
MINI REVIEW
published: 11 October 2019

doi: 10.3389/fped.2019.00412

Frontiers in Pediatrics | www.frontiersin.org 1 October 2019 | Volume 7 | Article 412

Edited by:

Maria Ester Bernardo,

San Raffaele Hospital (IRCCS), Italy

Reviewed by:

Concetta Micalizzi,

Giannina Gaslini Institute (IRCCS), Italy

Yana Pikman,

Dana–Farber Cancer Institute,

United States

*Correspondence:

Michael N. Dworzak

michael.dworzak@stanna.at

Specialty section:

This article was submitted to

Pediatric Hematology and

Hematological Malignancies,

a section of the journal

Frontiers in Pediatrics

Received: 11 June 2019

Accepted: 25 September 2019

Published: 11 October 2019

Citation:

Buldini B, Maurer-Granofszky M,

Varotto E and Dworzak MN (2019)

Flow-Cytometric Monitoring of Minimal

Residual Disease in Pediatric Patients

With Acute Myeloid Leukemia: Recent

Advances and Future Strategies.

Front. Pediatr. 7:412.

doi: 10.3389/fped.2019.00412

Flow-Cytometric Monitoring of
Minimal Residual Disease in
Pediatric Patients With Acute
Myeloid Leukemia: Recent Advances
and Future Strategies

Barbara Buldini 1, Margarita Maurer-Granofszky 2, Elena Varotto 1 and

Michael N. Dworzak 2*

1 Laboratory of Hematology-Oncology, Department of Woman’s and Child’s Health, University of Padova, Padova, Italy,
2Children’s Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria

Minimal residual disease (MRD) by multiparametric flow cytometry (MFC) has been

recently shown as a strong and independent prognostic marker of relapse in pediatric

AML (pedAML) when measured at specific time points during Induction and/or

Consolidation therapy. Hence, MFC-MRD has the potential to refine the current strategies

of pedAML risk stratification, traditionally based on the cytogenetic and molecular

genetic aberrations at diagnosis. Consequently, it may guide the modulation of therapy

intensity and clinical decision making. However, the use of non-standardized protocols,

including different staining panels, analysis, and gating strategies, may hamper a broad

implementation of MFC-MRD monitoring in clinical routine. Besides, the thresholds of

MRD positivity still need to be validated in large, prospective and multi-center clinical

studies, as well as optimal time points of MRD assessment during therapy, to better

discriminate patients with different prognosis. In the present review, we summarize

the most relevant findings on MFC-MRD testing in pedAML. We examine the clinical

significance of MFC-MRD and the recent advances in its standardization, including

innovative approaches with an automated analysis of MFC-MRD data. We also touch

upon other technologies for MRD assessment in AML, such as quantitative genomic

breakpoint PCR, current challenges and future strategies to enable full incorporation of

MFC-MRD into clinical practice.

Keywords: acute myeloid leukemia, minimal residual disease, multiparametric flow cytometry, childhood, risk

stratification

INTRODUCTION

Pediatric acute myeloid leukemia (pedAML) is a heterogeneous group of hematological
malignancies classified according to morphology, immunophenotyping, and genomics (1). In
the last few decades, significant progress has been obtained in the outcome of pedAML, with
an increase of survival rate up to 70% (2). The results depend on the improvement in risk
stratification including genetic features at diagnosis, intensification of chemotherapy together with
the amelioration of supportive care, and application of hematopoietic stem cell transplantation
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(HSCT) to specific subgroups of patients (3, 4). Nevertheless
a large amount of patients (20–41%) encounters relapse, with
non-acceptable final outcome in about 50–70% of them (5–13).
Consequently, ever better definition of the factors predictive for
relapse may improve the outcome. Among those, the residual
disease assessment has been emerging as an ever more essential
tool for patients’ management and risk classification (6, 14–21).

