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ABSTRACT Acinetobacter johnsonii C6 originates from creosote-polluted groundwa-
ter and performs ecological and evolutionary interactions with Pseudomonas putida
in biofilms. The draft genome of A. johnsonii C6 is 3.7 Mbp and was shaped by mo-
bile genetic elements. It reveals genes facilitating the biodegradation of aromatic hy-
drocarbons and resistance to antimicrobials and metals.

Acinetobacter johnsonii C6 (formerly, Acinetobacter sp. strain C6) was isolated in 1994
from a microbial community of a creosote-contaminated aquifer at a gasworks in

Fredensborg, Denmark (1, 2). Creosotes are mixtures of chemicals formed during
natural gas production, which can contain aromatic hydrocarbons and a variety of
heterocycles. Despite their toxicity, creosotes were used as medical treatment against
infections, toothache, gastrointestinal, and respiratory complications.

A. johnsonii C6 forms biofilms and participates in interspecific interactions, including
metabolic interactions, with Pseudomonas putida (3–6). The genetic determinants for
these activities are largely unknown. Here, we report the draft genome sequence of
A. johnsonii C6. It was generated using Illumina MiSeq sequencing (2 � 250 cycles),
yielding 593,389 raw read pairs and a depth of coverage of ~68�. The reads were
trimmed and filtered using bbduk2 (BBMap 35.82) (http://jgi.doe.gov/data-and-tools/
bbtools/) and assembled using SPAdes 3.7.0 (7). Contigs smaller than 500 bp or with
coverage below 2� were removed. The draft genome is 3,705,435 bp in 26 contigs,
with a G�C content of 41.7%. It contains 3,543 genes, as predicted using Prodigal (8),
77 tRNA genes, and one rRNA operon (16S, 23S, 5S). The 16S rRNA gene sequence had
�99% sequence similarity to A. johnsonii XBB1 (accession no. NZ_CP010350.1), A. john-
sonii ATCC 17909T (accession no. Z93440.1), and A. johnsonii DSM 6963 (accession no.
X81663.1) (9–11). Putative functions for predicted proteins were assigned using
PROKKA 1.1 and by comparing sequences to the public databases Pfam, KEGG, InterPro,
and CARD (12–16), followed by submission-ready file conversion (https://bitbucket.org/
RolfKaas/gff3_to_ena_embl).

A. johnsonii C6 encodes proteins predicted to convert aromatic hydrocarbons, such
as benzyl alcohol, benzoate, fluorobenzoate, dihydroxybenzoate, methylcatechol,
methylbenzyl alcohol, hydroxybenzaldehyde, hydroxymethylnaphthalene, naphtha-
lenemethanol, benzene, toluene, chlorobenzene, and cyclohexanol. Previously, it was
shown that this strain could grow on toluene, benzyl alcohol, and benzoate (4, 5).

A number of antimicrobials, as well as heavy metals (e.g., arsenate, mercury, tellurite,
copper, and chromate), may be tolerated by A. johnsonii C6, mainly facilitated by
proteins involved in their efflux, transport, reduction, and functions encoded by anti-
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biotic resistance genes, such as blaOXA-334 (OXA-211 family) and catB. In vitro assays
revealed that A. johnsonii C6 was resistant to chloramphenicol, trimethoprim, cefoxitin,
and quinupristin-dalfopristin. A. johnsonii C6 may produce secondary metabolites, and
it harbors biosynthetic gene clusters for a siderophore, aryl polyene, bacteriocin, and
unknown metabolites, based on predictions by antiSMASH (17).

The A. johnsonii C6 draft genome encodes 19 proteins containing GGDEF and/or EAL
domains involved in c-di-GMP metabolism, and proteins involved in motility (pili), and
secretion (type II secretion system [T2SS], T6SS, secretory-signal recognition particle
[Sec-SRP], and Tat), suggesting dynamic interactions with their environment, including
with other microorganisms. The presence of features related to plasmids, phages, and
insertion sequence (IS) elements suggests that mobile genetic elements have shaped
the evolution and ecology of A. johnsonii C6.

The genome sequence of A. johnsonii C6 will facilitate the understanding of its
physiology, evolution, and interaction with P. putida. Studies on A. johnsonii could also
provide new insight into the biodegradation of aromatic hydrocarbons and resistance
to antimicrobials and toxic metals, with relevance to environmental biotechnology.

Accession number(s). The draft genome sequence of A. johnsonii C6 is available
from DDBJ/ENA/GenBank under the accession number FUUY00000000.
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