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ABSTRACT
Background. De novo transcriptome assembly of short reads is now a common step in
expression analysis of organisms lacking a reference genome sequence. Several software
packages are available to perform this task. Even if their results are of good quality it
is still possible to improve them in several ways including redundancy reduction or
error correction. Trinity and Oases are two commonly used de novo transcriptome
assemblers. The contig sets they produce are of good quality. Still, their compaction
(number of contigs needed to represent the transcriptome) and their quality (chimera
and nucleotide error rates) can be improved.
Results. We built a de novo RNA-Seq Assembly Pipeline (DRAP) which wraps these
two assemblers (Trinity and Oases) in order to improve their results regarding the
above-mentioned criteria. DRAP reduces from 1.3 to 15 fold the number of resulting
contigs of the assemblies depending on the read set and the assembler used. This article
presents seven assembly comparisons showing in some cases drastic improvements
when using DRAP. DRAP does not significantly impair assembly quality metrics such
are read realignment rate or protein reconstruction counts.
Conclusion. Transcriptome assembly is a challenging computational task even if good
solutions are already available to end-users, these solutions can still be improved while
conserving the overall representation and quality of the assembly. The de novoRNA-Seq
Assembly Pipeline (DRAP) is an easy to use software package to produce compact and
corrected transcript set. DRAP is free, open-source and available under GPL V3 license
at http://www.sigenae.org/drap.

Subjects Bioinformatics, Computational Biology, Genomics, Computational Science
Keywords RNA-Seq, De novo assembly, Compaction, Correction, Quality assessment

BACKGROUND
Second-generation sequencing platforms have enabled the production of large amounts
of transcriptomic data permitting to analyze gene expression for a large variety of species
and conditions. For species lacking a reference genome sequence, the now-classical
processing pipeline includes a de novo transcriptome assembly step. Assembling an accurate
transcriptome reference is difficult because of the raw data variability. This variability comes
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from different factors: including: 1. The variability of gene expression levels ranging usually
between one and millions of copies; 2. The biology of mRNA synthesis which goes through
an early stage of pre-mRNA still containing introns and a late state in which mRNA can
be decayed; 3. The synthesis from pre-mRNA of numerous alternative transcripts; 4.
Potential sample contaminations; 5. Sequencing quality biases; 6. Most of the genome can
be expressed in low abundance depending on the biological condition as presented by
Djebali et al. (2012) in the results of the ENCODE project.

Today there is no unique best solution to these RNA-Seq assembly problems but
several software packages have been proven to generate contig sets comprising most
of the expressed transcripts correctly reconstructed. Trinity (Grabherr et al., 2011) and
Oases (Schulz et al., 2012) are good examples. The assembled contig sets produced by
these packages often contain multiple copies of complete or partial transcripts and also
chimeras. Chimeras are structural anomalies of a unique transcript (self-chimeras) or
multiple transcripts (multi-transcripts chimeras). They are called ‘‘cis’’ if the transcripts
are in the same direction and ‘‘trans’’ if they are in opposite directions. Natural chimeric
transcripts exist in some cancer tissues but are rare (Frenkel-Morgenstern et al., 2013). Yang
& Smith (2013) have shown the tendency of de novo transcriptome assemblers to produce
self-chimeric contigs. The prevalence of the phenomenon depends on the assembly
parameters. Multi-transcript chimeras distort contig annotation. The functions of the
transcripts merged in the same contig can be very different and therefore the often-unique
annotation given to such a chimeric contig does not reflect its content. Assemblies include
also contigs corresponding to transcription or sequencing noise a phenomenon often
referred as illegitimate transcription (Chelly et al., 1989). These contigs have often low
coverage and are not found in the different replicates of the same condition.

Some contigs contain local biological variations or sequencing errors such as
substitutions, insertions or deletions. These variations and errors can deeply impact
the read alignment rate, create frameshifts which hinder annotation, limit the efficacy of
primer design and generate false variations. Assemblies contain also polyA/T tails, which
are posttranscriptional marks. They are usually removed before publication. For all these
reasons contig sets usually need error correction.

Trinity and Oases have different algorithms, which give them advantages or
disadvantages depending on gene expression levels. The main difference comes from
their assembly strategy. Trinity chains a greedy algorithm with a de Bruijn graph one and
Oases uses multiple de Bruijn graphs with different k-mers. The first step of Trinity is very
effective in assembling parts of highly expressed transcripts which will be connected
at the second step. As shown by Surget-Groba & Montoya-Burgos (2010), the Oases
multi-k assembly approach is able to build contigs corresponding to transcripts with
very low to very high expression levels. However, highly expressed genes with multiple
transcripts will generate very complex graphs mainly because of the presence of variations
or sequencing errors, which will form new paths possibly considered as valid by the
assembler and produce numerous erroneous contigs. No assembler is producing the
best contig set in all situations. Bio-informaticians and biologists therefore use different
strategies to maximize the reference contig set quality (Mbandi et al., 2015; Bens et al., 2016;
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He et al., 2015; Nakasugi et al., 2014). The simplest approach is to produce a reference set
per software package or parameter set, to compare their metrics and choose the best one.
It is also possible to merge different results and filter them.

