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Abstract
The standardized mean difference is a well-known effect size measure for continuous,

normally distributed data. In this paper we present a general basis for important other

distribution families. As a general concept, usable for every distribution family, we

introduce the relative effect, also called Mann–Whitney effect size measure of stochas-

tic superiority. This measure is a truly robust measure, needing no assumptions about

a distribution family. It is thus the preferred tool for assumption-free, confirmatory

studies. For normal distribution shift, proportional odds, and proportional hazards,

we show how to derive many global values such as risk difference average, risk differ-

ence extremum, and odds ratio extremum. We demonstrate that the well-known bench-

mark values of Cohen with respect to group differences—small, medium, large—can

be translated easily into corresponding Mann–Whitney values. From these, we get

benchmarks for parameters of other distribution families. Furthermore, it is shown

that local measures based on binary data (2 × 2 tables) can be associated with the

Mann–Whitney measure: The concept of stochastic superiority can always be used.

It is a general statistical value in every distribution family. It therefore yields a proce-

dure for standardizing the assessment of effect size measures. We look at the aspect

of relevance of an effect size and—introducing confidence intervals—present some

examples for use in statistical practice.

K E Y W O R D S
binary, continuous data, clinical relevance, effect size measures, Mann–Whitney measure, transformation

of measures, ordinal

1 INTRODUCTION

Effect size measures to calculate size of benefit or risk are the basis of data analysis in clinical research. They are important tools

for quantifying benefit or risk of a medicinal product. Benchmark values have been developed for defining relevance of effect

size quantities in various medical fields. Examples in drug research are those given for the relative risk or risk ratio of a standard

2 × 2 table of frequencies (Skipka et al., 2016). Effect size measures in the current literature are commonly based on continuous

data (raw scale or standardized mean difference) or binary data (risk difference, risk ratio, odds ratio, hazard ratio). Appropriate

procedures for the analysis of ordinal data are rarely seen, although the odds ratio has been discussed in the handbook about
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General Methods of the Institute for Quality and Efficiency in Healthcare, in short IQWiG (version 4.2, dated 22.4.2015), citing

a note in the guidelines of the Cochrane Collaboration Handbook (Chapter 5). The analysis of risk values seems to be by far the

most popular procedure, the binary data being genuine dichotomies or derived by dichotomization of a continuous or ordinal

scale. (See also Cochrane Handbook for Systematic Review of Intervention, Version 5.1.0 (2011), chapter 12.6.3.)

We give a detailed overview of the most useful parameters and their often used functions. This overview is based on the

measure of superiority P(Y < X), known also as the Mann–Whitney effect size measure MW.

This measure always exists. It can be used to compare effect size measures given by other procedures. Although some of these

measures have been published in an isolated fashion in scientific journals, we present a structured overview of the most important

parameters and some of their helpful functions. Only a small part of our scheme has appeared previously in the literature and

comparisons between distribution families are new.

For the normal distribution MW can be expressed by the parameter standardized mean difference 𝛿. For the Lehmann family

MW is a function of the hazard rate ratio 𝛾 . Finally for the proportional odds family the formula for calculating MW from the

proportional odds parameter 𝛽 is given.

We demonstrate some very useful characteristics of the Mann–Whitney measure. Care should be taken when searching the

literature for references to the Mann–Whitney measure because this measure has been invented, reinvented, and advocated in

the statistical literature with a plethora of different names: “Measure of stochastic superiority of Y2 over Y1” (Klotz, 1966),

“Common Language Effect Size Indicator” (McGraw & Wong, 1992), “Relative Effect” (Brunner, Domhof, & Langer, 2002;

Brunner & Langer, 1999), “Area Under the Curve” (of a receiver operating characteristic), AUC (Kraemer & Kupfer, 2006)

“probability index” (Acion, Peterson, Temple, & Arndt, 2006), among many others.

Advantages of the Mann–Whitney effect size measure are:

• It is defined for all distribution families.

• It is a universally applicable measure for superiority with a very general probabilistic interpretation and can be expressed by

functions of the defining parameters for special distribution families.

