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Abstract

Background: Duchenne muscular dystrophy caused by a mutation in the X-linked dystrophin gene induces
metabolic and structural disorders in the brain. A lack of dystrophin in brain structures is involved in impaired
cognitive function. Prosaposin (PS), a neurotrophic factor, is abundant in the choroid plexus and various brain
regions. We investigated whether PS serves as a link between dystrophin loss and gross and/or ultrastructural brain
abnormalities.

Methodology/Principal Findings: The distribution of PS in the brains of juvenile and adult mdx mice was
investigated by immunochemistry, Western blotting, and in situ hybridization. Immunochemistry revealed lower levels
of PS in the cytoplasm of neurons of the cerebral cortex, hippocampus, cerebellum, and choroid plexus in mdx mice.
Western blotting confirmed that PS levels were lower in these brain regions in both juveniles and adults. Even with
low PS production in the choroids plexus, there was no significant PS decrease in cerebrospinal fluid (CSF). In situ
hybridization revealed that the primary form of PS mRNA in both normal and mdx mice was Pro+9, a secretory-type
PS, and the hybridization signals for Pro+9 in the above-mentioned brain regions were weaker in mdx mice than in
normal mice. We also investigated mitogen-activated protein kinase signalling. Stronger activation of ERK1/2 was
observed in mdx mice, ERK1/2 activity was positively correlated with PS activity, and exogenous PS18 stimulated
both p-ERK1/2 and PS in SH-SY5Y cells.

Conclusions/Significance: Low levels of PS and its receptors suggest the participation of PS in some pathological
changes in the brains of mdx mice.
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Introduction

Prosaposin (PS) is a multifunctional protein involved in a
variety of biological processes, where it is either transported to
lysosomes or secreted into the extracellular space [1-3]. In
lysosomes, PS is proteolytically processed to generate four
sphingolipid activator proteins, known as saposins A to D,
which are required for hydrolysis of sphingolipids by several
lysosomal exohydrolases. Many functions have been attributed
to secreted PS, which is reportedly a trophic factor in the
nervous and reproductive systems, being present in milk and
cerebrospinal and seminal fluids [4-8].

PLOS ONE | www.plosone.org

The PS gene contains 15 exons. It is transcribed into several
mRNAs, resulting from alternative splicing of the 9-bp exon 8
[9]. In situ hybridization has shown abundant PS expression in
the epithelial cells of the choroid plexus and various grey
matter areas, including the cortex and hippocampus [10,11].
Besides its role as the precursor protein of saposins, PS is also
a neurotrophic factor [12] capable of inducing neural
differentiation and preventing cell death. A neurotrophic
sequence has been identified in 14 amino acids located in the
N-terminal part of saposin C [13] and has been attributed to PS
neurotrophic activity [14,15]. Moreover, a PS-derived 18-mer
peptide attenuates dopaminergic neurotoxicity by
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Figure 1. PS in the cerebral cortex of C57BL/10 and mdx mice, as detected by immunochemistry and Western blotting. a—
d: Immunoreactivity is present in the somas and primary dendrites of most neurons in the cerebral cortex in juvenile (a, b) and adult
(c, d) C57BL/10 and mdx mice. Bars = 20 ym. e: Western blot analysis showing PS as a 65-kDa protein in the hippocampus of
juvenile and adult C57BL/10 and mdx mice. f: Relative PS protein levels in mdx and control mice at 4 and 12 weeks, as determined
by densitometry. Densitometric values were normalized using GAPDH as an internal control. Results were analyzed using Fisher’s

post hoc test (**p < 0.01).
doi: 10.1371/journal.pone.0080032.g001

downregulating c-Jun, BAX, and caspase-3, and upregulating
Bcl-2 [4].

Duchene muscular dystrophy (DMD) is a fatal genetic
disease caused by mutations in the DMD gene, leading to
dystrophin deficiency [16,17]. DMD is caused by a mutation in
the X-linked dystrophin gene [18]; it is a recessive genetic
disease characterised by alterations in the neuromuscular
system, and metabolic and structural disorders of the central
nervous system (CNS), which cause mental retardation and
metabolic damage [19]. While muscle wasting is prominent, the
CNS is also affected in DMD, with non-progressive intellectual
and/or cognitive impairment being observed in about one-third
of patients with DMD [20-22].

The dystrophin-deficient mdx mouse is a model of human
DMD [23]. In the brain, the cerebral cortex, cerebellum and
areas CA1-CA3 of the hippocampus are regions in which
dystrophin is known to be expressed [24-26]. Brain dystrophin
is enriched in the postsynaptic densities of pyramidal neurons,
specialised regions of the subsynaptic cytoskeletal network that
are critical for synaptic transmission and plasticity. Loss of
dystrophin, together with a consequent abnormality of the
dystrophin-associated protein complex (DAPC), gives rise to a
complex syndrome of progressive skeletal and cardiac
myopathy and mental retardation. Recently, we reported low
levels of PS in muscles in mdx mice compared with C57BL/10
mice [7].

Whether PS is a link between dystrophin loss and gross
and/or ultrastructural brain abnormalities remains unclear. In
this study, we examined the expression of PS at the protein
and transcriptional levels in the CNS of mdx mouse by
immunochemistry, Western blotting and in situ hybridization.
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Results

PS protein expression in mdx and C57BL/10 mice

To investigate PS protein expression in the mouse cerebral
cortex, hippocampus and cerebellum, immunohistochemical
and Western blot analyses were performed. PS-like
immunoreactivity was observed in different brain regions in
juvenile and adult mice. The PS staining exhibited a granular
pattern in the cytoplasm of neurons (Figures 1a—d, 2a-l, 3a—d).
Western blot analysis was performed to investigate PS protein
expression in mdx and C57BL/10 mice aged 4 and 12 weeks.
Since the anti-PS antibody was obtained from the intermediate
sequence between saposin C and D, it only reacts with PS and
not with saposins in immunochemistry and Western blotting. As
expected, PS protein was detected as a band of 65 kDa
(Figures 1e, 2m, 3e).