Assemblies can be compared on different criteria. The usual ones are simple contig
metrics such as total count, total length, N50, and average length. Assembling equals
summarizing (compressing the expression dimension) and therefore a good metric to
check the summary quality is the proportion of reads mapped back to the contigs. As a
large part of the transcripts correspond to mRNA, it is also possible to use as quality metric
the number of correctly reconstructed proteins using a global reference as it is done by
CEGMA (Parra, Bradnam & Korf, 2007) or BUSCO (Simão et al., 2015) or using a protein
reference set from a phylogenetically closely related organism. Last, some software packages
are also rating the contig set or the individual contigs using the above-mentioned criteria
(Honaas et al., 2016) or some other for example only related to the way reads map back to
the contigs (Smith-Unna et al., 2016; Li et al., 2014; Davidson & Oshlack, 2014).

We have built a de novo RNA-Seq Assembly Pipeline (DRAP) in order to correct the
following assembly problems: multiple copies of complete or partial transcripts, chimeras,
lowly expressed intergenic transcription, insertion and deletion generated by the assemblers
and polyA tails. The pipeline implementation is presented in the next section. The ‘‘results
and discussion’’ section compares raw and DRAP assembly metrics for seven different
datasets.

IMPLEMENTATION
DRAP is written in Perl, Python, and shell. The software is a set of three command-line tools
respectively called runDrap, runMeta and runAssessment. runDrap performs the assembly
including compaction and correction. It produces a contig set but also a HTML log report
presenting different assembly metrics. runAssessment compares different contig sets and
gathers the results in a global report. runMeta merges and compacts different contigs sets
and should be used for very large datasets for which memory or CPU requirements do not
enable a unique global assembly or for highly complex datasets. The modules chained by
each tool are presented in a graphical manner in Figs. 1, 2 and 3. Details on the compaction,
correction and quality assessment steps of the tools are described hereafter. All software
versions, parameters and corresponding default values are presented in Table S1.

Contig set compaction
Contig compaction removes redundant and lowly expressed contigs. Four different
approaches are used to compact contig sets. The first is only implemented for Oases
assemblies and corresponds to the sub-selection of only one contig per locus (NODE)
produced by the assembler. Oases resolves the connected component of the de Bruijn
graph and for complex sub-graphs generates several longest paths corresponding to
different possible forms. These forms have shown (https://sites.google.com/a/brown.edu/
bioinformatics-in-biomed/velvet-and-oases-transcriptome) to correspond to subpart of
the same transcript, which are usually included one in another. Oases provides the locus
(connected component of the assembly graph) of origin of each contig as well as its length
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Figure 1 Steps in runDRAP workflow. This workflow is used to produce an assembly from one sam-
ple/tissue/development stage. It take as input R1 from single-end sequencing or R1 and R2 from paired-
end sequencing and eventually a reference proteins set from closest species with known proteins.
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Figure 2 Steps in runMeta workflow. This workflow is used to produce a merged assembly from several
samples/tissues/development stage outputted by runDRAP. Inputs are runDRAP output folders and even-
tually a reference protein set.
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Figure 3 Steps in runAssessment workflow. This workflow is used to evaluate quality for one assembly
or for compare several assemblies produced from the same dataset. Inputs are the assembly/ies, R1 and
eventually R2, and a reference protein set.
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and depth. The Oasesv2.0.4BestTransChooser.py script sub-selects the longest and most
covered contig of a locus. The second compaction method removes contigs included in
longer ones. CD-HIT-EST (Fu et al., 2012) orders the contigs by length and removes all
the included ones given identity and coverage thresholds. The third method elongates the
contigs through a new assembly step. TGICL (Pertea et al., 2003) performs this assembly
in DRAP. The last approach filters contigs using their length or the length of their longest
ORF if users are only interested in coding transcripts, and using read coverage according to
the idea that lowly covered contigs often correspond to noise. A last optional filter selects
contigs using their TransRate quality score when above the calculated threshold (–optimize
parameter). By default, runDrap produces eight contigs sets, four include only protein
coding transcripts and four others contain all transcripts. Each group comprises a contig
set filtered for low coverage with respectively 1, 3, 5 and 10 fragments per kilobase per
million (FPKM) thresholds.

