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Abstract: In this paper, a novel mirror visual feedback-based (MVF) bilateral neurorehabilitation
system with surface electromyography (sEMG)-based patient active force assessment was proposed
for upper limb motor recovery and improvement of limb inter-coordination. A mirror visual feedback-
based human–robot interface was designed to facilitate the bilateral isometric force output training
task. To achieve patient active participant assessment, an sEMG signals-based elbow joint isometric
force estimation method was implemented into the proposed system for real-time affected side force
assessment and participation evaluation. To assist the affected side limb efficiently and precisely,
a mirror bilateral control framework was presented for bilateral limb coordination. Preliminary
experiments were conducted to evaluate the estimation accuracy of force estimation method and
force tracking accuracy of system performance. The experimental results show the proposed force
estimation method can efficiently calculate the elbow joint force in real-time, and the affected side
limb of patients can be assisted to track output force of the non-paretic side limb for better limb
coordination by the proposed bilateral rehabilitation system.

Keywords: bilateral rehabilitation; exoskeleton robotics system; surface electromyography (sEMG);
isometric force estimation; upper limb elbow joint rehabilitation

1. Introduction

Hemiplegia, which is a common sequela after post unilateral stroke, always refers
to the hemiparesis on the contralateral side of the upper limbs leading to disability on
one side [1]. Due to the asymmetrical motor function between bilateral side limbs, the
impaired paretic arms can disorder the bimanual coordination function and disrupt the
inter-hemispheric balance, which reveals the interlimb coordination after stroke may be
a crucial point for stroke motor rehabilitation [2]. To address this kind of spatiotemporal
incoordination of bilateral side limbs, bilateral rehabilitation training is considered as a
promising way for hemiplegic recovery, which can activate the ipsilesional primary motor
area (M1), supplementary motor area (SMA), and primary sensory cortex (S1) as well as
enhance the intra-hemispheric and inter-hemispheric connectivity within the sensorimotor
network and the cortical motor system. Bilateral rehabilitation training is more effective
than unilateral arm training [3]. On the other hand, mirror visual feedback (MVF), a
kind of mirror therapy of neurorehabilitation for hemiplegia [4], was proven that it can
efficiently induce the human primary motor cortex (M1) for motor function recovery [5].
This phenomenon might be utilized to accelerate motor control rehabilitation processing.

Due to a lack of medical sources and the increasing number of stroke patients, robot-
aided rehabilitation is proposed to accelerate recovery processing based on the aforemen-
tioned neurological principle [6,7]. For hemiplegic patients, the bilateral rehabilitation
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robotics system is designed with a special feature that can allow patients to perform
the symmetric movements of the paretic side limb using the motor information of the
non-paretic side limb. Leonardis et al. [8] developed the BRAVO hand exoskeleton for reha-
bilitation, which can assist the paretic side limb to grasp the real object for bilateral training.
Gasser et al. [9] designed an upper limber exoskeleton for daily life activities assistant for
patients with hemiparesis. Miao et al. [10] presented a platform robotics system with a
subject-specific workspace for bilateral rehabilitation training. In our previous works, a
series of exoskeleton robotic systems have been proposed for bilateral rehabilitation in the
last decade, including a three degree of freedoms (DOF) portable exoskeleton [11,12], and
two kinds of compliance actuator-integrated exoskeleton device [13,14].

Furthermore, the surface electromyography (sEMG) is a muscle drive signal that
contains the motor information of the central nervous system (CNS) and brain, which
is always utilized for rehabilitation assessment [15], human intention prediction [16–18],
human movement classification [19–21], prosthesis control [22–24], and rehabilitation robot
control [25–27]. As the reference [28], the neuroplasticity can be induced by the patient’s
active participation that requires the rehabilitation training system should be implemented
with an active participant assessment function. The real-time patient participation assess-
ment not only can let therapists clearly know the training effect but also can encourage
the patients to focus on the training task and improve the training effect. In the isometric
bilateral lifting training, the output force is the key evaluation metrics for active participa-
tion and muscle state. Therefore, the active forces of the antagonistic muscle pairs of elbow
joint should be evaluated for participation assessment.