Minimal or, more appropriately, measurable residual disease
(MRD) detection allows the identification of 0.1–0.001%
leukemic cells according to the adopted technique. MRD
assessment in AML may establish a more in-depth remission
status compared with the morphology-based evaluation, refining
outcome prediction. A properMRD approach should be sensitive
and highly specific, reproducible and standardized with ideally
an extended inter-institutional validation. Different techniques
are currently available for MRD detection in pedAML, each
one showing advantages and limitations: quantitative RNA-
based polymerase chain reaction (RT-PCR) analysis of specific
gene fusions, next-generation sequencing (NGS), gene expression
profiling (GEP) and multiparametric flow cytometry detection
(MFC) of aberrant immunophenotypes (22). Nowadays, RT-PCR
and MFC-MRD are applied in the clinical setting (23, 24).

RT-PCR of fusion transcripts allows MRD detection with
a sensitivity level of up to 0.001%. Regardless, it is applicable
only in about 50–60% of pedAML with a detectable fusion
gene or mutations. Moreover, a precise quantification of MRD
may be difficult due to the unpredictable number of transcripts
per leukemic cell (23). Among AML molecular alterations, the
persistence of RUNX1-RUNX1T1 and CBFB-MYH11 fusion
transcripts in continuous long-term remission have been already
described, hampering the clinical relevance of MRD detection
(25–27). Conversely, a slow molecular response at the end of
Induction in t(8;21)-rearranged AML is associated with a higher
risk of relapse when compared to an MRD reduction of at least
2 logs (28). Finally, different studies showed uncertain results on
the role of FLT3-internal tandem duplication (ITD) and NPM1
mutations as MRD markers, with a potential instability of those
lesions between diagnosis and relapse (14, 19). ITD-Allelic Ratio
levels and molecular MRD should be included in the clinical
management of FLT3-ITDAML patients since children with high
levels of RT-PCR-MRD after the first Induction course had worse
event free survival (EFS) (29).

NGS allows the identification of molecular anomalies,
particularly relevant in AML with normal cytogenetics (30). In
principle, it may be applied to all patients but requires highly
specialized bioinformatics analysis. Moreover, the role of NGS
in MRD detection is still controversial. While it may detect
subclonal changes during therapy, potentially crucial for patients’
outcome, NGS-MRD can be affected by mutations belonging to
clonal hematopoiesis and ancestral clones (31).

MFC-MRD has a lower sensitivity than RT-PCR (up to
0.01%), but it is applicable in more than 90% of patients.
Therefore, MFC-MRD is generally the method of choice for
MRD detection in clinical AML studies. MFC-MRD may
be assessed through two different techniques: (i) Leukemia-
Associated Immunophenotype (LAIP) approach allows to
identify leukemic blasts immunophenotype at diagnosis

and track it at re-evaluation points; (ii) Different-from-
Normal approach relies on the discrimination of aberrant
immunophenotypes from normal cells during follow-up (32, 33).

This review focuses on the most relevant findings on MFC-
MRD in pedAML and examines recent advances and new
approaches for its standardization, including novel concepts for
automated analysis of MFC-MRD data.

MFC-MRD: FROM PAST TO PRESENT

Even ifMRDmonitoring has become the standard of care in ALL,
only recently it has been acquiring an even more important role
in AML management (34).

In the last three decades, different retrospective studies
on MFC-MRD monitoring have been performed in adult
and pedAML. They suggested its strategic role in AML
risk stratification. Regardless, to date, no guidelines or
recommendations are available on methods, time points,
and clinical application of MFC-MRD in AML. That depends on
the heterogeneity of MRD assessment in AML, due to different
available techniques, difficulties in comparing MRD data among
laboratories and clinical trials, and the impact of sample quality
on MRD level (34–38).

Regarding pediatric cohorts, in 2003, the COG group
published the results of a prospective study on 252 de
novo pediatric AMLs. MFC-MRD emerged as the most
influential independent prognostic factor associated with poor
outcome (39).