Compaction favors assemblies having contigs with multiple ORFs. Because a unique
ORF is expected for contig annotation, DRAP splits multi-transcript chimera inmono-ORF
contigs.

runMeta also performs a three step compaction of the contigs. The first is based on
the contig nucleotide content and uses CD-HIT-EST. The second run CD-HIT on the
protein translation of the longest ORF found by EMBOSS getorf. The third, in the same
way as runDrap, filters contigs using their length (global or longest ORF), their expression
level and optionally their TransRate score producing the eight result files described in the
previous paragraph.

Contig set corrections
Contig correction splits chimeras, removes duplicated parts, removes insertions, deletion
and polyA/T tails. DRAP corrects contigs in three ways. It first searches self-chimera and
removes them by splitting contigs in parts or removing duplicated chimeric elements. An
in house script aligns contigs on themselves using bl2seq and keeps only matches having an
identity greater or equal to 96%. A contig is defined as a putative chimera if (i) the longest
self-match covers at least 60% of the contig length or (ii) the sum of partial non-overlapping
self-matches covers at least 80% of its length. In the first case, the putative chimera is split
at the start position of the repeated block. In the second case, the contig is only a repetition
of a short single block and is therefore discarded. For the second correction step, DRAP
searches substitutions, insertions and deletions in the read realignment file. When found
it corrects the consensus according to the most represented allele at a given position. Low
read coverage alignment areas are usually not very informative therefore only positions
having a minimum depth of 10 reads are corrected. The manual assessment made on
DRAP assemblies has shown that a second path of this algorithm improves consensus
correction. Part of the reads change alignment location after the first correction. runDrap,
consequently, runs this step twice.

The last correction script eases the publication of the contig set in TSA (https:
//www.ncbi.nlm.nih.gov/genbank/tsa): NCBI transcript sequence assembly archive. TSA
stores the de novo assembled contig sets of over 1300 projects. In order to improve the
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data quality, it performs several tests before accepting a new submission. These tests
search for different elements such as sequencing adapters or vectors, polyA or polyT
and stretches of unknown nucleotides (N). The thresholds used by TSA are presented at
https://www.ncbi.nlm.nih.gov/genbank/tsaguide. DRAP performs the same searches on
the contig set and corrects the contigs when needed.

Quality assessment
All three workflows create an HTML report. The report is a template including HighCharts
(http://www.highcharts.com) graphics and tables using JSON files as database. These files
are generated by the different processing steps. The report can therefore also be used to
monitor processing progression. Each graphic included in the report can be downloaded
in PNG, GIF, PDF or SVG. Some of the graphics can be zoomed in by mouse selecting the
area to be enlarged. The report tables can be sorted by clicking on the column headers and
exported in CSV format. For runDrap and runMeta, the reports present results of a single
contig file.

runAssessment processes one or several contig files and one or several read files. It
calculates classical contig metrics, checks for chimeras, searches alignment discrepancies,
produces read and fragment alignment rates and assess completeness using an external
global reference running BUSCO. If provided, it aligns a set of proteins on the contigs
to measure their overlap. Last, it runs TransRate, a contig validation software using four
alignment linked quality measures to generate a global quality criterion for each contig and
for the complete set. runAssessment does not modify the contig set content but enables
users to check and select the best candidate between different assemblies.

Parallel processing and flow control
DRAP runs on Unix machines or clusters. Different steps of the assembly or assessment
process are run in parallel mode, if the needed computer infrastructure is available. All
modules have been implemented to take advantage of an SGE compliantHPC environment.
They can be adapted to other schedulers through configuration file modification.

DRAP first creates a set of directories and shell command files and then launches these
files in the predefined order. The ‘–write’ command line parameter forces DRAP to stop
after the first step. At this stage, the user can modify the command files for example to set
parameters which are not directly accessible from runDRAP, runMeta or runAssessment
and then launch the process with the ‘–run’ command line option.

DRAP checks execution outputs at each processing step. If an error has occurred, it adds
an error file to the output directory indicating at which step of the processing it happened.
After correction, DRAP can be launched again and it will scan the result directory and
restart after the last error free step. The pipeline can easily be modified to accept other
assemblers by rewriting the corresponding wrapper using the input files and producing
correctly named output files.

RESULTS AND DISCUSSION
DRAP has been tested on seven different datasets corresponding to five species. These
datasets are presented in Table 1 and include five real datasets (Arabidopsis thaliana: At,
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Table 1 Datasets.