The sEMG-based human active force estimation is discovered as it can intuitively re-
flect muscle motor unit action potentials (MUAPs) for active muscular force evaluation [29].
Zonnino et al. [30] proposed a muscular model-based isometric force estimator using
sEMG signals. As the complexity of the muscular model and substantial calculation load
of the muscular model parameter, the model-free force estimation method using machine
learning is also widely used in rehabilitation scenarios [31,32]. In our previous works,
we compared the estimation accuracy and calculation loads of these two methods in the
isometric force estimation task [33]. The neural network-based method has the advantage
of fast and convenience setup without a human body parameter setting, which is suitable
for rehabilitation scenarios.

As mentioned, a novel mirror bilateral neuro-rehabilitation system with sEMG-based
real-time active force assessment is proposed in this paper and preliminarily tested for the
upper limb elbow joint bilateral isometric force coordination. The conception diagram is
shown in Figure 1. The patient can be allowed to perform the synchronic and isometric
bilateral lifting task of the elbow joint by robotic assistance within a mirror visual feedback-
based human–robot interface. During the training process, the patient active force of the
paretic side limb can be estimated in real-time by the sEMG signals for patient active
participation assessment.

The paper structure is organized as follows: Section 2 introduces the robotics system
in mechanical structure and mirror visual feedback-based human–robot interface design.
The sEMG-based isometric force estimation method is provided in detail for signal pre-
processing, feature extraction, and neural networks preparation in Section 3. Then, we
introduce the control framework for the real-time bilateral lifting task in Section 4. The
experimental setup and preliminary results are provided and analyzed in Section 5. The
discussion is based on the experimental results, which includes the comparison of the
sEMG-based force estimation performance with the state-of-art and the effect of the MVF
and robot-assistance performance. Finally, the conclusion and future work are drawn in
Section 7.
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Figure 1. Conception diagram of the proposed mirror bilateral neuro–rehabilitation system with real–time sEMG–based
patient active participant assessment.

2. Mirror Bilateral Neuro-Rehabilitation System Overall

In this section, a powered variable stiffness exoskeleton device (PVSED), as the hard-
ware platform, is reviewed in mechanical design and the visual feedback-based human–
robot interface is introduced for a mirror bilateral neuro-rehabilitation.

2.1. PVSED Hardware

In this study, the PVSED was utilized for aiding the subject to finish the mirror bilateral
rehabilitation training tasks. The PVSED was developed in our previous research, which
not only can assist flexion and extension motion of the upper limb elbow joint, but also can
independently regulate the stiffness via a variable stiffness actuator (VSA). The detailed
information of the PVSED was introduced as the reference [34]. For easier and clearer
reading, the PVSED is reviewed in this section, shown in Figure 2a. There is one active
degree of freedom on the elbow joint and five passive degrees of freedom on the PVSED.
The PVSED consists of a back frame, a shoulder frame, and an upper limb frame. All
of these frames were designed with an adjustable and flexible structure to adapt subject-
specific body sizes in real rehabilitation scenarios shown in Figure 2b. There are two
different actuators in the PVSED, including the main actuator system and an independent
VSA as stiffness actuator system. In the main actuator system, a cable-driven transmission
structure was selected for high back-drivability and lightweight load for the patients. A
Maxon RE-30 Graphite Brushes Motor was implemented on the back broad, which is
attached to the back of the patient by shoulder straps and body belts as the main actuator
system for driving the cable transmission. On the other side of cable transmission, a pulley
of the mainframe on the elbow joint was connected for rotation of flexion and extension
motion of the elbow joint. The VSA was also integrated on the mainframe to regulate the
real-time stiffness output. The output stiffness, as well as the force, was generated by the
deviation between the mainframe and the output link coupled by a pair of antagonistic
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springs. In this study, only the high-stiffness condition was selected to assist simulation as
the normal non-compliance rehabilitation robot.
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Figure 2. The mechanical design of the PVSED: (a) the prototype of the PVSED with a subject and (b) the adjustable and
flexible structure of the PVSED.

