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Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity
and has therapeutic potential for the treatment of Parkinson’s disease (PD). However, the therapeutic benefits and related
mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational
research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the
current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat
model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of
rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS
intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7
days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed
functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational
analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS
intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the
results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in
the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS
with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model.
These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might
have clinical relevance and usefulness as an additional treatment approach in individuals with PD.
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1. Introduction

Parkinson’s disease (PD) is recognized as the second most
prevalent age-related neurodegenerative disorder after Alzhei-
mer’s disease, affecting approximately 1% of the population
over the age of 60 years [1–4]. The major pathological hall-
mark of the disease results from the degeneration of dopami-
nergic cells in the substantia nigra pars compacta (SNpc),
leading to several motor disturbances, e.g., tremor, muscular
rigidity, bradykinesia, akinesia, and gait disturbance [5–8].
Currently, mainstream PD treatment is pharmacological man-
agement, such as dopamine supplementation (e.g., levodopa),
dopamine agonists, catechol-O-methyltransferase inhibitors
(COMTIs), or monoamine oxidase type B inhibitors (MAO-
BIs) [9–11]. Among them, the dopamine precursor levodopa
is the most common and effective antiparkinsonian medicine
and remains the mainstay of PD treatment [10–13]. However,
with long-term dopaminergic replacement therapy, several
complications, mainly motor in nature, such as motor fluctu-
ations, levodopa-induced dyskinesia, freezing, gait distur-
bance, and postural instability, are common side effects
following long-term administration of levodopa [10, 14, 15].
Consequently, a number of alternative nonpharmacological
approaches, e.g., deep-brain stimulation (DBS), have been
investigated as new therapeutic strategies for PD [16–19].
However, DBS, a stimulation technique that involves
implanting electrodes deeply into a selected portion of the
basal ganglia, requires an invasive stereotactic approach with
intraparenchymal implantation and is a high-cost procedure
[20–22]. Furthermore, although DBS may improve some PD
symptoms, it cannot modulate disease progression [23, 24].
Therefore, an alternative and better treatment that can mod-
ify disease progression is urgently needed for PD.

Recent research suggests that noninvasive repetitive
transcranial magnetic stimulation (rTMS) can modulate cor-
tical excitability in the motor cortex via plasticity-like mech-
anisms [25–27]. Furthermore, the recently developed theta
burst stimulation (TBS) scheme of rTMS is capable of mod-
ulating motor cortical excitability beyond a short period of
stimulation (20-190 sec) and with lower stimulus intensity
than conventional low- or high-frequency rTMS [28–30].
Thus, this rTMS-TBS protocol has been considered to have
therapeutic potential for PD [31–33]. However, the results
among various studies exploring the therapeutic effects of
rTMS using the TBS protocol on PD have been inconsistent
[34]. Improvements in motor function, such as gross move-
ments of the hand and Unified Parkinson’s Disease Rating
Scale (UPDRS) motor subscores, in PD after rTMS using
TBS have been reported [35]. Conversely, other studies per-
formed in PD patients showed no improvements in gait,
bradykinesia, UPDRS scores, or gait freezing using intermit-
tent TBS [33, 36]. Although the exact underlying therapeutic
mechanism is still unclear, the controversial results might be
due to methodological differences, the heterogeneity of clin-
ical presentations and disease severity, long-lasting pharma-
cological effects, and protocol variability [37–40].

Animal models of disease may help in exploring the
effectiveness and developing the therapeutic strategy of
rTMS protocols by eliminating the discrepancy to provide