Name Species Layout Library Protocol

Paired Stranded Length
(nt)

Nb R1 SRA ID Tissue Condition

At Arabidopsis
thaliana

Yes – 100 32,041,730 SRR1773557 Root Full nutrition

Yes – 100 30,990,531 SRR1773560 Shoot Full nutrition
Yes – 100 24,898,527 SRR1773563 Root N starvation
Yes – 100 54,344,171 SRR1773569 Flower Full nutrition
Yes – 150 31,467,967 SRR1773580 Shoot N starvation

Bt Bos taurus Yes No 100 30,140,101 SRR2635009 Milk Day 70 with low
milk production

Yes No 75 15,339,206 SRR2659964 Endometrium –
Yes Yes 50 13,542,516 SRR2891058 Oviduct –

Dd Danio rerio Yes No 100 35,368,936 SRR1524238 Brain 5 months female

54,472,116 SRR1524239 Gills 5 months female

85,672,616 SRR1524240 Heart 5 months male
and female

34,032,976 SRR1524241 Muscle 5 months female

59,248,034 SRR1524242 Liver 5 months female

46,371,614 SRR1524243 Kidney 5 months male
and female

96,715,965 SRR1524244 Bones 5 months female

43,187,341 SRR1524245 Intestine 5 months female

55,185,501 SRR1524246 Embryo 2 days embryo
24,878,233 SRR1524247 Unfertilized eggs 5 months female

22,026,486 SRR1524248 Ovary 5 months female

59,897,686 SRR1524249 Testis 5 months male
Dm Drosophila

melanogaster
Yes Yes 75 21,849,652 SRR2496909 Cell line R4 Time P17

21,864,887 SRR2496910 Cell line R4 Time P19
20,194,362 SRR2496918 Cell line R5 Time P17
22,596,303 SRR2496919 Cell line R5 Time P19

Dr Danio rerio Yes No 100 5,072,822 SRR1048059 Pineal gland Light
8,451,113 SRR1048060 Pineal gland Light
8,753,789 SRR1048061 Pineal gland Dark

(continued on next page)
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Table 1 (continued)

Name Species Layout Library Protocol

Paired Stranded Length
(nt)

Nb R1 SRA ID Tissue Condition

7,420,748 SRR1048062 Pineal gland Dark
9,737,614 SRR1048063 Pineal gland Dark

Ds Danio rerio Yes No 100 30,000,000 Simulated – –
Hs Homo sapiens No No 25–50 15,885,224 SRR2569874 TK6 cells pretreated with

the protein
kinase C
activating tumor

15,133,619 SRR2569875 TK6 cells pretreated with
the protein
kinase C
activating tumor

19,312,543 SRR2569877 TK6 cells pretreated with
the protein
kinase C
activating tumor

21,956,840 SRR2569878 TK6 cells pretreated with
the protein
kinase C
activating tumor

Bos taurus: Bt, Drosophila melanogaster : Dm, Danio rerio: Dr and Homo sapiens: Hs), one
set comprising a large number of diverse samples (Danio reriomulti samples: Dd) and one
simulated dataset (Danio rerio simulated: Ds). The simulated reads have been produced
using rsem-simulate-reads (version rsem-1.2.18) (Li & Dewey, 2011). The theta0 value was
calculated with the rsem-calculate-expression program on read files from the Danio rerio
pineal gland sample (SRR1048059). Table 1 also presents for each dataset: the number,
length, type (paired or not) and strandedness of the reads, the public accession number,
the tissue and experimental condition of origin. The results presented hereafter compare
the metrics collected from Trinity, Oases, DRAP Trinity and DRAP Oases assemblies of the
six first datasets. The multi sample dataset has been used to compare a strategy in which
all reads of the different samples are gathered and processed as one dataset (pooled) to a
strategy in which the assemblies are performed by sample and the resulting contigs joined
afterwards (meta-assembly). The same assembly pipeline has been used in both strategies,
except the contig set merging step, which is specific to the meta-assembly strategy.

Summary Table 2 and Table 3 present the metrics collected for the six first datasets.
Table 2 providesmetrics related to compaction and correction as Table 3 includes validation
metrics andTable 4 collects all threemetric types for pooled versusmeta-assembly strategies.
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Table 2 Compaction and correction in DRAP and standard assembler.