In the cerebral cortex of C57BL/10 mice, PS
immunoreactivity was predominantly present in the somas and
primary dendrites of most neurons in animals aged 4 and 12
weeks (Figure 1a—d). In the mdx mice, the PS staining pattern
was similar, but the staining in the cortex was weaker in mdx
mice aged 4 and 12 weeks (Figure 1b, d). This was confirmed
by Western blotting (Figure 1e). Densitometry of PS-
immunoreactive bands showed that PS levels in the cerebral
cortex were significantly lower in mdx mice than in control mice
at 4 weeks (0.56 + 0.09 vs. 0.66 = 0.11, p < 0.01; Figure 1f)
and 12 weeks (0.63 £ 0.10 vs. 0.75 £ 0.11, p < 0.01; Figure 1f).

In the CA1, CA3 and DG areas of the hippocampus, PS
grains were primarily observed in the cytoplasm (Figure 2a—l)
and in some big neurites extending from PS-positive neuronal
somata in the CA1 and CA3 areas (Figure 2a, b, d, e, g, h, j, k)
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Figure 2. PS in the hippocampus of C57BL/10 and mdx mice, as detected by immunochemistry and Western blotting. a—I:
In the CA1, CA3 and DG areas of the hippocampus, PS immunoreactivity was found in the somas and primary dendrites in both
juvenile (a—f) and adult (g—1) C57BL/10 and mdx mice. Bars = 20 ym. m: Western blot analysis showing PS as a 65-kDa protein in
the hippocampus of juvenile and adult C57BL/10 and mdx mice. n: Relative protein levels, as determined by densitometry.

Densitometric values were normalized using GAPDH as an internal control. Results were analyzed using Fisher’s post hoc test (**p
<0.01).

doi: 10.1371/journal.pone.0080032.g002
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Figure 3. PS in the cerebellum of C57BL/10 and mdx mice, as detected by immunochemistry and Western blotting. a—d:
Light micrographs showing PS immunoreactivity in Purkinje and granule cell bodies in juvenile (a, b) and adult (c, d) C57BL/10 and
mdx mice. M, molecular layer; P, Purkinje cell layer; G, granule cell layer. Bars = 20 uym. e: Western blot analysis showing PS as a
65-kDa protein in the cerebellum of juvenile and adult C57BL/10 and mdx mice. Densitometric analysis showed that PS levels were
substantially lower in mdx mice than in control mice both at 4 and 12 weeks (f). The results were analyzed by Fisher’s post hoc test
(*p <0.01).

doi: 10.1371/journal.pone.0080032.g003

in C57BL/10 and mdx mice aged 4 and 12 weeks. PS mice. In the hippocampus, PS expression was lower in mdx
immunoreactivity was weaker in mdx mice than in C57BL/10 mice than in C57BL/10 mice at both 4 weeks (0.39 + 0.03 vs.
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Figure 4. PS mRNA expression in the cerebral cortex of C57BL/10 and mdx mice at 4 weeks, as shown by in situ
hybridization with [**S]-labelled antisense oligonucleotide probes. b, f: Detection of total mMRNA with AS1. ¢, g: Detection of
exon 8-containing PS mRNA with AS3. d, h: Detection of exon 8-excluded PS mRNA with AS4. a, e: the sense probe SS1 (used as
a control). Positive reactions (labelled with concentrated silver grains) can be identified in the neurons of control and mdx mice. The
hybridization signals for total mMRNA (AS1) and Pro+9 mRNA (AS3) were weaker in mdx mice than in C57BL/10 mice. No obvious
reactivity was observed for AS4 and SS1. Results were analyzed by ANOVA followed by Fisher’s post hoc test (*p < 0.05). Bars =

10 uym.
doi: 10.1371/journal.pone.0080032.g004

0.50 + 0.02, p < 0.05) and 12 weeks (0.50 + 0.09 vs. 0.58 +
0.08, p < 0.05; Figure 2m, n).

In the cerebellum, PS immunoreactivity was predominantly
observed in the somas of Purkinje neurons. A few PS-positive
neuronal somas were seen in the molecular layer. In the
granule cell layer, PS immunoreactivity was observed in the
cytoplasm of granule cells (Figure 3a—d). In mdx mice, PS
immunoreactivity was much weaker in the Purkinje cell layer
and granule cell layer, but not in the molecular layer, compared
with control mice. Similar results were obtained by Western
blotting. PS levels were significantly lower in mdx mice than in
control mice at 4 weeks (0.65 £+ 0.09 vs. 0.79 £ 0.10, p < 0.01)
and 12 weeks (0.70 + 0.09 vs. 0.85 + 0.11, p < 0.01; Figure 3e,
f).

PS mRNA expression in mdx and C57BL/10 mice

To determine the spatial expression pattern of PS isoforms
at the single-cell level, we analyzed brain sections from juvenile
mice (age 4 weeks) by in situ hybridization with oligonucleotide
probes encoding PS sequences. The analysis revealed a
similar distribution pattern (Figures 4-6). Numerous labelled
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neurons were observed in various brain regions, including the
cerebral cortex, hippocampus and cerebellum, in both mdx and
normal mice. To determine whether PS mRNA expression was
different between mdx and C57BL/10 mice, we measured the
intensities of hybridization signals in brain sections using
ImagedJ software, and analyzed the data by Fisher’s post hoc
test (Figures 4i, 5m-o, 6i—k). In the sections labelled with one
of the four probes, the signals showed different intensities. The
control group, labelled with the sense probe SS1 showed weak
signals (Figure 4a, e). The intensities of the hybridization
signals for Pro+0 (AS4) were also weaker (Figure 4d, h). In the
cerebral cortex, the hybridization signals for total mMRNA (AS1,
Pro+9 and Pro+0) for mdx mice (1.23 + 0.17) were weaker than
those for C57BL/10 mice (1.54 + 0.26; Figure 4b, f, i). The
hybridization signal for Pro+9 mRNA (AS3, encoding secretory-
type PS) was also weaker in mdx mice than in C57BL/10 mice
(1.13 £ 0.17 vs. 1.56 + 0.20; Figure 4c, g, i). Statistically
significant decreases in total and Pro+9 signals were detected
in mdx mice (Figure 4i), indicating that the decrease in PS
levels in mdx mice is mainly due to a decrease in Pro+9 mRNA
expression.
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Figure 5. PS mRNA expression in the hippocampal regions of C57BL/10 and mdx mice at 4 weeks. a1-d2: CA1. e1-h2: CA3.
i1-l 2: Dentate gyrus (DG). Total PS mRNA expression was detected by in situ hybridization using AS1, and the signals in the
hippocampal regions CA1, CA3 and DG were weaker in mdx mice than in C57BL/10 mice (b1, b2, f1, 2, j1, j2). Pro+9 mRNA
expression in the hippocampal regions CA1 (¢1, ¢2), CA3 (g1, g2) and DG (k1, k2) decreased in mdx mice. The intensity of the
hybridization signal for Pro+0 was weak. The control group labelled with the sense probe SS1 showed no specific signals. m, n, o:
Results were analyzed by ANOVA followed by Fisher's post hoc test (*p < 0.05, **p < 0.01). Bars = 10 ym.