a more stable disease condition [41–43]. A few animal stud-
ies found that 4 weeks of low-frequency intervention (500
pulses at 0.5Hz) or high-frequency (10Hz for 20min) rTMS
improved locomotor functions, dopaminergic neuron sur-
vival, and rotational behavior in a midstage 6-hydroxydopa-
mine- (6-OHDA-) induced hemiparkinsonian rat model
[43, 44]. Moreover, based on our previous finding, rTMS-
induced motor plasticity was reduced in 6-OHDA-induced
hemiparkinsonian rats with advanced disease. Such a reduc-
tion in motor plasticity is strongly correlated with dopami-
nergic cell loss in the substantia nigra and the severity of
PD symptoms [45]. However, it remains unclear whether
earlier intervention with rTMS using the TBS protocol could
lead to improved therapeutic effects on motor function and
improved induction of a neuroprotective effect in dopami-
nergic neurons. Therefore, in the current study, a series of
experiments was conducted to test the therapeutic potential
of rTMS in a preclinical PD animal model as an early step
toward eventual clinical application. We employed our pre-
viously developed quantitative motor performance assess-
ment techniques to enhance the understanding of the
underlying neuromodulation mechanisms. The effects of
rTMS were mainly assessed by behavioral measurements
and immunohistochemical analyses, including comprehen-
sive video-based gait analysis, the bar test for akinesia,
apomorphine-induced rotational analysis, and tests of the
dopaminergic neuron degeneration level. It was hypothe-
sized that long-term rTMS treatment, especially using the
TBS protocol, would result in a lasting reduction in motor
deficits and have a neuroprotective effect on dopaminergic
neurons in 6-OHDA-induced hemiparkinsonian rats. The
knowledge obtained in these experiments may have transla-
tional relevance for establishing new clinical therapeutic
applications of rTMS.

2. Materials and Methods

2.1. Animals. Adult male Wistar rats (350-400 g; N = 41)
obtained from the Animal Center of Chang Gung University
were used for the present study. All rats were housed in a
temperature-controlled animal care facility at a temperature
of 25°C with a 12 h light/dark cycle. All experimental proto-
cols and surgical procedures were approved and followed the
guidelines of the Institutional Animal Care and Use Com-
mittee at Chang Gung University (IACUC Approval No.
CGU16-031, with validation period 08/01/2016-07/31/
2019). In the present study, all efforts were made to mini-
mize animal suffering and the number of animals used.

2.2. Hemiparkinsonian Rat Model. The procedures for the
induction of hemiparkinsonian rats were described previ-
ously [45–48]. Briefly, animals were deeply anesthetized by
Zoletil (50mg/kg, i.p.; Vibac Laboratories, France) and xyla-
zine (10mg/kg, Rompun, Bayer, Germany) and then
mounted in a stereotaxic apparatus (Stoelting, Wood Dale,
IL, USA). A 2 cm incision was made along the midline of
the scalp, and the area was carefully cleared to expose the
line of bregma. A small hole was drilled in the skull
4.3mm posterior and 1.6mm lateral (left side only) to the
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midline. A solution of 6-OHDA (8μg dissolved in 4μl 0.02%
ascorbic saline) was injected into the left medial forebrain
bundle (DV: 8.2mm) at a rate of 0.5μl/min using a 10μl
Hamilton microsyringe fitted with a 26-gauge steel cannula
and mounted vertically on the stereotactic frame [49]. Before
being retracted, the needle was left in the brain for 5min to
prevent backfilling along the injection tract [50]. To verify
dopamine depletion after unilateral neurotoxin 6-OHDA
infusion, a conventional and reliable apomorphine-induced
rotation test was adopted [50–52]. In general, hemiparkin-
sonism induction by 6-OHDA was considered successful in
rats with rotational responses of over 120 turns [53].
According to the criteria, at 4 weeks after surgery, all animals
(n = 26) in both groups were regarded as hemiparkinsonian
rats.

2.3. rTMS Treatment. All rTMS treatments were performed
using a figure-eight coil (25mm double small coil, Magstim
Co.) connected to a Rapid2 magnetic stimulator (Magstim
Co., Whitland, Carmarthenshire, Wales, UK). To maintain
the stability of the rTMS stimulation, the unanesthetized rats
were restrained on a platform with four straps with minimal
discomfort (Figure 1). The coil was held in the stereotaxic
frame and positioned in the midline at the interocular line
over the dorsal scalp, a position that can reliably and equally
stimulate the bilateral motor cortex of limb and elicit bilat-
eral limb movement [54]. In our experience, a rat can toler-
ate torso restraint for 5min, which allows time for one
session of TBS treatment [54]. The animals in the rTMS
treatment group received the intermittent TBS (iTBS) para-
digm (2 seconds of TBS training was repeated every 10 sec-
onds for 20 repetitions for a total of 600 pulses each day for 7
consecutive days per week) under awake conditions for 4
weeks (28 consecutive sessions of iTBS in total) [45]. TBS
consists of triplets of pulses at 50Hz repeated every 200ms
[30]. The intensity of magnetic pulses was set at an 80% rest-
ing motor threshold, which was defined as the minimal
intensity of magnetic stimulation required for eliciting min-
imal forelimb muscle twitches. The animals in the sham
control group underwent an identical procedure to the
experimental group except that rTMS-iTBS was replaced
with sham rTMS with the magnetic coil placed 80mm later-
ally and above the rat’s head [55].

