, the study was conducted in mostly young and healthy
volunteers. Therefore, the findings cannot necessarily be gen-
eralized to people with hypertension or other cardiovascular
risk factors. Third, SNPs of the genes of other targets of
MDMA, such as the 5-HT transporter [13, 18], may also be
involved but were not tested in the present study. However, we
considered the moderating effects of known genetic variants
that influence the metabolism of MDMA [9, 10] by account-
ing for interindividual differences in plasma MDMA
concentrations.

In conclusion, the present study investigated the influence
of genetic polymorphisms of the SLC6A2 gene on the re-
sponse to MDMA. Three SNPs of the SLC6A2 gene
(rs2242446, rs1861647, and rs36029) weakly altered the car-
diovascular effects of MDMA in healthy subjects. It can be
assumed that these genetic polymorphisms may play a minor
role in adverse cardiovascular events when MDMA is used
recreationally or therapeutically.
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