Dataset Assembler Nb contigs N50 (nt) L50 (nt) Sum(nt) Median
length
(nt)

Included
contigs
(%)

Contigs
with
multi-ORF
(%)

Contigs
with
Multi-prot
(%)

Chimeric
Contigs
(%)

Contigs
with
Bias* (%)

At Oases 381,440 2,971 92,020 843,329,264 1,816 72.75 27.89 0.26 0.80 13.88
DRAP Oases 32,269 2,014 9,563 56,122,047 1,547 0.00 0.24 1.40 0.04 2.78
Trinity 95,008 2,198 19,140 130,969,737 991 4.05 15.63 1.22 0.20 11.29
DRAP Trinity 54,923 1,761 15,857 80,258,659 1,287 0.00 0.20 0.52 0.00 2.68

Bt Oases 147,163 2,739 31,441 269,085,141 1,359 71.19 7.45 0.06 0.66 6.29
DRAP Oases 29,685 2 441 6 029 47,727,730 1 111 0.00 0.28 0.32 0.03 1.23
Trinity 89,520 2,184 12,080 90,989,611 431 4.12 3.69 0.17 0.12 5.98
DRAP Trinity 46,561 2,129 9,183 64,809,448 927 0.00 0.23 0.14 0.00 1.50

Dm Oases 178,696 2,220 29,086 232 776 717 756 75.48 5.14 0.18 0.35 13.11
DRAP Oases 21,550 2,309 3,674 29,372,261 804 0.00 0.09 0.45 0.06 2.27
Trinity 55,214 2,266 7,126 57,209,890 438 5.19 4.58 0.95 0.22 13.33
DRAP Trinity 27,236 2 146 5 240 37,249,612 914 0.00 0.07 0.31 0.00 3.59

Dr Oases 702,640 2,715 114,042 1,059,904,844 857 70.99 2.80 0.01 1.39 11.52
DRAP Oases 46,831 2,757 9,046 82,268,872 1,173 0.00 0.15 0.27 0.16 13.05
Trinity 126,210 1 279 21,003 96,279,046 418 5.56 0.81 0.08 0.56 23.63
DRAP Trinity 58,114 1,644 13 022 68,900,396 866 0.00 0.07 0.12 0.00 7.41

Ds Oases 131,982 2,975 28,618 280,469,694 1 619 75.05 3.05 0.06 0.14 4.07
DRAP Oases 21 191 3 000 4,872 46,994,928 1,744 0.00 0.08 0.25 0.02 1.10
Trinity 40,335 2,398 7,159 58,571,859 910 3.12 1.82 0.37 0.09 6.47
DRAP Trinity 31,113 2,381 6,492 51,580,407 1,205 0.00 0.04 0.14 0.00 1.15

Hs Oases 101,271 2,048 20,131 132,681,065 895 55.73 5.55 0.03 0.11 7.51
DRAP Oases 30,201 1,880 5,542 34,670,862 540 0.00 0.15 0.08 0.00 0.68
Trinity 57,195 1,687 7,843 47,639,190 384 2.63 2.85 0.12 0.09 5.79
DRAP Trinity 39,489 1,705 6,621 38,557,758 540 0.00 0.11 0.06 0.00 0.59

Notes.
*Contigs with consensus variations corrected by DRAP.
Bold values are ‘‘best in class’’ values between raw and DRAP assemblies.
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Table 3 Validation DRAP against standard assembler.

Dataset Assembler % contigs by
ORF count

Contigs with
Complete
ORF (%)

% contigs by
Proteins count

Nb reference
Proteins
aligned

Reads
mapping (%)

TransRate
score * 100

0 1 0 1 Mapped Properly
paired

At Oases 18.96 53.15 65.72 94.27 5.57 23 457 97.18 90.33 2.39
DRAP Oases 9.90 89.86 72.38 39.38 59.22 20 895 96.53 90.21 33.16
Trinity 38.97 45.40 40.32 81.09 17.69 20 290 93.81 85.78 10.04
DRAP
Trinity

13.89 85.91 55.51 69.85 29.64 17 916 92.99 85.44 24.77

Bt Oases 36.07 56.48 28.29 93.33 6.61 10 560 90.53 87.20 2.71
DRAP Oases 32.59 67.13 25.70 67.63 32.05 10 456 91.03 88.59 23.30
Trinity 64.13 32.18 15.33 89.48 10.35 10 313 92.18 86.66 4.99
DRAP
Trinity

38.55 61.23 24.86 79.95 19.91 10 144 91.03 85.97 13.51

Dm Oases 46.19 48.67 20.27 96.43 3.39 6 873 92.86 83.24 2.21
DRAP Oases 48.80 51.11 31.45 70.30 29.25 6 731 92.02 82.21 41.17
Trinity 67.53 27.89 18.49 89.63 9.42 6 494 93.24 85.07 17.56
DRAP
Trinity

45.94 53.99 32.23 77.76 21.93 6 358 85.77 78.09 34.23

Dr Oases 56.81 40.39 23.37 97.98 2.01 15 186 85.73 75.16 0.67
DRAP Oases 40.20 59.65 33.43 70.89 28.84 14 901 88.26 82.84 25.19
Trinity 66.76 32.43 9.79 92.34 7.58 10 734 84.11 75.70 5.81
DRAP
Trinity