2.4. Behavioral Tests. A well-trained examiner was blinded to
group assignment and performed all behavioral examina-
tions before and after treatment. Three motor behavioral
tests, i.e., video-based gait analysis, the bar test for akinesia,
and an apomorphine-induced rotational behavior test, were
performed in the same sequence on the same day to test the
changes in functional motor performance in the sham rTMS
(n = 13) and real rTMS groups (n = 13). There was at least a
2-hour break between tests to avoid possible interactions.
The video-based gait analysis, bar test, and rotational behav-
ior test were performed at baseline and after every weekly
treatment.

2.4.1. Video-Based Gait Analysis. To identify the changes in
gait pattern in hemiparkinsonian rats with and without

rTMS treatment, a walking track equipped with a video-
based gait analysis system was applied to obtain the spatio-
temporal parameters of the gait pattern. The procedure of
video-based gait analysis to measure the gait pattern of
hemiparkinsonian rats was described previously [46–48].
Briefly, the walking track equipment consisted of an
enclosed walkway made of transparent Plexiglas (80 cm L
× 6 cmW × 12 cmH) with a 45° tilting mirror positioned
underneath the walkway. A high-speed and high-resolution
camera (EX-F1, Casio, Japan) was positioned on the side of
the walkway to capture the sagittal view and the reflected
bottom view from the mirror. Before the experiment, all ani-
mals were acclimated to the walkway by allowing them to
walk freely on the track for 20min. Then, animals were
trained to walk steadily on the Plexiglas walking track five
times before formal recording. During the measurement,
the rats were allowed to walk freely on the walking track at
their own speed. The walking task was repeated in both
directions for recording the movement of each hind limb.
The walking task was repeated until five satisfactory walking
trials were considered successful, meaning that at least four
steps without pause were obtained during each test [46,
47]. The whole process for walking trials took approximately
30 minutes, and there was at least a 2-hour break between
tests to prevent possible interactions. After recording, the
image data captured from each trial were processed semiau-
tomatically to identify the sequential footprints by MATLAB
software (MathWorks, version 7.6., R2008a) [47]. Two spa-
tial parameters (i.e., step length and stride length) and three
temporal gait parameters (i.e., walking speed, stance phase
time, and swing phase time) were determined in bilateral
hind limbs of each group [46–48, 56].

Figure 1: Setup of repetitive transcranial magnetic stimulation
(rTMS) treatment for 6-OHDA-induced hemiparkinsonian rats.
Unanesthetized rats were restrained on a platform with 4 straps
with minimal discomfort. The figure-8 TMS coil is centered over
the dorsal scalp at the interaural line to stimulate the bilateral
motor cortex.
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2.4.2. Bar Test. Akinesia is a typical symptom in PD. The bar
test was adopted in this study to detect forelimb akinesia in
hemiparkinsonian rats [46, 57]. During the bar test, each rat
was placed gently on a table, and the affected forepaw (the
paw contralateral to the 6-OHDA lesion) was placed on a
horizontal acrylic bar (0.7 cm diameter), positioned 9 cm
above the table surface. The duration of time (in sec) spent
from placing the affected forepaw on the bar to the first
complete removal from the support bar was recorded [46,
48]. The animals were subjected to five subsequent trials,
which were video recorded, and the duration was averaged
over these five trials.

2.4.3. Apomorphine-Induced Spontaneous Rotation Test.
Conventional and reliable apomorphine-induced contraver-
sive rotational behavior was measured every week after the
6-OHDA injection to estimate the severity of dopamine
depletion [46, 58, 59]. After the injection of apomorphine
(0.5mg/kg in 0.1% ascorbic acid, s.c.; Sigma), the hemipar-
kinsonian rats were placed in a round bowl (40 cm in diam-
eter). Apomorphine-induced rotational behavior was
recorded by a digital video camera for a 60min period. For
precise calculation of the number of rotations after apomor-
phine injection, the net number of rotations was manually
calculated as the difference between the number of contralat-
eral rotations and the number of ipsilateral rotations to the
6-OHDA lesion side (total right-total left 360° turns) after
apomorphine injection from the 60-minute video recording.