2.2. Mirror Visual Feedback-Based Human-Robot Interface

Effective real-time visual feedback is crucial to enhance motor learning in physical
and cognitive rehabilitation [35]. For improving the mirror bilateral rehabilitation task per-
formance, a visual feedback-based human–robot interface was designed and implemented
into the mirror bilateral neuro-rehabilitation system (developed within the LabVIEW, NI,
Austin, TX, USA). The motivation of the visual feedback-based interface is to quantitatively
evaluate the difference between the bilateral force and realize the intuitive feedback to the
patients for a better training effect. For the mirror bilateral isometric force training task,
the bilateral force signals are recorded by the thin-film force sensor (FSR-402, Interlink
Electronics, Camarillo, Irvine, CA, USA) from both the non-paretic side and the affected
side, and turned to the visual feedback through two symmetrical vertical scroll bar models
in the interface in real-time. At the same time, the sEMG signals of the affected side are col-
lected for active force estimation (introduced in Section 3). The whole system configuration
and the visual feedback human–robot interface are shown in Figure 3.

2.3. The Mirror Bilateral Training Protocol of Upper Limb Elbow Joint

In this study, a mirror bilateral isometric force training with visual feedback has been
designed for improving motor learning and regaining motor control skills in patients.
There are three different phases in the training process, including the offline learning phase,
online validation phase, and real-time assist phase. The process involves the subjects sitting
on the chair comfortably and placing their forearms on the table, which ensures their hands
naturally touch the force sensor. Two Ag/AgCl bipolar surface sEMG electrodes were
placed on the biceps and triceps of both side limbs for sEMG signals collection through the
Personal-EMG device (Oisaka Electronic Equipment Ltd., Fukuyama, Hiroshima, Japan).
The bilateral force signals were then displayed by the two symmetric vertical bar models
and the sEMG signals shown in graph models in the human–robot interface configuration.
In the offline learning phase, the active isometric force estimation is established by a neural
network method for muscular force assessment. The subject is instructed to perform an
isometric force output against the force sensor by their healthy side. The force signals
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and sEMG signals are recorded in real-time for training the learning algorithm. After the
learning algorithm training, the online validation phase begins for ensuring the efficiency
and safety of the trained estimation model. The subject repeats the same motion in the
online validation phase but the estimated force results are calculated by the trained model
and shown on the screen in real-time. The poor performance estimation model is rejected
and retrained for the safety consideration until the estimation performance is acceptable.
The real-time assist phase is performed once the online validation phase is finished. As
the one disability side of the hemiplegia patients, the trained force estimation model is
unitized as the active force assessment of their affected side. The subject with the PVSED
is instructed to perform the mirror bilateral motion with the equal force output against
the force sensors to maintain the same height of the two symmetrical vertical scroll bar
models. The bilateral isometric force information is recorded and the error between both
sides is then calculated as the control input of the bilateral limb coordination controller
(introduced in Section 4).
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3. sEMG-Based Isometric Active Force Estimation

The sEMG-based active isometric force estimation method is introduced as the follow-
ing three subparts for real-time muscle active force assessment.
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3.1. sEMG Signal Processing

Signal preprocessing is necessary for removing the noises and DC offset due to the
instability of the sEMG signals. After the sEMG signals’ acquisition of 1000 Hz sampling
rate (Section 2.3), the raw sEMG signals are processed by a Personal-EMG filter box (Oisaka
Electronic Equipment Ltd., Fukuyama, Hiroshima, Japan) for removing the DC offset. Then,
the filtered sEMG signals are rectified by a 50 Hz notch filer for full-wave rectification.
The processed sEMG signals can be obtained after a four order Butterworth filter with
10–500 Hz cut frequency. Due to the individual difference and instability of sEMG signals,
the normalization processing should be implemented after the Butterworth filter to obtain
the normalized sEMG signals from 0 to 1 by maximum voluntary contraction (MVC). The
completed signal processing is shown in Figure 4. The comparison results of the raw
signals and filtered sEMG signals are shown in Figure 5 for clear observation.
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3.2. Feature Extraction