39.74 60.19 20.16 82.44 17.44 11 272 81.33 75.43 18.25

Ds Oases 24.52 72.43 41.60 89.47 10.47 14 929 83.62 74.34 8.56
DRAP Oases 12.80 87.11 53.73 35.56 64.19 14 913 90.32 88.22 59.08
Trinity 37.72 60.46 30.29 67.37 32.26 14 394 88.79 85.37 38.77
DRAP
Trinity

22.85 77.11 37.65 57.53 42.33 14 364 88.28 85.59 50.51

Hs Oases 44.51 49.94 21.18 93.04 6.93 7 554 88.30 NA NA
DRAP Oases 46.95 52.91 20.06 77.28 22.64 7 463 86.90 NA NA
Trinity 69.02 28.13 11.70 88.53 11.35 7 199 86.76 NA NA
DRAP
Trinity

55.48 44.41 16.07 83.46 16.48 7 124 84.08 NA NA

Notes.
Bold values are ‘‘best in class’’ values between raw and DRAP assemblies.

Contig set compaction
The improvement in compactness is measured by three criteria. The first is the number
of assembled contigs presented in Fig. 4. The differences between raw Oases and Trinity
assemblies and DRAP assemblies are very significant ranging from 1.3 fold to 15 fold. The
impact of DRAP on Oases assemblies (from 3.4 to 15 fold) is much more significant than
on Trinity assemblies (from 1.3 to 2,2 fold). Oases multi-k assembly strategy generates
a lot of redundant contigs which are not removed at the internal Oases merge step. The
second criterion is the percentage of inclusions, i.e., contigs which are part of longer ones.
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Table 4 Pooled samples vs meta-assembly strategies on the Danio rerio multi samples dataset (Dd)).

Assembly strategy Pooled
Oases

Meta
Oases

Pooled
Trinity

Meta
Trinity

Compaction
Nb seq 42,726 43,049 62,327 65 271
N50 (nt) 3,565 3,379 2,027 2 237
L50 (nt) 10,409 9,259 14,956 13,106
Sum (nt) 114,371,598 99,928,206 94,993,910 98,421,439
Median length (nt) 2,182 1,766 1,217 1,052
Contigs with multi-ORF (%) 0.33 0.50 0.13 0.17
Contigs with multi-prot (%) 1.39 1.73 0.64 0.95

Correction
Chimeric contigs (%) 0.11 0.21 0.00 0.00
Contigs with bias* (%) 75.19 68.00 58.79 61.88

Validation
0 24.79 38.77 37.24 50.63

% contigs by ORF count
1 74.88 60.72 62.63 49.20

Contigs with complete ORF (%) 61.84 46.36 38.80 31.55
0 58.52 57.15 75.23 72.02

% contigs by proteins count
1 40.09 41.13 24.13 27.03

Nb reference proteins aligned 32,367 35,432 26,041 33,385
Mapped 87.38 87.57 77.82 85.19

Reads mapping (%)
Properly paired 78.88 80.13 70.13 77.30

TransRate score * 100 28.66 29.49 17.97 23.36

Notes.
*contigs with consensus variations corrected by DRAP.
Bold values are ‘‘best in class’’ values between raw and DRAP assemblies.

Oases and Trinity inclusion rate range respectively from 55 to 75% and from 2.3 to 5.5%
(Table 2). Because of its inclusion removal step this rate is null for DRAP assemblies. The
last compaction criteria presented here is the total number of nucleotides in the contigs.
The ratios between raw and DRAP assembly sizes for Oases and Trinity range respectively
from 3.4 to 14.8 fold and from 1.1 and 2.6 fold (Table 2). All these metrics show that DRAP
produces less contigs with less redundancy resulting in an assembly with a much smaller
total size.

Another metric that can be negatively correlated to compactness, but has to be taken
into account, is the number of multi-ORF contigs found in the assemblies. The ratios of
multi-ORF contigs found between raw and DRAP assemblies range from 11 and 116 folds
(Table 2). DRAP multi-transcript chimera splitting procedure improves significantly this
criterion.

In order to check if the compaction step only selects one isoform per gene, we compared
the number of genes with several transcripts aligning on different contigs before and after
DRAP. A transcript is linked to a contig if its best blat hit has over 90% query identity and
90% query coverage. The test has been performed on the Dr and the Ds datasets assembled
with Oases and Trinity. The number of alternative spliced isoforms decreases more, with
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Figure 4 Number of contigs. The figure shows for the different assemblers (Oases, DRAP Oases, Trinity,
DRAP Trinity) the number of contigs produced for each dataset.