• It is associated with a well-known graphical procedure, the percentile–percentile (P-P) plot, identical to the “Receiver Oper-

ating Characteristic” (ROC), well-known in the field of diagnostic research.

• It can be used for the analysis of continuous, quasi-continuous, ordinal, and even binary data.

We show that there are three simple functions of the Mann–Whitney effect size measure, all three of which provide useful

interpretations of the data: Mann–Whitney odds (MWodds), risk difference average (RDaverage), and Mann–Whitney difference

(MWD).
To fix ideas about the parameters and their relationships, we begin in Section 2 with a detailed description of formulas

within several distribution families and their embedded parameters. Section 3.1 presents the classification scheme as a structured

overview, with parameters and formulas, as well as benchmark values equivalent. Section 3.2 describes more practical aspects

for the Mann–Whitney measure. Section 3.3 finally provides examples showing many different ways of comparing effect size

measures and their interpretation using confidence intervals. The conclusion is a discussion of various related topics (Section 4).

2 THE MANN–WHITNEY EFFECT SIZE MEASURE, GLOBAL, AND LOCAL
DEFINITIONS

2.1 The Mann–Whitney measure
In the following we present some technical details for the robust Mann–Whitney measure (MW) and two other useful robust

measures derived from the MW measure. We then show some interesting features of the MW measure assuming a certain distri-

bution family. These features make interpretations of the MW measure possible, even if the assumptions hold only approximately

in practice.

If we have two random variables X, Y with distributions functions 𝐹 (𝑡) = 𝑃 (𝑋 ≤ 𝑡), and 𝐺(𝑡) = 𝑃 (𝑌 ≤ 𝑡) then the Mann–

Whitney measure is defined as the probability MW = 𝑃 (𝑌 ≤ 𝑋) = ∫ 1
0 𝐺dF.

There are derived measures that are often cited in the literature. One is MWodds = MW∕(1 − MW) that will be shown later

to be the estimator of the hazard rate ratio 𝛾 under the Lehmann alternative. Another, less well known, is the average risk

difference, defined as RDaverage = ∫ 1
0 (𝐺 − 𝐹 )dF that reduces to RDaverage = MW − 0.5. This is half the well-known Mann–

Whitney difference (MWD), sometimes incorrectly called risk difference.
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There even exist averages of other measures such as RR or OR. These can be formally defined as RRaverage = ∫ 1
0 RRdF and

ORaverage = ∫ 1
0 ORdF. These integrals are usually approximated numerically.

Also of interest are measures and relations based on the assumption of some distribution family. There are three important

families: shift, proportional odds, and proportional hazard rate. In the following the Mann–Whitney measure is used to give

benchmarks for parameters of these families that result in the same MWs.

2.2 Global definitions
In the following we will distinguish between local measures at some threshold t0, F(t0) = CER (control event rate) and 𝐺(𝑡0) =
TER (test event rate), so called event rates and global parameters of distribution families. The most locally important derived

measures are RD = TER − CER, RR = TER∕CER, OR = TER∕(1 − TER)∕CER(1 − CER).
With the relation OR ⋅ (RR − 1 − RR ⋅ RD) = RR ⋅ (RR − 1 − RD), we can find any of the three measures RD, RR, and OR

given the other two. From any two of these, it is easy to calculate CER and TER.

The interesting fact for the three distribution families is that the MW measure can be used to calculate the defining parameters

of all three families:𝛿 for normal distribution, 𝛽 for proportional odds, 𝛾 for proportional hazard.

2.2.1 Location distribution (shift)
Given are two distributions characterizing shift of parameters of some base distribution assuming equal 𝜎 = 1 for formula

simplicity. 𝐹 (𝑡) = Υ(𝑡 − 𝜇𝑥) and 𝐺(𝑡) = Υ(𝑡 − 𝜇𝑦) or Υ−1(𝐹 (𝑡)) = 𝑡 − 𝜇𝑥 and Υ−1(𝐺(𝑡)) = 𝑡 − 𝜇𝑦.