doi: 10.1371/journal.pone.0080032.g005

Also in the hippocampal CA1, CA3 and DG areas in mdx and
C57BL/10 mice, AS1 (Pro+9 and Pro+0) and AS3 (Pro+9)
showed strong signals compared with SS1 (control) and AS4
(Pro+0; Figure 5). In CA1, the intensity of AS1 was significantly
lower in mdx mice than in C57BL/10 mice (1.32 + 0.09 vs. 1.62
+ 0.12, p < 0.01; Figure 5b1, b2, m). Moreover, the distribution
pattern of AS3 in mdx mice was similar to that of AS1, and its
intensity was lower in mdx mice compared with C57BL/10 mice
(1.45 £ 0.07 vs. 1.90 £ 0.10, p < 0.01; Figure 5c1, c2, m). In
CA3, AS1 was lower in mdx mice compared with C57BL/10
mice (1.51 £ 0.17 vs. 2.01 + 0.13, p < 0.05; Figure 5f1, f2, n)
and AS3 was also lower in mdx mice than in C57BL/10 mice
(1.56 £ 0.16 vs. 1.98 £ 0.13, p < 0.05; Figure 5g1, g2, n). In DG
areas, AS1 and AS3 were also lower in mdx mice than in
C57BL/10 mice (AS1: 1.79 £ 0.07 vs. 2.29 + 0.13, p < 0.01;
Figure 5j1, j2; AS3: 1.75 £ 0.04 vs. 243 + 0.03, p < 0 .01,
Figure 5k1, k2, o). AS4 (Pro+0) showed very weak reactions
(Figure 5d1, d2, h1, h2, 1 1, 12), similar to those of the control
group labelled with the sense probe SS1 (Figure 5a1, a2, e,
e2,i1,i2).

In the Purkinje cell layer of the cerebellum, the total PS
mRNA (AS1: Pro+9 and Pro+0) and AS3 (Pro+9) signals were
lower in mdx mice than in C57BL/10 mice (AS1: 2.03 + 0.22 vs.
2.45 + 0.26; AS3: 1.94 + 0.15 vs. 2.62 £+ 0.22; Figure 6b, c, f, g,
j)- In the granular cell layer, the intensity of AS1 was lower in

PLOS ONE | www.plosone.org

mdx mice than in C57BL/10 mice (0.92 + 0.06 vs. 1.22 + 0.07,
p < 0.05; Figure 6b, c, j), and that of AS3 was considerably
lower in mdx mice than in C57BL/10 mice (1.04 £+ 0.02 vs. 1.55
+ 0.11, p < 0.01; Figure 6f, g, k). In the molecular layer, both
AS1 and AS3 showed no big differences in average intensity
between mdx and C57BL/10 mice (p > 0.05; Figure 6b, c, f, g,
i) when scanned at 400x magnification. However, sections
observed under a higher magnification showed lower
expression of AS1 and AS3 in the interneurons in the
molecular layer in mdx mice than in C57BL/10 mice (Figure 6l).
AS4 showed very weak reactions (Figure 6d, h), similar to
those in the control group labelled with SS1 (Figure 6a, e).

MAP kinase activity in mdx and C57BL/10 mice
Activation of the MAPK pathway by PS, saposin C or TX14A
has been reported in neuronal- or glial-derived cells such as
PC12, Schwann and neuroblastoma cells [27,28]. To determine
whether MAPK signalling is related to PS in mdx neurons, we
analyzed three components (p38 MAP kinase, ERK1/2 and
JNK1/2) of the MAP kinase cascades by Western blotting.
ERK1 and ERK2 were dually phosphorylated at T202/Y204
and T185/Y187, respectively, and were detected as double
bands at 44 kDa (p-ERK1) and 42 kDa (p-ERK2). Western
blotting showed that the level of p-ERK1/2 in the brain was
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Figure 6. PS mRNA expression in the cerebellum in C57BL/10 (a—d) and mdx mice (e-h) at 4 weeks. b, f: Detection of total
mRNA with AS1. ¢, g: Detection of exon 8-containing PS mRNA with AS3. d, h: Detection of exon 8-excluded PS mRNA with AS4.
a, e: the sense probe SS1 (used as a control). In the Purkinje cell layer (j) and granular cell layer (k) of the cerebellum, the total PS
mRNA (AS1) and Pro+9 mRNA (AS3) levels were lower in mdx mice than in C57BL/10 mice. (i) In the molecular cell layer, no
differences were observed in total PS mRNA and Pro+9 mRNA levels between mdx and C57BL/10 mice. (I) At higher magnification,
the expression of PS in interneurons was detected. AS1 and AS3 showed intense signals in C57BL/10 mice, but weak ones in mdx
mice. No obvious signals were detected for AS4 and SS1. Results were analyzed by ANOVA followed by Fisher’s post hoc test and

are presented as a histogram (*p < 0.05). Bars = 50 ym.
doi: 10.1371/journal.pone.0080032.g006