2.5. Immunohistochemistry Investigation. After behavioral
tests were performed on days 7 and 28 postlesion, animals
were sacrificed for tyrosine hydroxylase (TH) staining. TH
staining analysis was carried out according to a previously
employed protocol [45, 48, 60]. Briefly, animals were deeply
anesthetized with an overdose of pentobarbital (60mg/
kg i.p., Apoteksbolaget, Sweden) and perfused transcardially
with phosphate-buffered saline (PBS) and 4% paraformalde-
hyde solution (PFA). Brains were carefully removed, post-
fixed for 3 days, and cryoprotected in 30% sucrose solution
at 4°C until the brain sank. The brains were sectioned into
coronal blocks at a thickness of 30μm on a cryostat (Leica
CM3050 S Cryostat, FL, USA), and the areas of the SNpc
and striatum were selected [48]. The free-floating sections
were quenched with 0.3% H2O2/PBS for 10min and 10%
milk (ANCHOR SHAPE-UP, New Zealand) for 1 hour to
block nonspecific antibody binding. Sections were then incu-
bated with rabbit primary anti-TH (1 : 1000, AB152, Milli-
pore, USA) for 1 hour at room temperature. Thereafter,
sections were washed in PBS and incubated for 1 h with
the secondary anti-rabbit antibody (1 : 200, MP-7401, Vector
Labs, USA) in PBS. After rinsing, sections were placed in
3,3-diaminobenzidine (DAB, SK-4105, Vector Labs, USA)
for 3-5min. Finally, the sections were mounted on slides,
dehydrated in a series of alcohols, cleared in xylene, and
cover-slipped in DPX. The mounted coronal sections were
digitally scanned at 40x magnification (0.25μM/pixel) using
a digital pathology slide scanner (Aperio CS2, Leica Biosys-
tems Inc. Buffalo Grove, IL, USA) and viewed with Aperio
ImageScope software. The obtained images were converted

into binary (8-bit black-and-white) images. The binary
threshold was determined to capture the TH-positive cells
in the regions of interest while minimizing background
staining and was kept constant for all images. The numbers
of TH-positive cells in each region were counted by means of
particle analysis using computer-based image analysis soft-
ware (Image-Pro Plus 6.0, Media Cybernetics, Bethesda,
MD, USA), and these values were then manually validated
by two investigators to ensure the correct identification of
immunoreactivity patterns. The percentage loss of TH-
positive cells was calculated in the ipsilateral hemisphere
and normalized with respect to the contralateral side. With
regard to the striatal TH-positive fibers, the optical density
of TH-positive fibers in the striatal sections was analyzed
using Image-Pro Plus 6.0 software (Media Cybernetics,
USA) with correction for nonspecific background density
measured at the corpus callosum. The percentage loss of
dopaminergic fibers on the ipsilateral side was normalized
and presented with respect to the contralateral side.

2.6. Experimental Design. To verify the therapeutic effects of
long-term rTMS intervention in hemiparkinsonian rats, the
experimental hemiparkinsonian rats were randomly divided
into a 6-OHDA+rTMS treatment group (n = 22) and a 6-
OHDA+sham treatment group (n = 19). For the early and
long-term rTMS intervention, hemiparkinsonian rats were
randomly assigned to receive sham or real rTMS interven-
tion. Starting 24 h after 6-OHDA injection, neurotoxic PD
rats received daily sham or real rTMS under awake condi-
tions for 7 consecutive days/week for 4 weeks (Figure 2).
Behavioral tests, including detailed video-based gait analysis
and the bar test, were performed at baseline and every week
after 6-OHDA was injected until the end of the rTMS inter-
vention. Apomorphine-induced rotational behavior was
measured every week after 6-OHDA through 4 weeks of
rTMS treatment. Tyrosine hydroxylase (TH) staining was
assessed in randomly selected hemiparkinsonian rats after
behavioral tests at 1 week (n = 9 in the 6-OHDA+rTMS
group; n = 6 in the 6-OHD+sham treatment group) and 4
weeks (n = 9 in the 6-OHDA+rTMS group; n = 6 in the 6-
OHD+sham treatment group) post-6-OHDA lesion.