The standardized mean difference is given by 𝛿 = (𝜇𝑦 − 𝜇𝑥) = Υ−1(𝐹 (𝑡)) − Υ−1(𝐺(𝑡)). If 𝛿 is the effect size parameter of the

normal distribution family, we find MW = 𝑃 (𝑌 ≤ 𝑋) = Φ(−𝛿∕
√
2) and thus RDaverage = Φ(−𝛿∕

√
2) − 0.5.

Two other useful measures can also be defined for the normal distribution family: One is the extreme risk difference given by

RDextreme = Φ(−𝛿∕2) − Φ(𝛿∕2). Here, it is easy to see that this is smaller (in absolute value) than the Mann–Whitney difference

given by MWD = Φ(−𝛿∕
√
2) − Φ(𝛿∕

√
2). (This is true for convex relations in general as shown in Zimmermann and Rahlfs

(2014).) The other is the extreme odds ratio given by ORextreme = {Φ(−𝛿∕2)∕Φ(𝛿∕2)}2. (This relation was derived by Tritchler

(1995) using a different approach.)

2.2.2 Proportional odds family
Within this family, 𝐹 (𝑡) and 𝐺(𝑡) differ according to relation (we omit the variable t if not necessary) by 𝐺∕(1 − 𝐺) =
𝛽 ⋅ 𝐹∕(1 − 𝐹 ), where 𝛽 is the constant odds ratio within the family used as effect size parameter. Here, we find MW =
𝑃 (𝑌 ≤ 𝑋) = 𝛽∕(𝛽 − 1) ⋅ {1 − log(𝛽)∕(𝛽 − 1)}. MWodds = MW∕(1 − MW), the odds of MW, is not equal to 𝛽 above.

Here RRaverage = 𝛽 ⋅ log(𝛽)∕(𝛽 − 1) can be calculated in closed form. The extreme risk difference is given by

RDextreme = (
√
𝛽 − 1)∕(

√
𝛽 + 1) at CER = 1∕(

√
𝛽 + 1). For the logistic distribution, there is the special relation 𝛽logistic =

exp[𝜋(𝜇𝑦 − 𝜇𝑥)∕
√
3]. This must not lead, however, to simply translating Cohen's normal shift to the shift in logistic distri-

butions because the resulting MW will not be the same.

For the very simple case of F uniform and G as above, it can be seen that these distributions have very different shapes and

therefore cannot be shifted although they belong to the proportional odds family. (The logistic distribution is the only member

of the proportional odds family that also belongs to the shift family.)

2.2.3 Proportional hazard rate
The hazard rate of a distribution function F with density 𝐹

′ = 𝑓 is defined as ℎ𝑟 = 𝑓∕(1 − 𝐹 ). The hazard rate ratio of the two

functions F, G, therefore, is 𝐻𝑅 = 𝑑𝐺∕dF(1 − 𝐹 )∕(1 − 𝐺).
Assuming the so-called Lehmann alternative (HR constant = 𝛾), we find the solution of the differential equation above as

1 − 𝐺 = (1 − 𝐹 )𝛾 . Again we calculate MW = ∫ 1
0 1 − (1 − 𝐹 )𝛾dF = 𝛾∕(1 + 𝛾) and thus 𝛾 = MWodds can be used as the effect

size parameter of proportional hazard. With ℎ𝑒𝑙𝑝 = − log(𝛾)∕(𝛾 − 1), we find RDextreme = ℎ𝑒𝑙𝑝 − ℎ𝑒𝑙𝑝𝛾 . The extreme odds

ratio here is just the parameter 𝛾 or 1.

Again there is no need to assume exponential distribution. We can take F as uniform and define 𝐹 = 𝑡 and 𝐺 =
1 − (1 − 𝑡)𝛾 𝑡𝜀(0, 1). Both, F and G, are quite different from an exponential distribution but fulfill the Lehmann alternative.
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2.3 From local to global measures
If in the case of a simple 2 × 2 table only event rates CER and TER are given, we can proceed to global measures assuming a

specific distribution model. Assuming that the rates used are exact (or nearly so), we find good estimates from them.