Table 5 Compaction vs gene representation onDanio rerio simulated dataset (Ds) andDanio rerio dataset (Dr).

Dataset Assembly Nb seq All genes Multi-isoform
genes

Raw/DRAP assemblies

All genes (%) Multi-isoform genes (%)

Ds Raw Oases 131,982 14,396 3,593
DRAP Oases 21,191 14,145 611

−1.74 −82.99

Raw Trinity 40,335 12,457 1,792
DRAP Trinity 31,113 12,203 1,470

−2.04 −17.97

Dr Raw Oases 702,640 11,613 2,177
DRAP Oases 46,831 12,821 673

+10.40 −69.09

Raw Trinity 126,210 8,310 801
DRAP Trinity 58,114 8,116 620

−2.33 −22.60

Notes.
Bold values are ‘‘best in class’’ values between raw and DRAP assemblies.

or without DRAP, in the Oases than in the Trinity assemblies (Table 5). This reduction is
of 69% and 23% in the real dataset (Dr) and 83% and 18% in the simulated dataset for
Oases and Trinity respectively. However, the spliced forms reduction does not impact the
gene representation in the compacted sets (Table 5). Remarkably, the gene representation
is increased for the real dataset when processed with DRAP Oases. This results from the
different merging strategies used by Oases and DRAPOases. Using TGICL, DRAP is able, in
some cases, to correctly merge gene parts which have been generated by the Oases multi-k
assemblies and this more efficiently than the build-in Oases merge procedure.

Contig set corrections
DRAP corrects contigs in two ways: removing self-chimera and rectifying consensus
substitutions, insertions and deletions when the consensus does not represent the major
allele at the position in the read re-alignment file. Self-chimeras appear in Oases and Trinity
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Figure 5 Consensus error rates. (A) presents the ratio of the global error rates between raw and DRAP
assemblies for each dataset (data from Table 2 colum 12). (B), (C) and (D) present the ratio of the error
rates respectively for substitution, insertions and deletions between raw and DRAP assemblies for each
dataset (data from Table S2).

contig sets at rate ranging respectively from 0.11 to 1.39 and from 0.09 to 0.56%. In DRAP,
the corresponding figures drop to 0.01 to 0.16 and 0.00 to 0.01%. Concerning consensus
correction only five datasets can be taken into account i.e., At, Bt, Dm, Ds and Hs. Dr
Oases assembly generates such a large number of contigs and total length that it decreases
significantly the average coverage and therefore limits the number of positions for which
the correction can be made. As shown in Fig. 5 and Table S2, the Dr dataset is an outlier
concerning this criteria. Regarding the five other datasets raw versus DRAP correction
rates range from 1.7 to 18.6 for insertions, 3.1 to 27.1 for deletions and 2.7 to 14.1 for
substitutions. DRAP correction steps lowers significantly the number of positions for which
the consensus does not correspond to the major allele found in the alignment. In order to
check the positive impact of the correction step, the Danio rerio reference proteome has
been aligned to the simulated dataset (Ds) contigs before and after correction. 94.5% of
DRAP Oases contigs and 86.2% of DRAP Trinity contigs which have been corrected, have
improved alignment scores (Data S1 section ‘‘Contig set correction step assessment’’).

Assembly quality assessment
The two previous parts have shown the beneficial impacts of DRAP on the assembly
compactness and error rates but this should not impair quality metrics such as read and
read pairs alignment rates, number of ORFs, complete ORFs found in the contigs, number
of proteins of the known proteome mapped on the contigs or TransRate marks.
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Figure 6 Reads re-alignment rates. (A) and (B) show respectively the alignment rates for reads and read
pairs for the four assemblies of each dataset.

Read and read pair alignment rates differences between raw and DRAP assemblies are
usually very low, between 1 and 2% and can sometimes be in favor of DRAP (Fig. 6) . In
our test sets, the difference is significant (7.5%) for Dm when comparing Trinity to DRAP
Trinity. This comes from the removal by DRAP of a highly expressed transcript (Ensembl:
FBtr0100888 mitochondrial large ribosomal RNA) because that does not fulfill the criteria
of having at least one 200 base pairs long ORF despite having over 11M reads aligned on
the corresponding contig in the Trinity assembly. DRAP Oases assembly was not impacted
because it builds a longer contig for this transcript with a long enough ORF to be selected
in the additional part.

The reference proteome has been aligned on the contigs and matches with over 80%
identity and 80% protein coverage have been counted (Fig. 7). These figures give a good
overview of the amount of well-reconstructed proteins in the contig sets. For all datasets
except one (At) the number of proteins are very close between raw and DRAP results.
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Figure 7 Proteins realignment rates. The figure shows the number of proteins which have been aligned
on the contig sets with more than 80% identity and 80% coverage for each assembler and dataset.