In the same year, Coustan-Smith et al. (14) applied to AML-
MRD a four-color MFC approach usually adopted in pediatric
acute lymphoblastic leukemia. That allowed to reach a sensitivity
level of 0.1–0.01% of leukemic cells. MFC-MRD resulted as an
independent predictor of outcome.

The described technique was subsequently applied to a
cohort of 232 children consecutively enrolled in the AML02
multicenter trial. MFC-MRD was adopted as risk-stratification
criteria together with the genetic features. MRD positivity was
defined as 1 or more leukemic cells per 1,000 mononuclear bone
marrow (BM) cells (≥0.1%). MRD positivity after Induction
I was associated with an unfavorable outcome in high-risk
AML (P=0.01). Moreover, any MRD positivity after Induction
II was predictive of an adverse outcome. The authors were
able to monitor MRD in more than 90% of patients after
each therapeutic course. The combined approach showed an
improvement in patients’ outcome (6).

In support to the St. Jude study, MFC-MRD was an
independent prognostic variable in the Dutch Childhood
Oncology Group ANLL 97/Medical Research Council of the UK
AML12 experience, as well as in the COG AAML03P1 AML
study (16, 18).

Regardless, the AML-BFM study published in 2006 did not
find any significant role of MFC-MRD based on a standardized
panel for four-color immunophenotyping in outcome prediction
when compared to other known risk factors. A significant
difference in 3-years EFS was demonstrated in the presence
of positive MFC-MRD before the second Induction, and third
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therapy course but those data were not confirmed by a
multivariable analysis including FAB subtype, cytogenetics, and
morphologically determined blasts on day 15 (15).

Finally, two recent European studies strengthened the
prognostic role of MFC-MRD monitoring in pedAML. In
2016, Tierens et al. (40) retrospectively analyzed MFC-MRD
prognostic impact in a cohort of 201 children enrolled in
the NOPHO-AML 2004 trial. MRD was detected by LAIP
technique at two different time points (day 15 of Induction
therapy and before Consolidation therapy). Samples with at
least 0.1% leukemic events were considered MRD positive. In
a univariate analysis, MFC-MRD positivity on day 15 and
before Consolidation therapy was associated with a statistically
significant adverse 5-years EFS and overall survival (OS). In a
multivariate analysis including age, sex, leucocyte count, FLT3-
ITD mutations, core-binding factor mutations, residual disease
and BM morphology at both time points, only MFC-MRD
positivity before Consolidation therapy still was associated with
an unfavorable outcome, with a strong impact both on EFS and
OS (40).

In 2017, Buldini et al. (41) published a retrospective study on
the prognostic role of MFC-MRD in a cohort of 142 pedAML
patients treated according to the Associazione Italiana di Emato-
Oncologia Pediatrica (AIEOP)-AML 2002/01 trial. LAIP-MRD
was assessed by 5-color MFC after the first and the second
Induction courses, respectively, with a sensitivity cut-off of 0.1%.
After the first Induction course, different MRD level (< 0.1%
vs. ≥ 0.1%) correlated with different 8-year disease-free survival
(DFS) (73.1 ± 5.6% vs. 35.2 ± 7.2%, respectively, P < 0.01),
as well as 8-years OS (82.2% vs. 51.6%, respectively, P < 0.01).
Similar results were observed for MRD levels after the second
Induction therapy course (8-years DFS: 68.4 ± 7·9% for MRD
<0.1% vs. 21.9 ± 9·4% for MRD ≥ 0.1%, P< 0.01; 8-years
OS: 77.1% for MRD < 0.1% vs. 55.5% for MRD ≥0.1%). In
a multivariate analysis, MRD ≥ 0.1% after the first Induction
course was still associated with an adverse outcome (41).

Table 1 includes a complete list of the studies on MFC-MRD
monitoring in AML.