2.3.1 Normal shift model assumed
Cohen's 𝛿 can be estimated with 𝛿 = Φ−1(CER) − Φ−1(TER) for every pair (CER, TER). Here, MW = Φ(−𝛿∕

√
2). Within

this model, all the locally defined measures as RD, RR, OR, and HR can be derived. The formula for HR is: 𝐻𝑅 =
𝑓𝑦∕𝑓𝑥⋅(1 − CER)∕(1 − TER) where 𝑓𝑥 = exp[−{Φ−1(CER)}2∕2] and 𝑓𝑦 = exp[−{Φ−1(TER)}2∕2].

2.3.2 Proportional odds model assumed
The odds ratio here is calculated as 𝛽 = TER∕(1 − TER) ⋅ (1 − CER)∕CER for any pair (CER, TER) and MW is given as

MW = 𝛽∕(𝛽 − 1) ⋅ {1 − log(𝛽)∕(𝛽 − 1)}. Within the proportional odds model the formula for HR can be derived using 𝑑𝐺∕dF =
𝐺∕𝐹 (1 − 𝐺)∕(1 − 𝐹 ) and one gets HR equal to RR. This relation seems not to be well known but could be very interesting for

interpretations.

2.3.3 Lehmann alternative assumed
The hazard rate ratio is estimated as 𝛾 = log(1 − TER)∕log(1 − CER) for every pair (CER, TER). This yields MW = 𝛾∕(1 + 𝛾)

3 OVERVIEW OF EFFECT SIZE MEASURES, THE PROMINENT ROLE OF
THE MW MEASURE, AND EXAMPLES FOR THE PRACTICAL WORKER

3.1 Classification scheme for measures and their relationships with given distribution
assumptions
Table 1 gives an overview of various effect size measures expressed as functions of MW = P(Y≤X). Four of them—Mann–

Whitney effect size measure (MW), the odds of MW, the average (expected) risk difference (RD), the Mann–Whitney difference

(MWD)—enjoy general validity and thus are fundamental for working with real-world data. They are placed at the top of the

table.

The larger part of the table presents known and some less-known effect size measures expressed as functions of MW for a

given specific distribution family.

We demonstrate the usefulness of the classification scheme by filling each box below the formula with equivalent quantities

for well-known benchmark values of “small,” “medium-sized,” and “large.” Although any effect size measure or quantity could

have been chosen as a starting point, we based all calculations on the popular benchmark values of Cohen's standardized mean

value 𝛿: 0.2, 0.5, and 0.8 (Cohen, 1969, 1977).

The classification scheme is a base for handling continuous data. For binary data, locally measured values such as risk differ-

ence (RD) or odds ratio (OR) are commonly used. For continuous data, it is possible to use globally defined measures such as

risk difference average, risk difference extremum, or odds ratio extremum.

Using the MW values defined by Cohen's benchmarks, we find all corresponding effect sizes for all families: normal, propor-

tional odds or proportional hazard. This is possible because their parameters are comparable through their relationship to the

MW measure.

3.2 The MW effect size measure: Practical aspects and interpretation
The MW effect size measure is a general measure for describing any useful data situation of superiority (or inferiority) of one

group compared to another in a typical two-group comparison of an experimental/clinical study. The interpretation is often

described as follows: the MW measure is the probability that a randomly selected patient from a test group fares better than a

randomly selected patient from the reference group. A more concrete definition is based on numbers: Assume that there are

two teams, X and Y. They play a match where every player of one team plays against every player of the other. How often the

X-players win is determined and this number is divided by the total number of matches. The result is the MW value, often written

as P(Y < X) without tied values (no win or lose), or as P(Y < X) + 0.5 P(Y = X) including tied values. Thus, we have a probability

measure. Simply, the result of a group comparison can be formulated as “the probability of a better outcome” (Colditz, Miller,
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T A B L E 1 Definitions of effect size measures and pathways between them as well as transformation formulas are given and effect sizes derived

from Cohen´s benchmark values: SMD = 0.2 (small), 0.5 (medium-sized), and 0.8 (large) for relevance of a difference

Effect size measures with relationships
Robust/assumption free
Magnitude MW MWD MWodds RDaverage