For this At dataset the difference is of 12.2% for Oases and 13.2% for Trinity. This is
due to the FPKM filtering step performed by DRAP and the expression profile of this
dataset that mixes different tissues (root, shoot and flower) and conditions (full nutrition
and starvation). Contigs corresponding to low expression in one condition do not have
sufficient overall expression to pass DRAP expression filter threshold and are therefore
eliminated from the final set. Mixed libraries can benefit from the meta-assembly approach
presented in the next section.

TransRate global scores (Fig. 8) are much higher for DRAP assemblies compared to raw
ones. This comes from the compaction performed by DRAP and the limited impact it has
on the read alignment rate.

DRAP has limited negative effect on the assembly quality metrics, and sometimes even
improves some of them. Some cases in which multiple libraries are mixed with very distinct
conditions can affect the results and it is good practice to systematically compare raw and
DRAP assemblies. It is also to be noticed that Oases multi-k strategy outperforms Trinity
for all datasets regarding the number of well-reconstructed proteins.

Pooled versus meta-assembly strategies
In the previous sections we compared results from raw and DRAP assemblies. This section
compares results from pooled versus meta-assembly strategies both using the DRAP
assembly pipeline (Table 4). Because of the read re-alignment filtering thresholds used in
DRAP, we expect different metrics between a pooled assembly and merged per sample
assembly (meta-assembly). DRAP includes the runMeta workflow, which performs this
task.

Differences in compaction and correction are more important between Trinity and
Oases than between pooled versus meta-assembly. Pooled assemblies collect significantly
worse results for the number of reference proteins and number of read pairs aligned on the
contigs. This comes from the filtering strategy which eliminates low-expressed contigs of a
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Figure 8 TransRate scores. The figure presents the TransRate scores of the four assemblers for each
dataset.

Table 6 Structure validation on Danio rerio simulated dataset (Ds).

Assembly Retrieved exons Exons in Right contig Exons in Right order Contigs withMore than
1 gene

Max number Of genes
by contig

Real assembly 99.81% 99.81% 99.50% 0.16% (46) 5
Raw Oases 80.03% 77.83% 77.61% 2.77% (537) 221
DRAP Oases 80.21% 77.54% 77.29% 4.13% (671) 203
Raw Trinity 84.24% 77.30% 77.10% 3.65% (717) 339
DRAP Trinity 83.30% 76.65% 76.47% 3.17% (602) 327

Notes.
Bold values are ‘‘best in class’’ values between raw and DRAP assemblies.

given condition when merging all the samples but will keep these contigs in a per sample
assembly and meta-assembly strategy. Therefore, we recommend using runMeta when
the assembly input samples mix distinct conditions with specific and variable expression
patterns.

Assemblies fidelity check using simulated reads
The simulation process links each read with its transcript of origin. With this information
it is possible to link contigs and transcripts. Here, the transcript-contig link was calculated
using exon content and order in both sets (method explained in Data S1). The results
presented in Table 6 first shows that the assembly process loses between 15.76 and 19.97%
of the exons compared to the initial transcript set. This loss is close to 22% for all assemblies
when the exon order is taken into account. As shown in Fig. 9, this is mainly the case for
transcripts with low read coverage. The figures show once more that DRAP has a very
limited negative impact on number of retrieved exons in correct order.

Table 6 shows the number of contigs linked to more than one gene. DRAP compaction
and ORF splitting feature could have an antagonist impact for this criteria. But depending
on the assembler, the figures are in favor or not of DRAP.
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Figure 9 Gene reconstruction versus expression depth using simulated reads. The figure presents the
proportion of correctly build transcripts (method presented in Data S1 section ‘‘Contig validation using
exon re-alignment and order checking’’) versus the read count per transcript.

Table 6 also presents the maximum number of genes linked to a single contig. These
clusters correspond to zink finger gene family members which have been assembled as
single contig. Between 92.3 and 93.7% of the clustered transcripts belong to this family.
De novo assembly tools are not able to distinguish transcript originating from different
gene when the nucleotide content is highly similar.

CONCLUSION
Different software packages are available to assemble de novo transcriptomes from short
reads. Trinity and Oases are commonly used packages which produce good quality
references. DRAP assembly pipeline is able to compact and correct contig sets with usually
very low quality loss. As no package out performs the others in all cases, producing different
assemblies and comparing their metrics is a good general practice.
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RMP Reads per million
ORF Open reading frame
TSA Transcript sequences archive
NCBI National Center for Bio-Informatics
DRAP De novo Rna-seq Assembly Pipeline
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