As proven in the previous study [19], the multi-features of sEMG signals with time-
domain feature and frequency domain feature contain more efficient and internal infor-
mation than a single feature. To obtain the accurate force estimation performance, a novel
time-domain multi-feature set was selected and utilized as the input vector of the neural
network. Here, we review these features and their descriptions in Table 1. The multi-feature
vector consists of four time-domain features, including mean absolute value (MAV), root
mean square (RMS), difference absolute standard deviation value (DASDV), and wave-
length (WL). Each feature vector is calculated from one channel of sEMG signals of one
muscle by a 0.2 s sliding window method in real-time, and the multi-feature vector space
is shown as Figure 6.

Table 1. Multi-feature vector selection and equations.

Feature Equation Description

Mean absolute value (MAV) MAV = 1
n

n
∑

i=1
|xi|

The average of absolute value of the EMG
signals amplitude in a segment

Root mean square (RMS) RMS =

√
1
n

n
∑

i=1
x2

i

The measure of power of the EMG signals
which can be calculated as the amplitude

modulated Gaussian random process

Difference absolute standard deviation
value (DASDV) DASDV =

√
1

n−1

n−1
∑

i=1
(xi+1 − xi)

2

The standard deviation absolute value of
the difference between the adjacent

samples of EMG signals

Wavelength (WL) WL =
n−1
∑

i=1
|xi+1 − xi|

The measure of complexity of the EMG
signals which defined s cumulative

length of the EMG waveform over the
time segment
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3.3. BPNN

As the nonlinear relationship between the sEMG signals and human motor joint
output force, the backpropagation neural network is employed for estimating the human
active motor joint output force. The BPNN structure in this study is designed with three
layers containing: an input layer (X(n)), a hidden layer (h(n)), and an output layer (Y(n)),
as shown in Figure 7. The input of the BPNN is the multi-feature vector calculated from the
biceps and triceps. Because there are four features in one multi-feature vector, the number
of input layer neurons totals eight. The number of hidden layer neurons is calculated by
the equation:

NHidden = log2(NInput) (1)

where the NInput is the number of input layer neurons. The hidden layer neurons are set as
three. The physical meaning of the output layer is the elbow joint output force. Therefore,
the output layer only has one neuron representing the estimated force. The hidden layer
can be represented as follows:

hi
j(n) = Sigmoid

(
∑2

i=1 winxi(n)− t
)

(2)

where the win is the weight value between the i-th input neuron and j-th hidden neuron.
The t is a threshold of each hidden layer neuron to guarantee accuracy and convergence.
The sigmoid function has been selected as the activation function in the hidden layer. For
the output layer results, it can be calculated as the following equation:

Y(n) = wout

[
2

1 + e−2(∑ winX(n)−t)
− 1
]
+ bout (3)

where the wout is the weight value between the i-th hidden neuron and the output layer
neuron. The bout is a threshold of the output layer neuron. For BPNN model training, the
70% sEMG-force data set collected in the offline training phase is utilized and the other 30%
is used for model validation. The output of the BPNN model should be anti-normalized to
get the estimated force results. The trained and validated BPNN model is verified by the
online validation phase and the high-performance BPNN model is used for real-time force
estimation.
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4. Mirror Bilateral Control for Bilateral Limb Coordination

The mirror bilateral rehabilitation training aims to assist the affected side limb to
finish the mirror motion following the non-paretic side motion guidance. In the bilateral
rehabilitation robotics system, a special characteristic is that the motion information of the
non-paretic limb is delivered to the affected side limb within mirror-symmetric guidance as
the most suitable training for the patients themselves. The hemiplegia patients can regain
motor control skills and more importantly, the bilateral limb coordination to improve the
motor cognition of the bilateral brain hemisphere.