Small 0.444 –0.113 0.798 –0.056

Medium 0.362 –0.276 0.567 –0.138

Large 0.286 –0.428 0.400 –0.214

Measures with distribution assumption
Normal distribution Proportional odds Lehmann alternative
Cohen's 𝜹 Odds ratio 𝜷 Hazard rate ratio 𝜸

Parameters 𝛿 = −Φ−1(MW) ∙
√
2 𝛽 = Numerical solution of

MW = 𝛽 *(𝛽 − 1 − ln (𝛽))
(𝛽 − 1)2

𝛾 = MW
1 −MW

0.200 0.713 0.798

0.500 0.428 0.567

0.800 0.256 0.400

Odds ratio extreme

(
Φ(−𝛿∕2)
Φ(+𝛿∕2)

)2

Constant = 𝛽 From 𝛾→0

0.727 0.713 0.798

0.450 0.428 0.567

0.277 0.256 0.400

Risk difference extreme Φ
(−𝛿

2

)
− Φ

(+𝛿
2

) √
𝛽 − 1√
𝛽 + 1

(1−𝛾)
√
𝛾

(
1 − 1

𝛾

)

–0.080 –0.085 –0.083

–0.197 –0.209 –0.206

–0.311 –0.329 –0.326

Remark: the direction of the effect size measures could also be reversed: SMD could be minus instead of plus; MW, reflected around 0.5; OR, larger than 1 or reciprocal.

The direction of superiority, however, must be defined.

& Mosteller, 1988). This measure by its very nature is assumption-free and thus conforms to the requirement of “minimizing

the required assumptions of analysis procedures” (LaVange, Durham, & Koch, 2005, Saville, LaVange, & Koch, 2011).

Statistical properties of the procedure are well known. The MW measure can be estimated for arbitrary distributions even in

the binary case. Therefore, it can be used as a universal tool for comparing benefit or risk across different scales in a clinical

study or across several studies in a meta-analysis.

Until now effect size measures were mostly based on binary data (2 × 2 table), either genuine binary data (e.g. mortality)

or those derived by dichotomizing a continuous or ordinal scale at some cutoff point. Against this there are two objections.

First, the choice of the cutoff point is more or less arbitrary unless it has been accepted by the scientific community. Second,

although the so-called responder analysis is sometimes useful for clinical interpretation, the process of dichotomization wastes

patient information as has been demonstrated by many researchers. (see Uryniak et al., 2011). Thus, whenever continuous,

quasi-continuous or ordinal data are available, they should be analyzed using the Mann–Whitney efficacy measure and related

measures.

The use of the MW measure for obtaining a good measure of relevance in clinical research has been recommended for many

years. We cite Brunner and Munzel, 2002, Colditz et al., 1988, D´Agostino, Campbell, and Greenhouse, 2006, Munzel and

Hauschke, 2003, Newcombe 2006, Wei and Lachin, 1984, and Wolfe and Hogg, 1971, among others. Recently, the MW measure

was proposed as the best measure of relevance in clinical research, inasmuch as it is a global measure not bound to thresholds

such as local RD, RR, and OR, and also generally more efficient than the hitherto fashionable responder rate analysis based on

binary data (Kieser, 2014; Kieser, Friede, & Gondan, 2013). We also cite Bordley (2009) who described MW as the probability

that a treatment fulfills the Hippocratic oath “to help or, at least, do no harm,”). Demidenko (2016) recently recommended the

Mann–Whitney measure (called the “D-measure”) as a useful measure for personalized medicine when treatment is sought, not

on a group, but on an individual level.
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The MW effect measure is related to a special graph type, the percentile–percentile plot (P-P plot), a scatterplot of the empirical

distribution functions (EDF) of two groups. This graph is also well known in the field of diagnostic research as the receiver

operating curve (ROC) (see Brumback, Pepe, & Alonzo, 2006; Newcombe, 2006, part I; Schistermann, Reiser, & Faraggi,

2006, and others). The area under the empirical function (AUC) is just P(Y≤X) and the area between the curve and the diagonal

is nothing else than RDaverage just showing the deviation from pure chance. If the curve is completely above the diagonal, then the

difference is called stochastic ordering or stochastic superiority. In the other case, it is called stochastic tendency or relative effect.