higher in mdx mice (ages 4 and 12 weeks) than in C57BL/10
mice of the same age (Figure 7a—c). No differences in the
phosphorylation levels of p-JNK1/2 or p38 MAPK (p-p38) were
observed between juvenile/adult mdx mice and C57BL/10 mice
of the same age (Figure 7a—c). No changes in the core levels
(non-phosphorylated forms) of these proteins were detected.
All of the data obtained by Western blotting are summarised
as histograms in Figure 8. In the cortex, the level of p-ERK1
increased about 1.1-fold in juvenile mdx mice and about 1.2-
fold in adult mdx mice compared with C57BL/10 mice of the
same age. The p-ERK2 level increased about 1.05- and 1.08-
fold in juvenile and adult mdx mice, respectively, compared
with C57BL/10 mice of the same age (Figure 8a). In the
hippocampus, the level of p-ERK1 increased about 1.22-fold in
juvenile mdx mice and about 1.16-fold in adult mdx mice
compared with C57BL/10 mice of the same age (Figure 8b).
The p-ERK2 level increased about 1.22- and 1.06-fold in
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juvenile and adult mdx mice, respectively, compared with
C57BL/10 mice of the same age (Figure 8b). In the cerebellum,
the level of p-ERK1 increased about 1.36- and 1.1-fold in
juvenile and adult mdx mice, respectively, compared with
C57BL/10 mice of the same age (Figure 8c); the p-ERK2 level
increased about 1.04- and 1.08-fold in juvenile and adult of
mdx mice, respectively, compared with C57BL/10 mice of the
same age (Figure 8c). The level of p-ERK1 and p-ERK2 was
also analyzed in the choroid plexus. The p-ERK1 level
increased 1.22-fold in juvenile mdx mice and 1.16-fold in adult
mdx mice compared to C57BL/10 mice of the same age, while
the p-ERK2 level increased 1.32- and 1.33-fold in juvenile and
adult mdx mice, respectively, compared to C57BL/10 mice of
the same age (Figure 9n-0).
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areas were higher in mdx mice than in C57BL/10 mice at both 4 and 12 weeks (a—c). No differences in the phosphorylation levels of
JNK1 or JNK2 between mdx and C57BL/10 mice were observed (d—f). The level of phosphorylated p38 MAPK (p-p38) also showed
no difference between mdx and C57BL/10 mice (g—i). All values are the mean = SD. *p < 0.05, **p < 0.01.

doi: 10.1371/journal.pone.0080032.g008

Secreted PS levels in mdx and C57BL/10 mice

Most CSF is produced in the brain by modified ependymal
cells in the choroid plexus and the remainder is formed around
blood vessels and along ventricular walls. PS exists as a
secretory protein in CSF and its expression is concentrated in
epithelial cells of the choroid plexus [1,8,29]. To investigate the
secreted levels of PS in our study, PS expression in the
choroid plexus and CSF were analyzed by

PLOS ONE | www.plosone.org

immunohistochemistry, Western blotting, and in situ
hybridization.
In  the choroid plexus of C57BL/10 mice, PS

immunoreactivity was predominantly present in the somas
ependymal cells in animals aged 4 and 12 weeks (Figure 9a—
d). The PS staining pattern was similar but less intense in mdx
mice of both ages (Figure 9b, d). This was confirmed by in situ
hybridization (Figure 9e-h). The hybridization signals for total
mRNA (AS1, Pro+9 and Pro+0) were weaker in mdx mice than
in C57BL/10 mice (1.02 + 0.09 vs. 1.27 + 0.23; Figure 9i). The
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doi: 10.1371/journal.pone.0080032.g009

same was true for Pro+9 mRNA (AS3, encoding secretory-type
PS; 1.95+0.16 vs. 2.48 £ 0.19; Figure 9h).

Densitometry of PS-immunoreactive bands showed that PS
levels were significantly lower in the choroid plexus of mdx
mice than control mice at 4 weeks (0.34 + 0.04 vs. 0.53 + 0.15,
p < 0.05) and 12 weeks (0.29 + 0.08 vs. 0.39 + 0.11, p < 0.05;
Figure 9g-k). However, there were no differences in the PS
level in CSF between mdx mice and C57BL/10 mice of either
age (Figure 9I-m).

GPR37 and GPR37L1 expressions in mdx and
C57BL/10 mice

A recent report identified PS and prosaptide as ligands for
the orphan receptors GPR37 and GPR37L1 [30] and showed
that GPR37 and GPR37L1 mediate protective actions of
secreted PS. In our study, the expression of these receptors
was detected in the cortex, hippocampus, cerebellum, and
choroid plexus of mdx and C57BL/10 mice by Western blot
(Figure 10a-b, e-f). Densitometry of immunoreactive bands
showed stronger signals for GPR37L1 than GPR37 in brain
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tissues (Figure 10a-b, e-f). In the cerebral cortex, GPR37
expression was significantly lower in mdx mice than in control
mice at 4 weeks (0.59 + 0.06 vs. 0.76 + 0.05, p < 0.05; Figure
10c) and 12 weeks (0.45 + 0.11 vs. 0.66 £ 0.02, p < 0.05;
Figure 10c), as was GPR37L1 expression at 4 weeks (1.19 +
0.09 vs. 1.35 £ 0.10, p < 0.05; Figure 10c) and 12 weeks (0.96
+ 0.04 vs. 1.24 + 0.09, p < 0.05; Figure 10c). In the
hippocampus, GPR37 expression was lower in mdx mice than
in C57BL/10 mice at both 4 weeks (0.5 + 0.07 vs. 0.72 £ 0.03,
p < 0.05; Figure 10d) and 12 weeks (0.43 + 0.04 vs. 0.56 +
0.12, p < 0.05; Figure 10d). GPR37L1 expression was
significantly lower in mdx mice than in control mice at 4 weeks
(1.08 £ 0.04 vs. 1.24 + 0.08, p < 0.05; Figure 10d) and 12
weeks (0.94 = 0.03 vs. 1.12 + 0.19, p < 0.05; Figure 10d).
Similar results were obtained in the cerebellum. GPR37
expression was lower in mdx mice than in C57BL/10 mice at
both 4 weeks (0.41+ 0.08 vs. 0.53 + 0.06, p < 0.05; Figure 10g)
and 12 weeks (0.44 = 0.04 vs. 0.54  0.08, p < 0.05; Figure
10g), and GPR37L1 expression was significantly lower in mdx
mice than in control mice at 4 weeks (0.75 £ 0.06 vs. 0.92 +
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doi: 10.1371/journal.pone.0080032.g010