2.7. Data Analysis

2.7.1. Statistical Analysis. Data were analyzed using SPSS
version 17.0 with the significance level set as P < 0:05 for
each assessment. All data are presented as the average ±
standard error of themean (SEM). The effect of rTMS on
the behavioral test performance was evaluated by a two-
way repeated-measures analysis of variance (ANOVA) with
protocol (real vs. sham) as the between-subject factor and
time (pre, every week during intervention) as the within-
subject factor. No preintervention data were included for
apomorphine-induced rotation in the early intervention ses-
sion because there was no rotation before 6-OHDA was
injected. Unpaired t -tests were performed to compare
groups at each time point when the main effect of the group
was significant. Furthermore, a separate one-way ANOVA
followed by post hoc Fisher’s LSD tests was used to compare
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behavioral and immunohistochemical data between time
points when needed.

3. Results

3.1. Effect of rTMS Intervention on Behavioral Assessments.
Performances in the detailed video-based gait analysis and
bar test were assessed in the 6-OHDA+rTMS treatment
group (n = 13) and 6-OHDA+sham treatment group
(n = 13) at baseline and every week after the 6-OHDA lesion
until the end of the rTMS intervention. The rotation test was
performed every week after 6-OHDA until 4 weeks of rTMS
treatment in both groups (n = 13 in each group). The
descriptive and inferential statistics of the primary outcomes
for all the behavioral tests are shown in Supplementary
Table S1. Figure 3(a) shows the time-course changes in the
apomorphine-induced rotation response (net of contralateral
rotations/hour) after lesion induction. Two-way repeated-
measures ANOVA showed significant main effects in time
(F3,72 = 18:94, p < 0:001) and in protocol (F1,24 = 5:875, p =
0:023). The post hoc t-tests between the two groups
revealed that the rotation number reached significant
differences at 1 week (t = 2:771; p = 0:011) and 2 weeks
(t = 2:595; p = 0:016) posttreatment but not at 3 weeks
(t = 1:300; p = 0:206) or 4 weeks post-6-OHDA lesion
(t = 0:258; p < 0:799). Figure 3(b) shows the time-course
changes in the performance in the bar test for akinesia in
the 6-OHDA+rTMS- and 6-OHDA+sham-treated rats over
a 4-week observation period. Two-way repeated-measures
ANOVA revealed significant effects of time (F4,96 = 24:879,
p < 0:001) and group (F1,24 = 18:434, p < 0:001) on the
contralateral (affected) limb. Subsequent post hoc t-tests
between the groups showed that the bar test scores reached
significant differences at 1 week (t = 2:341; p = 0:032), 2
weeks (t = 2:573; p = 0:017), 3 weeks (t = 2:182; p = 0:039),
and 4 weeks post-6-OHDA lesion (t = 3:322; p = 0:004).

For the results of gait analysis, Figure 4(a) shows typical
footprint images recorded from a sham PD rat and real PD
treatment rat in the early intervention group. Two-way
repeated-measures ANOVA showed significant main effects

of group in walking speed (F1,24 = 11:57, p = 0:002), step
length (F1,24 = 8:84, p = 0:007 on the affected side; F1,24 =
11:93, p = 0:002 on the unaffected side), stride length
(F1,24 = 15:56, p = 0:001 on the affected side; F1,24 = 13:46,
p = 0:001 on the unaffected side), and stance phase time
(F1,24 = 10:12, p = 0:004 on the affected side) but not in
swing phase time (F1,24 = 0:13, p = 0:722 on the affected
side), suggesting less impairment of gait pattern in the real
treatment group than in the sham group. Subsequent post
hoc t-tests between groups at each time point showed that
this difference was largely driven by rTMS treatment effects
observed starting at the first week of treatment on walking
speed (t = 2:38, p = 0:025), step length (t = 2:16, p = 0:041
on the affected side; t = 2:18, p = 0:039 on the unaffected
side), stride length (t = 2:81, p = 0:01 on the affected side;
t = 2:20, p = 0:038 on the unaffected side), and stance phase
time (t = 2:86, p = 0:009) (Figures 4(b)–4(g)). All these dif-
ferences remained statistically significant at the end of the
4-week intervention (unpaired t-tests, p < 0:05).