3.3 Confidence intervals and their use in statistical practice
For test-based confidence intervals (CIs) there is a duality of CI and test with the advantage that the CI gives the acceptance

region for the null hypothesis and herewith a hint about the precision of the estimator. In addition to this use of CIs, the toolbox of

the statistical researcher is substantially enlarged when using the formulas given in Table 1 in Section 3.1. Effect size measures,

bounds for confidence intervals, and also benchmark values for relevance or irrelevance, they all can be compared with values

of an alternative model. Using the Mann–Whitney measure of superiority, which exists for any model, it is possible to compare

parameters of different models (normal distribution, proportional odds ratio, proportional hazards ratio, etc.). In the following,

we give examples for interpretation and interpretation after reexpression of values of a clinical study.

3.3.1 Examples: Different outcomes and effect size measures
The handling of the problem of different outcomes and different effect size measures will be exemplified by inspecting the so-

called “summary of findings table” that is the recommended overview table for the presentation of study results (Guyatt et al.,

2013). We discuss Table 5 of the Guideline (p. 179). This table gives five entities of outcome scales (called A to E), taken from

a summary of 16 studies with a total of N = 816 patients. We discuss the adequacy of tests and the merit of our conversion

approach for parts A to D (part E is in principle a repeat of part A). All confidence intervals in the table are 95% CIs. Both sides

of the CI are given, but in general, when testing for relevance (or irrelevance), only one side is of interest.

(A) Part A of Table 5 presents a summary measure for different continuous scales, obviously referring to the same entity.

The effect size resulting is given as SMD = 0.72 (0.48–0.96). This value tells us that the null hypothesis of no difference

(SMD = 0.0) can be rejected inasmuch as it is not contained in the CI. Using the CI, we can also provide statements about

the clinical relevance of the observed difference. For interpreting SMD values, we use the benchmark values of Cohen 0.2,

0.5, and 0.8 for small, medium, and large, respectively, which are also cited in the comment column of Table 5 as “a rule

of thumb.” Thus the estimator 0.72 being larger than 0.5 demonstrates at least medium-sized relevance. The lower bound

of the CI is the important boundary for proving relevance. With a lower bound CI = 0.48, superiority is proven for at least

the value 0.2, based on the data of this study (a study with more patients would have led to a smaller CI).

The same is true if we convert SMDs to MW values. The resulting MW is 0.31 (0.37–0.25), leading to the same conclusions

using the MW values of Table 1 corresponding to Cohen's benchmark values. These can then be used to obtain benchmark

values for other models.

Remark: The direction of the effect size measures could also be reversed: SMD could be minus instead of plus; MW,

reflected around 0.5; OR, larger than 1 or reciprocal. The direction of superiority, however, must be defined.

(B) Part B of Table 5 gives again a summary of scales. All are compressed to a 7-point scale of ordered categories. The result

is given as a mean difference in favor of the treatment group, MD = 0.71 (0.48–0.94). Apparently, it was assumed that the

clinical researcher has experience with the scale of natural units going from 1 to 7.

Here, calculation of the WMW test and its associated MW values would have been helpful because this procedure is

recommended for the analysis of scales with ordered categories (no interval scale). Then the MW value and its CI could

have been interpreted using the benchmark values given for the MW measure. These benchmark values can be used for any

other model, as for example for proportional odds as used in Table 5C.

(C) Part C of Table 5 presents effect size measures for the proportion of patients with improvement. The table shows risk

difference as RD = 0.31 (0.22–0.40) based on 0.3 for control group and OR = 3.36 (2.31–4.86). (Although we could not

reproduce this OR value using the data shown, we will use it in the following for demonstration purposes; its difference

from our value is not large.)