In this study, a mirror bilateral isometric force training with visual feedback is designed
for the high injured patients or initial stage of rehabilitation as the isometric force output is
the easiest movement task of rehabilitation. To assist the patient appropriately, the output
force error was calculated as the assist metric.

Ferror = Fhealth − Fa f f ected (4)

For the precise assistant force control of the PVSED, the dynamics of the active DOF
of the elbow joint should be considered as follows [36]:

Jm
..
θj + Bm

.
θj + G

(
θj
)
= τVSA + τhuman (5)

J1
..
θ1 + B1

.
θ1 +

(
τj + τhuman

)
/γ = Tm1 (6)

Tm1 = km1im1 (7)

τVSA = K(θ2)·
(
θj − θ1

)
(8)

where the θj,
.

θj, and
..
θj represent the angle, angular velocity, and angular acceleration of

the output link. Similarly, the θ1,
.

θ1, and
..
θ1 are the angle, angular velocity, and angular

acceleration of the mainframe. The Jm and Bm are the inertia moment of the motor rotor
and the damping coefficient of the output link, respectively. The J1 and B1 are the inertia
moment of the motor rotor and the damping coefficient of the mainframe respectively. The
G
(
θj
)

denotes the gravity of the human forearm and the PVSED. The τVSA represents the
output torque of the VSA and it can be obtained by Equation (8) related to the stiffness
and deviation angle. The parameter γ is the torque transmission ratio of the main actuator
system, which is driven by the motor m1 with the motor torque constant km1 and its’ torque
Tm1 is controlled by the motor current im1. Due to the isometric force constraint, the angular
can be considered as a constant so that the angular velocity and angular acceleration can
be ignored. As mentioned, the only high stiffness condition of the PVSED is discussed in
this paper, which means the robotic stiffness is 118.49 Nm/rad. For precise and rapid force
tracking performance, a PID controller was employed in the control system. The input is
the force of the healthy side and the output is the motor current. The force of the affected
side would be feedback to the input for feedback control. It should be noted that although
the angular velocity and angular acceleration can be ignored in the isometric force output
task, the gravity of the PVSED and human forearm should be compensated to set an initial
position of forearms for comfortability and precision. The overall control framework is
shown in Figure 8.
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bilateral assistance control for real-time robot-aided rehabilitation training.

5. Experimental Setup and Results
5.1. Experimental Setup

There are two healthy subjects with no muscular disorder history (males, age: 25 and
22 years old; weight: 69 kg and 59 kg, height: 177 cm and 174 cm) involved in this study
for mirror bilateral isometric force training. The PVSED was fixed to a metal structure and
adjusted to fit each subject-specific height. Then, the sEMG electrodes will be placed on
the subject’s arm for real-time sEMG collection and MVC test. The location of electrodes
corresponding to the triceps was at 50% on the line between the posterior crista of the
acromion and the olecranon at two-finger-width medial to the line.

The reference electrodes were placed on the styloid process of the ulna of the wrist
joint. The experimental setup is shown in Figure 9. In the experimental trials, the subject
was instructed to perform the equal force of the bilateral side limbs on the force sensors
placed under the experiment platform. When their max active effort was reached, they
were asked to relax their arms. There are a total of five trials for each subject in the offline
training phase. The same task is performed after the learning model training for the
online validation phase. Finally, the real-time assist phase can be carried out after the well-
performance model is selected. All experiments were conducted within the experimental
requirements of the Institutional Review Board (IRB) in the Faculty of Engineering Kagawa
University (Ref. No. 01-011).
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5.2. Experimental Results