CHALLENGES OF MFC-MRD
ASSESSMENT IN AML

One of the most significant challenges of reliable MFC-MRD
monitoring in AML is the requirement of well-trained experts
in data interpretation. It is well recognized that intra- and inter-
leukemic immunophenotypic heterogeneity is a common finding
in AML (44). Leukemic blasts also need to be discriminated
from normal myeloid progenitors during hematopoietic
regeneration. Furthermore, immunophenotypic changes may
occur during therapy, making MRD data interpretation even
more challenging. Hence, a profound knowledge of myeloid
cell compartments at various differentiation stages in normal
and regenerating BM is required. To this aim, multicenter
trials should contemplate an extensive training of MFC-
MRD operators, including face-to-face activities with experts
and internet-based data reviewing. Furthermore, a program

for continuous quality control through recurrent ring trials
is warranted. A ring trial is a proficiency testing in which
identical samples are sent to the participating laboratories. The
laboratories are expected to analyze the samples within an agreed
period and send the results back to the coordinator center. That
allows monitoring the performance of participating laboratories
during time.

Besides, an extensive database of “normal” and regenerating
BM at different time points aids in establishing a “range of
normality” for each marker and immunophenotype. That can
be achieved only by building up international networks among
centralized reference laboratories to share resources and improve
the applicability and accuracy of MFC-MRD (45).

STANDARDIZATION EFFORTS FOR
MFC-MRD IN AML

To ensure comparability of results among different laboratories,
and facilitate the clinical use of MFC-MRD as a surrogate
for OS and EFS, a standardized and reproducible assay is
required (46, 47). Currently, multiple approaches for MFC-
MRD detection and quantification are adopted: those refer
to methodologies of sample processing, as well as antibody
panels. There is no consensus on instrument set-up, data
acquisition, analysis (e.g., gating strategies), and interpretation.
The calculation of MRD load is not standardized yet, since
different laboratories use different denominators for MRD
enumeration (e.g., percentage of total nucleated cells, CD45+

cells, or mononuclear cells).
Several national and international networks have been

established to optimize and standardize MFC-MRD detection
and quantification (46–51). In this context, the European
Leukemia Network recently published an extensive consensus
document (52) on MFC-MRD measurement in adult AML with
recommendations for common approaches including definition
of time-points, thresholds, technical requirements, marker
panels, and results reporting (32). Consistent adherence to such a
standardized approach will likely overcome many of the current
MFC-MRD limitations. Regardless, differences between pediatric
and adult AML need to be considered, especially concerning
LAIPs specificity (11, 53–55).

Conventional approaches for analysis and interpretation
of MFC-MRD data, lag behind standardization of the wet-
lab issues because of the many limitations of manual gating
and data analysis strategies, especially when dealing with
higher-dimensional complex datasets. Hence, data analysis and
interpretation currently is kind of a bottleneck for safely
applying MFC-MRD methodology in AML since it strongly
relies on the operator’s skills and is highly subjective and
time-consuming (56). This is especially true for increasingly
extensive marker combinations used for MRD detection.
Several approaches for automated MFC data analysis have
been proposed (57–64) to overcome this bottleneck by (i)
providing a superior resolution compared to conventional
manual gating with the whole multi-parameter MFC data
space at once (instead of 2-D plot-based visualization), (ii)
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TABLE 1 | Principal studies on the role of MFC-MRD in childhood AML.

References Pts (n) Age De novo/

relapsed AML

Treatment protocol BM evaluation time

points

MRD cut-off End point

Sievers et al. (39) 252 <22 De novo CCG-2941

CCG-2961

After I1

After I2

After C

After Int

0.5% 3-year RFS

3-year OS

Coustan-Smith et al. (14) 54 <22 De novo St. Jude AML97 After I1

After I2

0.1% 2-year OS 2-year

LFS

Langebrake et al. (15) 150 0.06–20 De novo AML BFM 98 Day 15

Before I2

Before TC3

Depending on LAIP

specificity and

evaluation time-point

3-year EFS

3-year FFS

van der Velden et al. (16) 94 1–16 De novo MRC AML12

DCOG ANLL97

After TC1

After TC2

After TC3

EoT

<0.01%

0.01–0.1%

0.1–1%

>1%

3-year RFS

3-year OS

Rubnitz et al. (6) 216 <21 De novo AML02 After I1

After I2

<0.1%

0.1–1%

>1%

3-year EFS

3-year CIR

Loken et al. (18) 249 <21 De novo COG AAML03P1 EoI1

EoI2

EoT

EoI1:

<0.1%

0.1–1%

1–5%

>5%

EoI2/EoT:

RD pos/neg

3-year OS

3-year RFS

3-year RR

Inaba et al. (24) 203 <21 De novo AML02 After I1

After I2

<0.1%

0.1–1%

>1%

5-year EFS

Walter et al. (42) 253 any De novo/relapsed / Before HCT MRD neg

<0.1%

0.1–1%

>1%

3-year OS

3-year DFS

3-year NRM

3-year relapse

Karol et al. (20) 208 <21 De novo AML02 After I1

After I2

0.1% 5-year EFS

5-year OS

Tierens et al. (40) 101 <18 De novo NOPHO AML 2004 Day 15

Before C

0.1% 5-year EFS

5-year OS

Buldini et al. (41) 142 0.1–

17.8

De novo AIEOP AML 2002/01 After I1

After I2

0.1% 8-years OS

8-year EFS

8-year DFS

8-year CIR

Coustan-Smith et al. (43) 37 0.5–17 De novo Malaysia-Singapore

AML 2006

/ 0.1% /

Pts, patients; n, number; AML, acute myeloid leukemia; BM, bone marrow; MRD, minimal residual disease; I1, Induction 1; I2, Induction 2; C, Consolidation; Int, Intensification; RFS,

relapse-free survival; OS, overall survival; LFS, leukemia free survival; TC, therapy course; FFS, failure-free survival; EoT, End of Treatment; CIR, cumulative incidence of relapse; EoI, end

of induction; RD, residual disease; pos, positive; neg, negative; RR, relapse risk; HSCT, hematopoietic stem cell transplantation; DFS, disease free survival; NRM, non-relapse mortality.

increasing results comparability and reproducibility through
reduction of subjectivity caused by manual operator gating
and (iii) substantially reducing the workload (e.g., extensive
staff trainings) and laboratory costs. Recently, several national
reference laboratories of the iBFM-FLOW network and the
AIEOP-BFM AML FLOW-MRD study group from across
Europe [Austria, Germany, Italy, Poland, Russia (Moscow) and
South America (Argentina)] have joined forces in a project
called flowCLUSTER, dedicated to foster standardization and
automation of MFC-MRD analysis in pedAML. They used
machine learning technologies (61, 65), similarly to what
already pursued in automated MFC-MRD data analysis of
acute lymphoblastic leukemiasamples (57, 60, 64). It can be

assumed that such an automated tool, together with central
review and a program of continuous quality assessment,
will provide standardization and high resolution in MFC-
MRD assessment.

IDENTIFICATION AND INTEGRATION OF
SUITABLE LAIPS TO MONITOR MRD IN
AML

Diagnostic laboratories have shifted from 4 to 6 colors upto 12
colors MFC, with a substantial improvement of LAIP detection
and discrimination between aberrant and normal cells (32,
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TABLE 2 | Markers for MFC-MRD in AML.

Marker References Comment

Core markers/Backbone CD33 (32)

CD34 (32)

CD45 (32)

CD117 (32)

HLADR (32)

Mandatory markers CD13 (32)

CD14 (32)

CD15 (32)

CD11b (32)

CD38 (32)

CD123 (70, 71)

CD371 (71, 72)

CD45RA (73, 74)

CD99 (70, 75)

Optional markers CD2 (32) If positive at diagnosis

CD4 (32) If positive at diagnosis

CD7 (32) If positive at diagnosis

CD56 (32) If positive at diagnosis

CD11a
=l (54) If negative at diagnosis

NG2
=L (53, 78) If positive at diagnosis

=lUsually negative in AML M7 and TMD.
=LExpressed in most cases with 11q23 (KMT2A) abnormalities.