The question is now whether the OR value indicates a relevant superiority for the test drug. Until now benchmark values

for an OR value were not really known. But values equivalent to Cohen's proposal can be obtained as 1.40, 2.34, and 3.91

for the proportional odds model (see also Table 1 in Section 3.1). The value 2.31, the lower bound of the CI, is larger than

1.40 so that at least a small treatment effect is proved (and nearly a medium-sized benefit). Thus the statement of relevance

is nearly the same as that obtained with the continuous data SMD.
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We calculated MW values derived from an OR value given in Table 5 and obtained MW= 0.69 (0.64–0.74) that equivalently

can be interpreted with reference to the benchmark values 0.56 (small), 0.64 (medium), 0.71 (large).

(D) Part D in Table 5 is supposed to give a ratio of mean values, but the studies cited in the table do not present results

expressed as a ratio of means. This would have been an interesting information. Assuming a proportional hazard family

with exponential distribution, the ratio of two means could be interpreted as an estimator for the so-called hazard rate ratio

𝛾 . For demonstration purposes, we now use the data of part D in Table 4 that gives the ratio of means RM = 0.87 (0.78–

0.98). Using the formula MW = 𝛾/(1+𝛾), we obtain MW = 0.467 (0.438–0.494), that is no indication of relevance. Note,

however, that the example in Table 4 is based on completely different studies.

4 DISCUSSION

Currently, measures of relevance in clinical research are primarily based on binary data (RR, OR, RD, and NNT) and on some

types of continuous data (MD, SMD, and HR) and in rare circumstances also on ordinal data (generalized proportional OR).

In this paper, we present well-known and less-well-known measures/parameters for continuous data, all organized in a classifi-

cation scheme with defined relationships based on algebraic formulas. Assuming a special data situation, normal distribution,

proportional odds, or proportional hazards, all measures can be transformed to others within a family of distributions. For practi-

cal purposes, the normal shift and proportional odds situations are very similar, so that interchanging situations is reasonable, at

least for interpreting measures of relevance. Thus, each of the well-known benchmark values for relevance, for instance Cohen's

effect sizes, can now be compared to an equivalent quantity of another measure in the sense of equal stochastic superiority (see

Table 1 in Section 3.1 in this paper). Operationalization of clinical relevance can be obtained with reference to the SMD measure.

Recently, a proposal was made for defining Cohen´s effect size SMD = 0.2 (small difference) as clinically irrelevant (IQWiG,

Vers. 5.0, 2017). Having accepted this value, it is easy to translate it to an equivalent value (with the same Mann–Whitney value)

for the parameters of other distribution families.

Our classification scheme is based on the robust assumption-free Mann–Whitney measure of stochastic superiority (MW) and

its robust derivations, odds (not odds ratio!), and average risk difference (RDaverage). The MW measure is not only interesting

in itself, it is also a key measure for many useful relations to other measures. The value of MW given OR = 𝛽 constant was

determined in Section 2.2 when discussing the proportional odds family. Previously, this relation has never been cited in the

literature (to the best of our knowledge), although it is extremely important because the odds ratio is often used when analyzing

ordinal data (Bender & Grouven, 1998; Bolland, Sooriyarachchi, & Whitehead, 1998; Lu & Tilley, 2001; McHugh et al., 2010;

Savitz, Lew, Bluhmki, Hacke, & Fisher, 2007; Tilley et al., 1996; Tilley, 2012; Whitehead, 1993; Whitehead et al. 2010). It is

of interest that Agresti's 𝛼, defined as P(Y > X)/P(X > Y) is sometimes alleged to be the odds ratio (Agresti, 1980; Fujii, 2004;

Kieser et al., 2013; Newcombe, 2006, part 1), although it is—statistically speaking—the odds.

The number-needed-to-treat (NNT) has become a fashionable measure in the working group of Evidence Based Medicine

(Altman et al., 2001; Cook & Sackett, 1995; Guyatt, Rennie, Meade, & Cook, 2008). This measure denotes the number of

patients to be treated to find an average of one more success (or failure) patient compared to the reference group. Now the

simple risk difference in a 2 × 2 table is equal to the Mann–Whitney difference, MWD = 𝑃 (𝑌 < 𝑋) − 𝑃 (𝑌 > 𝑋) = 2MW − 1.