(1) Estimation Performance: For sEMG-based force estimation, the BPNN model
should be set up and trained at first. Each subject was instructed to perform the isometric
force output process from the relaxing state to the max voluntary output state five times.
During the subject increasing the output force of the bilateral limb, the sEMG signals were
accordingly increasing from the 0.2 mV of the relaxing state to the 0.6 mV. The BPNN
model training results are shown in Figure 10, where the linear regression results of the
model training, model validation, model test, and total performance are 0.95762, 0.95569,
0.94997, and 0.9562, respectively. To clearly observe the real-time estimation performance, a
real-time estimation result of the experimental trails is shown in Figure 11. From Figure 11,
even if the output force was not linear, the estimation result could also track this nonlinear
trend by sEMG signals in real-time. In the end, the correlation coefficient and root mean
square error (RMSE) results of all 10 times of the experimental trials have been calculated
as the following equations, shown in Figure 12.

RMSE =

√√√√ 1
n

N

∑
n=1

(FE − FA)
2 (9)

R2 =

 ∑ FEFA − ∑ FE FA
N√(

∑ FE − (FE)
2

N

)(
∑ FA

2 − (∑ FA)
2

N

)
 2 (10)
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where the FE denotes the estimated force and FA represents the actual force. The parameter
N is the number of sample points. All the calculations and data analysis were processed
by MATLAB (MathWorks, MA). The max RMSE is under 3.5 N and the min RMSE is over
1 N. Similarly, the highest correlation coefficient is 99.29, and the lowest one is 91.33. It
is noted that the effect of the triceps is not obvious during the force output process. This
phenomenon was possibly caused by the manner of output force against the force sensor.
In this study, the bilateral output force was designed as “lifting force of the elbow joint”
which refers to the flexion movement of the elbow joint. As the biomechanics, this flexion
movement is mainly driven by the contraction of the biceps, and the triceps are in the
extension state during this movement. On the contrary, if the manner of output force is
designed as the “pushing down of the elbow joint”, it can be predicted that the triceps
will take the domination effect rather than the biceps. However, considering the synergy
influence of the wrist joint in the “pushing down movements”, the “lifting movement” was
selected for preliminary evaluation. Both lifting and pushing down movements will be
considered as the future works of this mirror bilateral neuro-rehabilitation system.

(2) Real-time assistant performance: For evaluating the robot assist effect in the real-
time assist phase, the output force signals of both side limbs have been compared in
Figure 13. Due to the bilateral rehabilitation training requirements that use the information
of healthy side limb to guide the affected-side limb, the healthy side output force was set as
the reference signals and the robot assisted the affected side limb in tracking the reference
force. As the implementation of the PID force tracking controller, the affected side output
force was almost the same as the reference, which can be observed in Figure 13. The error
signal between the reference force of the non-paretic side and robot-aided force of affected
force was also shown, which was utilized as the input signals of the PID controller.
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Considering the safety of the human–robot interactions, the parameter of the PID
controller was set as relatively low, which may reduce the force tracking performance
so that the bilateral output error could be over 5 N, as shown in Figure 13b. The other
reason is that the high-stiffness condition of the PVSED was selected in this study. For
the rehabilitation scenario, the high stiffness of the robotics may lead to the high intensity
and high interaction force for motor skill learning and regaining or motor control skills.
However, it will also increase the potential risk of secondary injury due to the strong
interactions. Therefore, the force tracking performance was compromised for ensuring the
training safety. In future works, the low-stiffness output condition can be explored for high
compliance human–robot interaction.

6. Discussion

This study’s main purpose is to mirror a bilateral neuro-rehabilitation robotics sys-
tem with sEMG-based patient active participant assessment, which uses the mirror visual
feedback and robot assistant to induce bilateral limb inter-coordination. Furthermore, the
patient active participant assessment is integrated into the system for real-time rehabilita-
tion training evaluation by an sEMG-based elbow joint force estimation method. Based
on the experimental results, two main aspects are discussed in this section, including the
sEMG-based elbow joint force estimation and the MVF-based human–robot interface for
the bilateral neuro-rehabilitation robot system.