0.11, p < 0.05; Figure 10g) and 12 weeks (0.78 = 0.07 vs. 0.99
+ 0.15, p < 0.05; Figure 10g). In the choroid plexus, the
expressions of GPR37 and GPR37L1 were both lower in mdx
mice than in control mice at 4 weeks (GPR37: 0.86 + 0.03 vs.
1.08 + 0.05, p < 0.05; GPR37L1: 0.85 + 0.08 vs. 1.05 £ 0.02, p
< 0.05; Figure 10h) and 12 weeks (GPR37: 1.00 + 0.03 vs.
1.17 £ 0.07, p < 0.05; GPR37L1: 1.06 + 0.19 vs. 1.28 + 0.06, p
< 0.05; Figure 10h).

Associating MAPK and PS in SH-SY5Y cells

To gain further insight into the connection between p-ERK
and PS, the specific MEK1/2 inhibitors U0126 and PS18 were
used in in vitro experiments. SH-SY5Y neuroblastoma cells
were exposed to different concentrations of U0126 (1-10 puM)
for 30 min to optimize the experimental conditions. U0126 at 10
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UM selectively inhibited p-ERK1/2 (Figure 11a). In a previous
study [4], the addition of 300 ng/mL PS18 to SH-SY5Y cells did
not exhibit significant toxic effects. Thus these concentrations
were used to evaluate whether ERK activation was related to
PS expression. Cells were pretreated with 10 uM U0126 for 30
min prior to adding PS18. After culturing in the presence of
PS18 or DMEM for 6, 12, 18, or 24 h, cells were collected and
analyzed by Western blot. Interestingly, pretreatment with
U0126 markedly suppressed PS expression and its receptors,
GPR37 and GPR37L1 (p < 0.01, Figure 11b, e-g). However,
after treatment with PS18, these levels increased to different
degrees after 6-24 h (p < 0.05, Figure 11d-g). In addition, the
levels of p-ERK1/2 in SH-SY5Y cells were stimulated with
PS18, peaking 6 h after treatment (Figure 11c-d). These results
demonstrate that ERK1/2 activity is positively correlated with
PS activity, and PS18 activates p-ERK1/2 in SH-SY5Y cells.

Discussion

The data presented here provide a comprehensive picture of
the distribution of PS in the mouse brain. The spatio-temporal
expression of PS differed between mdx and C57BL/10 mice,
indicating that DMD is not only related to muscles but also to
the CNS in mdx mice.

In human DMD, muscle weakness begins at age 3—4 years.
This muscle weakness is due to irreversible, progressive loss
of skeletal muscle and results in the need for a wheelchair at
age 10 years and death at 20 years. The pathology of the mdx
mouse is characterised by histologically well-defined stages
with similarity to the human pathology. Necrotic or apoptotic
processes in combination with inflammation emerge at
approximately 3 weeks of age [23]. Regeneration processes
are initiated around the age of 6 weeks and continue, together
with ongoing degeneration, until 12 weeks of age [31-34]. PS
levels in mdx-affected muscle decreases at these ages [7].
Thus, in our study, we used mdx mice aged 4 and 12 weeks.

Patients with DMD display a variable degree of cognitive
impairment, ranging from mild deficits in verbal skills, selective
attention and and poor memory performance to mental
retardation [19,35,36]. Genetic loss of dystrophin has long
been suggested to be responsible for some of these deficits, as
dystrophin is normally expressed in brain structures involved in
diverse cognitive functions, such as the hippocampus,
neocortex and cerebellum [25,37], areas where PS s
abundant.

PS potently facilitates regeneration in ischemic hippocampal
neurons and transected sciatic nerves [38,39]. In vivo studies
showed that PS and PS-derived peptides prevent ischemia-
induced hippocampal neuronal death and ameliorate
subsequent learning disabilities [40,41]. PS-derived peptides
also prevented neuronal loss in MPTP-induced Parkinson’s
disease [4,42]. In the present study, PS was expressed in
neurons in mdx and C57BL/10 mice but showed reduced levels
of expression in many brain regions, suggesting that PS may
be related to some pathological changes in the brains of mdx
mice.

Dystrophin and its autosomal homolog utrophin (Utrn) form
the DAPC, which effectively forms transmembrane links
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Figure 11. ERK, PS and PS receptors, GPR37 and
GPR37L1, were analyzed by Western blotting (a-b). SH-
SY5Y cells were treated with different concentrations of U0126
(1-10 pM) for 30 min to optimize the experimental conditions.
U0126 (10 pM, 30 min) selectively inhibited p-ERK1/2 (a). SH-
SY5Y cells were pretreated with 10 yM U0126 for 30 min prior
to 300 ng/mL PS18 for 6-24 h (b). (c-g): The levels of ERK,
PS, GPR37 and GPR37L1 were quantified by densitometric
analysis normalized using GAPDH as an internal control.
Quantitative densitometry analysis was performed using NIH
Image J software. Cells were collected (three independent
wells of each group) and each experiment was repeated three
times. All values are means + SD. *p < 0.05, **p < 0.01
compared to the control group (Fisher's post hoc test); #p <
0.05 compared to the U0126 group.

doi: 10.1371/journal.pone.0080032.g011

between the extracellular matrix and the cytoskeleton [43,44].
The amino and carboxy termini of Utrn and dystrophin share
considerable amino acid sequence homology with actin- and
dystroglycan-binding domains [45,46]. DAP reduction is
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associated with alterations of the blood-brain barrier (BBB)
[47,48] during development of the dystrophic mdx mouse. PS is
present in CSF and neuronal tissues and prevents apoptosis of
neuronal cells [38,40,49,50]. Western blot and
immunohistochemistry demonstrated that PS levels decreased
in the mdx brain. A lack of dystrophin may induce neuronal
and/or BBB damage and may be related to PS expression,
while the decreased level of PS may affect neuronal function.