This feature has led some researchers to assume that it is correct to generalize the Mann–Whitney difference (MWD) to ordinal

and continuous data (Kraemer 2006; Kraemer & Kupfer, 2006; Kraemer et al., 2003), but as shown by Zimmermann and Rahlfs

(2014), this definition gives rather unreasonable results for continuous data (see also the hint in Section 2). If NNT based on risk

difference is to be used at all (for objections to the RD, see Skipka et al., 2016), we propose using RDaverage = MW – 0.5 or the

RDextreme derived from the parameter of the distribution. Concerning the often used procedure of dichotomization for obtaining

a 2 × 2 table, Senn and Julious (2009, p. 3204) remark:“…it is totally unacceptable to create dichotomies purely in order to be

able to calculate NNTs.” It is interesting that Edwardes and Baltzan (2000) recommended some generalizations of 2 × 2 table

measures. Their generalized ORG, however, is Agresti's alpha and their RDG is the method of Kraemer (2006). Both are now

misleading.

The relative risk (RR) does not fit in this scheme: Contrary to other measures that are global the RR is strictly local, meaning

that it is dependent on a specified rate in the reference group, called control event rate (CER).
Indeed, there are inherent disadvantages for RR. Because RR is not symmetric about the center of the distribution, whether

RR results are based on the event or the counter-event (e.g. death or survival), makes a considerable difference. The relative risk

can never increase beyond a certain upper limit (see also Skipka et al., 2016).

For death or survival, the category death is usually chosen because the RR in most cases is smaller than a predefined value

that is less than 1.0. If, however, RR is used at all, we recommend calculating RR for both categories, for example for death and
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survival. It could be that one side shows a relevant RR whereas the other side does not. In the following, we give a simple data

example for the 2 × 2 table and assume that RR < 0.5 is a value of major relevance:

Death Survival

TER treatment 0.6 0.4

CER control 0.9 0.1

For death, we have RR = 0.67 so that the result is not relevant (RR > 0.5). For survival, we have RR = 4.0, or taking the

equivalent reciprocal value, we have RR = 0.25 that is relevant (RR < 0.5). A decision with respect to the two sides need not be

made for the odds ratio.

There also are difficulties with the risk difference measure. The IQWiG method manual (2015, p. 191) remarks that the risk

difference is highly dependent on the risk of the control group and therefore cannot be a useful effect size measure. This statement

is, indeed, true as can be seen by looking at Table 6 in Guyatt et al. (2013) that gives RDs derived from a single 𝛿 based on “control

group response rate” (reexpression formula of Furukawa, 1999). Therefore, the Cochrane Collaboration Handbook recommends

always presenting a variety of NNT values based on a different “assumed control risk,” which is, of course, awkward. Contrary to

that there are some well-defined global RD values in our scheme of measures, all based on the complete set of continuous data,

when derived from a global 𝛿, 𝛽, or 𝛾 , etc. There is then a reasonable final result: either expected (∼average) or extreme RD.

Effect size measures and relationships are now appearing everywhere in the literature. We have structured these measures in

such a way that the data distribution used for a specific reexpression is clear. Our classification scheme is based on continuous

data, so that ordinal data and even binary data can be tackled with transfer formulas. Thus, if continuous data are available,

there is no need for dichotomization associated with the well-known loss of data information. Our formulas provide standards

for interpreting the relevance of all measures in the scheme. The cornerstone of the scheme is the relative effect also known

as Mann–Whitney measure. This is rarely used and cited in the mainstream literature, although it has definite advantages: it is

assumption-free and also efficient because it exploits all data information. We use it as a general basis for comparisons of effect

size measures.

The formulas are extremely important when confronted with the task of a meta-analysis based on several different effect size

measures, but they are also of interest for the data analysis in a single study. Here, we recommend starting by calculating the

robust MW measure of stochastic superiority and then—for the purpose of the interpretation—transferring the result. Example:

MW to RDaverage. From this, using specific distribution assumptions, we can get their defining parameters and resulting averages

and extreme values. No dichotomization necessary.
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