3.2. Effects of rTMS Intervention Assessed by
Immunohistochemistry. With regard to the effects of long-
term rTMS intervention on dopaminergic neurons, the
results of TH immunohistochemistry in the SNpc and stria-
tum in rats at 1wk and 4wk post-6-OHDA lesion are shown
in Figures 5(a)–5(d). The quantification of TH-positive cell
loss in the substantia nigra and TH-positive fiber loss in
the striatum at 1 week and 4 weeks post-6-OHDA lesion is
presented in Figures 5(e) and 5(f). Rats that received rTMS
intervention showed a preservation of TH-positive neurons
in the SN (t = 2:338, p = 0:035 at week 1; t = 2:396, p =
0:031 at week 4) and TH-positive fibers in the striatum
(t = 2:886, p = 0:012 at week 1; t = 2:837, p = 0:013 at week
4) compared to those that received sham stimulation.

4. Discussion

In the present study, we explored the hypothesis that long-
term rTMS treatment with TBS would mitigate 6-OHDA-
induced motor dysfunction and has a neuroprotective effect

6-OHDA + sham treatment

6-OHDA + rTMS treatment

n = 19

n = 22

Pre 0 1 2 3 4 wk

Sham treatment (n = 6)
rTMS treatment (n = 9)TH THSham treatment (n = 6)

rTMS treatment (n = 9)

Video-based gait analysis

Bar test

Rotation test

TH: Tyrosine hydroxylase staining

6-OHDA lesion

Rats
(n = 41)

Figure 2: Design of the study of the long-term treatment effects of rTMS on rats with 6-OHDA-induced PD. rTMS and sham control
treatments were performed daily over 4 successive weeks. Behavioral tests, including gait analysis, the bar test, and apomorphine-induced
rotation tests, were performed every week to investigate the time-course treatment effects. Immunohistochemistry tests were performed
at week 1 and week 4 post-6-OHDA lesion to identify the neuroprotective effects rTMS treatment on dopaminergic neurons and fibers.
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on dopamine neurons. We found that long-term rTMS
intervention ameliorated progressive motor disturbances
such as gait impairments (e.g., lower walking speed, shorter
step/stride length, and longer stance phase time) and akine-
sia following 6-OHDA administration, indicating that early
and long-term rTMS can suppress neurotoxin-induced
motor impairments over repeated sessions of stimulation.
Histological investigation revealed more preserved dopami-
nergic neurons in the SNpc and striatal fibers in the rTMS
treatment group than in the sham group, suggesting a neu-
roprotective effect of rTMS.

Until now, the therapeutic efficacy and the detailed
mechanisms of rTMS treatment for PD have remained
inconsistent and unclear [33, 61–64]. For example, an
improvement in motor symptoms in PD patients after rTMS
treatment was reported, showing improvements in walking
speed [65], Unified Parkinson’s Disease Rating Scale part
III (UPDRS-III) scores [66–71], 10m walking test perfor-
mance [68, 71], timed up-and-go test performance [69,
72], and freezing of gait (FOG) [69, 70, 73]. In contrast,
some studies showed no significant improvement in rigidity,
bradykinesia, tremor [74], functional performance of the
hand [75], UPDRS-III scores [33, 76, 77], FOG [36, 78], gait,
or bradykinesia [33, 77]. Although the exact underlying
therapeutic mechanism is still unclear, the controversial
results might be due to the variability of protocols, long-
term pharmacological effects, clinical heterogeneity, and dif-
ferent severities of disease [37–40]. The use of an animal
model could help in the control of confounding factors
and may provide more information for clarifying the bene-
fits of rTMS in PD and the underlying mechanisms its
effects. Earlier animal studies have reported that rTMS treat-
ment improved treadmill locomotor function and apomor-
phine/amphetamine-induced rotational behavior [43, 44].
In the present study, in addition to evaluations of rotational
behavior, we performed comprehensive and quantitative
assessments of gait and akinesia, which are the symptoms