Secretory-type PS mRNA (Figure 9e-h) in the choroid plexus
and PS protein in both the choroid plexus (Figure 9a-d, j) and
CSF (Figure 9lI) were detected in mdx and C57BL/10 mice. In
both juvenile and adult mice, mRNA and protein expression
were decreased in the choroid plexus of mdx mice, but protein
levels in CSF were similar. This discrepancy may be explained
by the low level of PS receptors in the brain (Figure 10),
whereas PS in the CSF is normal (Figure 9I-m) regardless of
low PS production in the choroid plexus (Figure 9j-k).

The highest levels of exon 8-containing PS mRNA were
detected in the brain, heart and skeletal muscle [51-55]. Exon
8-containing PS mRNA is translated to unprocessed PS, which
is more efficiently secreted, whereas PS mRNA without exon 8
is translated to the PS precursor of the four lysosomal
saposins. Several studies have demonstrated a sharp decline
in the exon 8-containing PS isoform in the rat brain following
ischemia and stab wounds [53]. In our study, cRNA probes
recognising total PS (AS1), secretory-type (AS3) or lysosome-
type PS (AS4) allowed us to show the cellular localisation of
PS mRNA isoforms in defined areas of the brain. Based on in
situ hybridization data, we detected prominent expression of
Pro+9 mRNA in juvenile and adult brain tissues, suggesting
that exon 8-containing secretory-type PS is expressed in these
neurons. At the same time, we found that full-length PS is also
expressed in brain regions. Furthermore, we showed that PS-
positive cell numbers decreased in juvenile and adult mdx
mouse brains. Recent research showed that the expression
level of exon 8-containing PS mRNA in mice reaches a peak
after birth, when synaptogenesis is extensive [51]. Changes in
synaptic transmission have been well documented to be
associated with neurotoxicity after nerve injury [56,57]. In DMD,
the cognitive impairment in the nervous system may be
associated with the decrease in PS levels.

GPR37 and GPR37L1 are orphan G protein coupled
receptors, almost exclusively expressed in the nervous system
[30], for the neuroprotective and glioprotective factors
prosaptide and PS. Prosaptide stimulation of cells transfected
with GPR37 or GPR37L1 induces the phosphorylation of ERK.
As demonstrated by our data, when the activation of ERK was
inhibited by U0126, expression of PS and these receptors was
inhibited (Figure 11e-g), and PS18 stimulated ERK
phosphorylation (Figure 11c-d) in SH-SY5Y cells. However,
interestingly, in the brains of mdx mice, the expressions of PS
and its receptors (Figure 10) were decreased despite an
increase in ERK (Figures 7, 8). This indicates that regulation of
the ERK pathway is complex in the brains of mdx mice.

The MAPK family is an important mediator of signal
transduction processes that coordinate the cellular response to
a variety of extracellular stimuli. Three major mammalian
MAPK subfamilies have been described: ERK, the c-Jun N-
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terminal kinases (JNK, also called stress-activated protein
kinase), and the p38 kinases. Each MAPK is activated through
a specific phosphorylation cascade. ERK activation controls
various cell responses, such as proliferation, migration,
differentiation and death [58]. Many studies have supported the
general view that activation of the ERK pathway delivers a
survival signal [28] and our in vitro experiment demonstrated
that PS18 activated p-ERK1/2 in SH-SY5Y cells. This is similar
to what happens when PS and prosaptides (peptides
encompassing the neurotrophic region of PS) bind to a putative
G protein-coupled receptor [59] and activate ERK [27].
Interestingly, in our in vivo study, there were no changed in
JNK and p38 expression but increased in ERK1/2 expression
in the brains of mdx mice (Figures 7, 8, 9h). Activation of
ERK1/2 has been demonstrated in mdx-affected skeletal
muscle [60]. Furthermore, ERK activity can promote either
intrinsic or extrinsic apoptotic pathways by inducing
mitochondrial cytochrome c release or caspase-8 activation,
permanent cell cycle arrest, and/or autophagic vacuolization
[61]. ERK activity has been clearly implicated in
neurodegenerative diseases and brain injury following
ischemia/reperfusion in rodents [62-64]. The Ras/Raf/ERK
pathway plays a critical role in promoting several forms of cell
death in response to numerous stress stimuli in vitro and in
vivo. From these reports and our studies, we speculate that
activated ERK may contribute to apoptosis in the brains of mdx
mice and further decrease the expression of PS and its
receptors. The precise mechanisms responsible for these
findings should be investigated in further studies.

In summary, PS expression was lower in the brains of mdx
mice, indicating that PS is associated with dystrophin
deficiency. However, the mechanisms underlying dystrophin
deficiency and these decreased PS levels remain to be
determined. Further work may be focused on ERK
phosphorylation and apoptosis in mdx mice, and the
neuroprotective actions of PS and prosaptide mediated by
GPR37 and GPR37L1 that may provide new therapeutic
possibilities for the treatment of DMD.

Materials and Methods

Animals

Male mdx mice (C57BL/10-mdx; Clea Japan Inc., Tokyo,
Japan) aged 4 or 12 weeks and C57BL/10 (Clea Japan Inc.,
Tokyo, Japan) of the corresponding ages were used in this
study. All animals were housed at a constant temperature
(22°C) under a 12/12 h light/dark cycle and given food and
water ad libitum. This study was carried out in strict accordance
with the recommendations in the Guidelines of the Animal Care
Committee of Ehime University. The protocol was approved by
the Animal Care Committee of Ehime University (Permit
Number: 05A261). All surgery was performed under sodium
pentobarbital anesthesia, and all efforts were made to minimize
suffering.