66). Integration of computational methods into the diagnostic
workflow will further facilitate the use of even more complex
staining panels. However, suitable markers or patterns of antigen
co-expression unequivocally distinct from those of normal
hematopoietic cells should be available.

Aberrant LAIPs can be identified at diagnosis in the vast
majority of childhood AML cases (16). Nevertheless, LAIPs are
not always reliable and sensitive for MRD monitoring due to
several reasons (49, 67, 68). First, LAIPs can be expressed only
by a subpopulation of AML blast cells, potentially hampering
MRD detection in follow-up samples. Second, not all LAIPs are
stable during the follow-up, possibly resulting in false-negative
MRD estimation (69). Besides, the suitability of an antigen for
MRD assessment strongly depends on both the degree of its
background expression on normal cells and its discriminative
expression pattern.

Current marker panel recommendations, including those
published by the ELN (32) contain broadly useful markers like
the core/backbone markers CD33, CD34, CD45, CD117, and
HLADR, the mandatory markers CD13, CD14, CD15, CD11b,
CD38 (32), CD123 (70, 71), CD371 (71, 72), CD45RA (73,
74), and CD99 (70, 75), as well as optional markers as per
diagnosis, e.g., CD56. In the recent years several new, promising
markers have been identified. CD11a is consistently expressed
on normal leukocytes and CD34+ progenitors in BM (76, 77).

Boztug et al. (54) reported that CD11a deficiency is highly
specific for AML-M7, Down Syndrome (DS) AML and transient
myeloproliferative disease, making it an ideal candidate for MRD
monitoring in these subtypes (Table 2). Advanced technologies
including GEP (43) or mass spectrometry based on cell surface
capture technology (79) are increasingly used to discover novel
markers for MFC-MRD. Recently, Coustan-Smith et al. (43)
used genome-wide gene expression analysis to identify different
marker profiles specific for AML and normal hematopoietic cells.
The authors identified twenty-two markers able to improve the
discrimination between leukemic and normal cells. Notably, their
expression was stable during chemotherapy, as well as upon
relapse (43). In an attempt to identify targets for CAR-T cell
therapy, Perna et al. (80) generated an extensive dataset of AML
surface proteins using proteomics and transcriptomics. They
identified several antigens highly expressed in AML bulk and
leukemic stem cells but expressed only at very low levels in
normal hematopoietic cells.

MAY MFC-MRD REPRESENT A
SURROGATE ENDPOINT FOR SURVIVAL
IN PEDIATRIC AML?

In the majority of late-phase clinical trials, the primary endpoints
are OS and EFS (81). Hence, a long follow-up period is required
before drawing any conclusions on the efficacy of new therapy
regimen and new anti-AML-drugs. To accelerate the discovery
and approval of new drugs for pedAML, the call for a suitable
surrogate for OS and EFS is steadily growing louder. Recently,
the Food and Drug Administration (FDA) published a guidance
document on the role of MRD in the development of drug
products (FDA website, 2018). The use of MFC-MRD as a new
early endpoint for the assessment of therapeutic response in
clinical trials is intriguing. MFC-MRD detection in AML may
expedite drug approval or prevent the adverse continuation of
suboptimal treatment strategies (82). Several studies have already
shown the potentialities of MRD as surrogate endpoints in
AML (83–85).

CONCLUSIONS

With continuous efforts in standardization, MFC-MRD response
may guide treatment intensity, and become a useful surrogate
endpoint for clinical drug development in pedAML. Hence it
is time to perform prospective, multicenter randomized trials to
evaluate the impact of therapeutic interventions driven by MFC-
MRD, together with its role as an early marker of response-to-
therapy and a potential surrogate survival endpoint.
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