commonly observed in PD patients, to investigate the bene-
ficial effects during and after four weeks of rTMS interven-
tion. Moreover, our data show that long-term rTMS
treatment has an accumulated effect on gait function. The
time-course observation of such a comprehensive mean of
behavioral tests is helpful for determining behavioral com-
pensation and for quantifying the relative degeneration in
dopaminergic neurons with disease progression. After hemi-
parkinsonian rats were treated with rTMS or sham treat-
ment for four weeks, clear alleviation of gait dysfunction
(e.g., lower walking speed, short step/stride length) was
observed in the rTMS-treated group. When compared with
the sham rTMS treatment group, we found that 4 weeks of
rTMS treatment postponed disease progression after 6-
OHDA injection. To the best of our knowledge, this is the
first study confirming the therapeutic effects on gait distur-
bances and akinesia symptoms in hemiparkinsonian rats.
This finding may also support clinical observations showing
prolonged positive effects on gait function after rTMS treat-
ment [40, 65, 79] and augments the growing amount of basic
research and clinical literature on the efficacy of rTMS in PD
treatment.

With regard to the effect of rTMS on akinesia, we found
that four weeks of rTMS in hemiparkinsonian rats led to a
reduction in akinesia. These results parallel PD human and
animal studies showing a reduction in bradykinesia or fore-
limb akinesia after rTMS treatment, encouraging further
research into the therapeutic potential of rTMS [79, 80].
The mechanisms by which rTMS improves several aspects
of motor function in PD are still unclear. Evidence possibly
supporting the efficacy of rTMS in PD is related to the
release of dopamine induced by rTMS [81–84]. The wide-
spread activation of dopaminergic neuronal systems or the
elevation of serum dopamine concentration after repeated
rTMS sessions could be one of the mechanisms for delaying
the deterioration of motor dysfunction and may have con-
tributed to the improvements in motor functions after daily
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sessions of rTMS observed in hemiparkinsonian rats [80,
85]. Another possible mechanism for the improvements in
motor function following long-term rTMS treatment in PD
could be related to the modulation of motor cortical plastic-
ity induced by rTMS. In the classic complex cerebro-basal
ganglia network, the usual facilitating effect of thalamic pro-
jections to the motor cortex is reduced in PD, resulting in
the deactivation or hypoactivation of motor cortical areas
and thus leading to reduced motor output during movement
[86, 87]. Similar to the human TBS protocol, our earlier
study indicated that rTMS with the iTBS protocol might be
useful to promote motor cortical plasticity in healthy rats
[45]. Furthermore, we previously demonstrated that rTMS-
induced motor plasticity was reduced with time as the dis-
ease progressed in 6-OHDA-induced hemiparkinsonian
rats, indicating that the change in motor plasticity is highly
correlated with the degree of dopaminergic cell loss after
PD lesions form [45]. Similarly, the impairments in the
induction of the two forms of corticostriatal plasticity,
long-term potentiation (LTP) and long-term depression
(LTD), have been found to correlate with dopamine deple-
tion and the onset of symptoms in the experimental parkin-
sonism rat model induced by 6-OHDA [88]. These
impairments of bidirectional corticostriatal plasticity can
be rescued by rTMS, which is linked to the increase in stria-
tal dopamine levels produced by rTMS treatment [80].
Although we did not investigate the motor plasticity changes
assessed by electrophysiological measures (e.g., motor
evoked potential (MEP) elicited by TMS) in the current
study, the possible mechanisms underlying the therapeutic
effect in the improvement of motor functions could be via
plasticity-like effects induced by long-term rTMS interven-

tion in 6-OHDA-induced hemiparkinsonian rats when
dopaminergic cells were preserved in the early stage after
6-OHDA injection.