Prosaposin Antibody and 18-mer peptide

Medical and Biological Laboratories Co., Ltd (Nagoya,
Japan) performed all of the procedures to create the PS-
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specific antibody (PS-Ab). Analysis of the amino acid sequence
of rat PS (M19936 [65]; showed that an antibody specific for
PS could be generated by immunising rabbits with a synthetic
oligopeptide corresponding to 409-
PKEPAPPKQPEEPKQSALRAHVPPQK-434, a portion of PS
that undergoes proteolysis to generate four saposins. This
amino acid sequence does not encode any saposin, and the
analysis included protein secondary structure predictions and
analyses of accessibility to solvents, flexibility, surface
probability, antigenicity and hydrophilicity, as well as dipole
analyses. The analytical method involved 150 g of conjugate in
500 L of phosphate-buffered saline (PBS), emulsified with
complete Freund’s adjuvant and injected subcutaneously into a
rabbit. Five booster immunisations of emulsions in incomplete
Freund’s adjuvant followed at 4-8-week intervals. The rabbit
was killed and bled 10 days after the final injection. The
antiserum was affinity-purified with the oligopeptide. The PS-Ab
titre in the serum was 1:10 000 in Western blot analyses. The
species reactivity was also confirmed in mice by Western
blotting. An 18-mer peptide (PS18: LSELIINNATEELLIKGL)
comprising the hydrophilic sequence of rat saposin C was
synthesized by Operon Technology (Tokyo, Japan).

Cerebrospinal fluid withdrawal

Cerebrospinal fluid (CSF) samples are taken from the
cisterna magna using a method that was published previously
[66]. In brief, the mouse was euthanized then placed prone on
the stereotaxic instrument and the head was secured with the
head adaptors, the posterior neck muscles were removed with
a surgical blade and a glass capillary tube with the inner
diameter of about 0.5 mm (Borosilicate glass, B100-75-10, The
Sutter Instrument Inc) was inserted through the arachnoid
membrane into the cisterna magna. CSF was aspirated by
capillary forces. Repeated specimens (obtained in three to four
suctions from the same opening) were examined for the visible
presence of blood by comparing small CSF sample in the
pipette to a brightly lit white background. Any discrepancy
between pipette colour and white surface was used as a
criterion to discard the last specimen and terminate sampling.
Approximate 10-20 pl of clean CSF was obtained from each
mouse. CSF was collected in 500 pl tubes and subsequently
stored at -80°C until use.

Immunohistochemical staining for PS

Three mice in each group were transcardially perfused with
saline, followed by 4% paraformaldehyde. Their forebrains and
cerebellums were dissected and immersed in the same fixative
at 4°C. The samples were then dehydrated and embedded in
paraffin. Serial 7-uym coronal sections were cut using a
microtome. The routine avidin-biotin complex (ABC) method
was used to detect the distribution of PS in the rat
hippocampus and cortex. Briefly, sections were dewaxed,
rehydrated and treated with 0.1 M PBS containing 10%
methanol and 3% hydrogen peroxide (H,O,) for 10 min. After
rinsing with PBS, the sections were treated with 5% bovine
serum albumin (BSA), 1% normal swine serum (NSS) and 1%
normal goat serum (NGS) in PBS for 1 h and then incubated
overnight with rabbit anti-PS (1:100) at 4°C. After rinsing, the
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sections were incubated in biotinylated goat anti-rabbit 1gG
(1:500) for 2 h at room temperature. After rinsing, the avidin—
biotin—peroxidase complex (1:300; Dako, Glostrup, Denmark)
was applied for 1 h at room temperature. The sections were
immersed in 3,3-diaminobenzidine (Sigma, St. Louis, MO,
USA) with 0.0033% H,O, for about 10 min. After rinsing with
distilled water, the sections were mounted and examined under
a light microscope. As a negative control, some sections were
incubated with normal rabbit serum (1:100) instead of the
primary antibody and processed as described above.
Nonspecific staining was not observed.

Western blotting

Three mice were euthanised by intraperitoneal injection of an
overdose of sodium pentobarbital. The cerebral cortex,
hippocampus, cerebellum and choroid plexus were dissected.
Briefly, the tissues were homogenised 1:5 (w/v) in ice-cold lysis
buffer containing 50 mM Tris-HCI (pH 7.4), 150 mM NacCl,
1% Nonidet P-40, 1 mM ethylenediaminetetraacetic acid
(EDTA), 0.25% sodium deoxycholate, 0.1% sodium dodecyl
sulphate (SDS), protease inhibitor cocktail and phosphatase
inhibitor cocktail (both 1:100; Nacalai Tesque, Kyoto, Japan).
The resulting homogenates were centrifuged (12 000 x g, 30
min, 4°C). The supernatants were collected, and total protein
levels were determined using a BCA protein assay kit (Pierce,
Rockford, IL, USA). CSF was withdrawal by the pervious
method. Proteins (15 pg) and 2pl undiluted CSF in LDS sample
buffer were separated on 12% SDS polyacrylamide gels and
transferred onto polyvinylidene difluoride (PVDF) membranes
in a wet transfer device (30 V, 1 h). Membranes were
preincubated in 5% BSA for 2 h and then incubated overnight
at 4°C with the following primary antibodies: rabbit anti-PS-Ab
(1:500), rabbit anti-phospho-ERK1/2 (Thr202/Tyr204; 1:500;
EnoGene Biotech, New York, NY, USA), rabbit anti-ERK1/2
(1:500; EnoGene Biotech), rabbit anti-phospho-p38 (Tyr182;
1:500; EnoGene Biotech), rabbit anti-p38 (1:500; EnoGene
Biotech), rabbit anti-phospho-SAPK/c-Jun N-terminal kinase
(JNK; 1:1000 Thr183/Tyr185, 9251; Cell Signaling Technology,
Danvers, MA, USA), rabbit anti-SAPK/JNK (1:1000, 9252; Cell
Signaling Technology), Rabbit anti-GPR37 (1:500; Abnova
Technology, Taipei, Taiwan) and rabbit anti-GPR37L1 (1:1000,
Abnova Technology) and a mouse anti-GAPDH polyclonal
antibody (1:1000; Imgenex, San Diego, CA, USA). Membranes
were washed and incubated with horseradish peroxidase-
conjugated secondary antibodies (1:5000; KPL, Gaitherburg,
MD, USA) against rabbit or mouse for 1 h. After washing, the
membranes were reacted with reagents from an enhanced
chemiluminescence (ECL) kit (New England Lab, Woburn, MA,
USA). Finally, specific protein bands were visualised by
exposing the membranes to film (FujiFilm, Tokyo, Japan). After
development, the intensities of protein bands were quantified
using ImagedJ software (NIH, Bethesda, MD, USA).

In situ hybridization

In situ hybridization was performed to detect PS mRNA as
previously described [67-69]. Briefly, six mice aged 4 weeks in
each group were killed by decapitation. Forebrains and
cerebellums were immediately dissected, frozen in dry ice and
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stored at -80°C. Sections (20 um thick) were cut on a cryostat,
thaw-mounted onto silane-coated slides and stored at -80°C
until use.

Three antisense 36-mer oligonucleotide probes, AS1, AS3
and AS4, and one sense probe, SS1 (used for control), were
synthesised commercially (Operon Biotechnologies, Inc.,
Tokyo, Japan). AS1 was complementary to bases 1704-1739
in the 3'-untranslated region of the PS cDNA, permitting the
detection of both Pro+9 mRNA and Pro+0 mRNA (total PS
mRNA). AS3 was synthesised to detect Pro+9 mRNA (exon 8-
containing PS mRNA), as the sequence of the PS cDNA
determined by Collard et al. [65] does not contain the 9-base
insertion after base 801 of the PS cDNA [53] and thus only
detects Pro+9 mRNA. In contrast, AS4 was complementary to
bases 778-813 of the PS cDNA, which excludes the 9-base
insertion, and thus detects Pro+0 mRNA (exon 8-excluded PS
mRNA). The sense probe SS1, complementary to AS1, was
used as a control. The sequences of the four probes were as
follows:

SS1: 5-
GCAGAAGTCGCCTACTTGTGGGTCTAGGGTAATGAA-3’
(negative control)

AS1: 5-
TTCATTACCCTAGACCCACAAGTAGGCGACTTCTGC-3’
(Pro+0 and Pro+9)

AS3: 5’-
CTTGGGTTGCTGATCCTGCATGTGCATCATCATCTG-3' (Pro
+9)

AS4: 5-

TTCCTTGGGTTGCATGTGCATCATCATCTGGACGGC-3’
(Pro+0)

The sequence in italics (AS3) is complementary to the 9-
base insertion. The underlined sequences in AS3 and AS4 are
the shared sequences. The probes were labelled with B5]dATP
(46.2TBg/mmol; PerkinElmer Life Sciences, Boston, MA, USA)
using terminal deoxynucleotidyl transferase (Takara, Tokyo,
Japan), and a specific activity of approximately 1.0 x 107
dpm/ml was obtained.

Sections were fixed in 4% paraformaldehyde in 0.1 M
sodium phosphate buffer (pH 7.4) for 15 min, rinsed in 4x
standard saline citrate (SSC, pH 7.4) and dehydrated through a
graded ethanol series. Sections were then hybridised with 3°S-
labelled probes in hybridization buffer (50% deionised
formamide, 1% Denhardt’s solution, 250 ug/ml yeast total RNA,
0.1 g/ml dextran sulphate, 0.12 M PB and 20 mM DTT in 4x
SSC) at 41°C overnight. After hybridization, sections were
rinsed three times in 1x SSC at 55°C for 20 min, dehydrated
through a graded ethanol series, coated with Kodak NBT-2
emulsion (Eastman Kodak, Rochester, NY, USA) and exposed
at 4°C for 4 weeks. Finally, the sections were developed in a
D-19 developer (Eastman Kodak). After dehydration and
mounting, the sections were observed under a microscope.

The grey intensity was examined under an Eclipse E-800M
microscope (Nikon, Tokyo, Japan) coupled to a Pro-Series
High Performance CCD camera (Sony, Tokyo, Japan).
Scanning was performed at 400x magnification to measure the
average intensity. For quantification, 10 sections per animal
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were analyzed and the optical density (OD) was calculated
conventionally: OD = [log,, (incident light/transmitted light)].
The grey intensity was analyzed using ImageJ.

Human SH-SY5Y neuroblastoma cells culture and
treatment

Human SH-SY5Y neuroblastoma cells (ATCC, Manassas,
VA, USA) were cultured in Dulbecco’s minimum essential
medium (DMEM; Wako, Osaka, Japan) supplemented with
10% heat-inactivated fetal bovine serum (FBS; PAA
Laboratories, Yeovil, Somerset, UK), 100 U/mL penicillin, and
100 U/mL streptomycin at a pH of 7.4. Culture medium was
changed every 3-4 days, and cells were maintained in a
humidified 5% CO2 atmosphere at 37°C and sub-cultured at a
ratio of 1:20 every 7—10 days. Culture medium was changed to
DMEM without FBS for 12 h before the start of each
experiment. All experiments were performed using 70-80%
confluent cultures. 1,4-diamino-2,3-dicyano-1,4-bis[2-
aminophenylthio] butadiene (U0126, #9903, Cell Signaling
Technology) was used to inhibit p44 and p42 MAP kinase
activities. U0126 (5 mg) was resuspended in 1.31 mL DMSO to
prepare a 10 mM stock. PS18 (25 pg/mL) was dissolved in
0.01 M phosphate-buffered saline (PBS) and filtered with a
0.22-pym-filter membrane (Millipore, Billerica, MA, USA).
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Different concentrations of U0126 and 300 ng/mL PS18 were
diluted in SH-SY5Y medium and used immediately.

Statistics

All values are expressed as the mean + standard deviation
(SD), and all statistical analyses were carried out using SPSS
13.0 (SPSS Inc., Chicago, IL, USA). Data were subjected to
analysis of variance (ANOVA) followed by Fisher’'s post hoc
test. A p-value of <0.05 was considered significant.
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