Apomorphine-induced rotational behavior is a common
method used to explore the level of dopamine depletion in 6-
OHDA-induced hemiparkinsonian rats [45, 46, 89]. The
time-course observations in the rotation test showed that
the number of rotations observed in an hour gradually
increased over the 4 weeks post-6-OHDA lesion in the
sham-rTMS group, indicating a progressive increase in
dopamine depletion with the increasing sensitization of the
denervated dopaminergic receptors in the observation stage
[89, 90]. However, the rotational response was reduced in
the first and second weeks in rats that received rTMS treat-
ment compared with rats that received sham treatment.
These results indicated that early and intermittent high-
frequency rTMS treatment could suppress the progression
of dopamine depletion post-6-OHDA lesion over repeated
sessions of stimulation. The effect of long-term rTMS treat-
ment on the mitigation of 6-OHDA-induced progressive
dopamine depletion in the early stage (i.e., 1-2 weeks post-
PD lesion) was parallel with the histological observations,
which showed neuroprotective effects against neurotoxin-
induced damage to dopaminergic neurons and fibers in the
SNpc and striatum, respectively. However, our findings
revealed that 4 weeks of rTMS showed a neuroprotective
effect in nigrostriatal dopaminergic neurons in histological
analyses but not in rotational behavior tests since the rota-
tion tests indicated that there were no differences between
the rTMS and sham treatment groups in the number of rota-
tions at weeks 3 and 4 post-6-OHDA lesion. No differences
were observed between two groups in the number of
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rotations could be due to the dose of apomorphine for
inducing spontaneous rotation being too high to show
supersensitivity differences [91, 92]. In the current study,
the dose of apomorphine was 0.5mg/kg, a relatively high
dose of apomorphine, which could easily lead to a plateau
in rotational behavior [91]. To overcome this possible limi-
tation, lower doses of apomorphine (0.05–0.1mg/kg) may
be more appropriate to detect the degree of dopamine recep-
tor supersensitivity and maximize the difference between the
rTMS and sham treatment groups [48, 91, 93].

The histological investigation showed that more dopa-
minergic cells survived in the group that received rTMS
treatment than in the group that received sham rTMS stim-
ulation. Such results suggest that daily rTMS intervention
may not only improve motor functions but also have neuro-
protective effects and mitigate the neurotoxin-induced dam-
age to dopaminergic neurons. Similar neuroprotective
results have been reported using low- (0.1Hz) or high-
frequency (10Hz) rTMS [43, 44]. The neuroprotective
effects on dopaminergic cells or fibers could be related to
anti-inflammatory factors (e.g., cyclooxygenase-2 (COX-2)
or tumor necrosis factor-alpha (TNF-α)); the upregulation
of neurotrophic/growth factors such as brain-derived neuro-
trophic factor (BDNF), glial cell line-derived neurotrophic
factor (GDNF), platelet-derived growth factor, and nerve
growth factor (NGF); and a reduction in the astrogliosis
and microglial activation (e.g., ionized calcium binding
adaptor molecule 1 (Iba-1), glial fibrillary acidic protein
(GFAP) induced by rTMS) [43, 44, 80]. Similar neuroprotec-
tive effects of rTMS were observed in brain injury and stroke
animal models [94, 95]. With rTMS intervention using the
TBS protocol, rTMS significantly reduced glial activation

and neuronal death and improved functional recovery, indi-
cating that rTMS may have potential as an antiapoptotic and
anti-inflammatory treatment [94]. Furthermore, in an ani-
mal model of stroke, long-term rTMS induces complex
changes in gene expression involved in angiogenesis, cellular
repair, structural remodeling, neuroprotection, neurotrans-
mission, and neuronal plasticity [95]. Although the underly-
ing mechanisms are still unclear, further investigations are
needed to clarify the detailed mechanisms underlying the
neuroprotective effects of rTMS in PD.

5. Conclusion

In conclusion, the current study findings provide a clearer
picture of progressive symptom changes with and without
rTMS treatment and indicate the efficacy of rTMS in pre-
venting motor and dopaminergic system abnormalities in a
6-OHDA hemiparkinsonian rat model. rTMS treatment
improved motor functions and had a neuroprotective effect,
showing that rTMS treatment preserved the function of
dopamine neurons damaged by 6-OHDA administration
in a rat model of PD. This long-term rTMS treatment model
may serve as a bridge between animal and PD human stud-
ies. Future research is still needed to further clarify the
underlying mechanisms and will lead to improved rTMS
protocols and more effective PD therapies in humans.

Abbreviations

6-OHDA: 6-Hydroxydopamine
BDNF: Brain-derived neurotrophic factor
BOS: Base of support
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COX-2: Cyclooxygenase-2
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GDNF: Glial cell line-derived neurotrophic factor
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