6.1. Comparison of the sEMG-Based Active Force Estimation with the State-of-Art

To realize the EMG-based force estimation, Zhang et al. [15] used the sEMG signals
from the four muscles of the forearm to predict the muscle strength of the wrist joint.
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The sEMG signals were processed and calculated to obtain the muscle activity during the
downward touch motion. Then the obtained muscle activity was used as the input of an
artificial neural network (ANN) classifier to recognize the various motions. A developed
prediction function was integrated into the muscular model for force prediction. As
there were some discontinuous points in the prediction results, a smooth algorithm was
utilized to obtain the final predicted force results. The total performance of this prediction
method can reach that the average correlation coefficient R2 is 0.9085. However, as
the parameters of the muscular model function are complex and time-consuming, this
method may be inconvenient for individuals. Hajian et al. [37] studied the generalized
EMG-based isometric contact force estimation method using a deep convolutional neural
network. The HD-sEMG signals from the three elbow flexor muscles were collected by
21 channels. The total 16 kinds of sEMG features from the time-domain and frequency-
domain were calculated as the input of the proposed CNN-FLF model. This model can
reach a high estimation performance for the NMSE to be 1.60 ± 3.69. However, the multi-
feature input vector and deep CNN model requires high computing power to ensure
real-time estimation performance. Zhang et al. [38] proposed a novel force estimation
method using muscle activation heterogeneity analysis and kurtosis-guided filtering. In
this study, a novel preprocessing method was designed for high accuracy estimation. First,
the HD-sEMG signals were decomposed by principal component analysis, and then, a
heterogeneity analysis was conducted. Finally, a kurtosis-guided filter was utilized to
process the selected principal component to get the input signals. The model can realize the
correlation coefficient R2 from 0.877 to 0.955. Unfortunately, similar to the above two works,
the time-consuming data processing may lead to the difficulty of real-time estimation. All
the comparison results are summarized in Table 2.

Table 2. Comparison with the state of art.

Research Joints EMG
Channels Features Model Other

Sensors Results

Zhang [15] Wrist 4 Muscle activation ANN and Prediction
Function

MTx
sensor R2: 0.9085

Hajian [37] Elbow 21 Temporal and Spectral
information (16 in total)

Deep convolutional
neural networks no NMSE: 1.60 ± 3.69

Zhang [38] Elbow 128

Principal component
analysis (PCA) and

Heterogeneity
information

Optimal Principal
Component Selection
and kurtosis-guided

filter

no R2 : 0.877~0.955

This work Elbow 2 MAV, RMS, DADSV, WL BPNN no R2 : 0.9562
RMSE: 1.8935

As the sEMG-based elbow joint force estimation method was proposed for the real-
time patient active assessment, the real-time performance is the crucial factor for real reha-
bilitation scenarios. In this study, only two channels of sEMG signals and four time-domain
features were utilized, but the average R2 is 0.9562 and the RMSE is 1.8935. Although more
information can be saved by more multi-features extraction or more complex computing
model, the real-time performance is decreased by more features and more complex model
calculations. Too large of a feature calculation will fail to estimate the elbow joint force
in real-time; the balance between the estimation accuracy and real-time estimation speed
should be considered in real applications. The real-time performance of the proposed
multi-feature vector has also been validated for the feature extraction computing time to
be under 0.1 s, which is acceptable as it is under a single sliding window length. Therefore,
the trade-off between the complex model and computational amount should be considered
for achieving high accuracy estimation in real-time.
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6.2. Analysis of the Efficiency of the MVF to the Bilateral Rehabilitation

As the one-side disability of the hemiplegia patients, the inter-coordination of the
bilateral limbs should be particularly considered in bilateral rehabilitation. In this study,
the isometric output joint force of the bilateral limbs was selected as the rehabilitation
training task to promote the inter-coordination of the bilateral limbs. In this task, the equal
output force of the bilateral upper limb elbow joint was expected for better coordination.
For hemiplegia patients, it is difficult to complete the equal bilateral output force of the
elbow joint without any assistance or feedback. To induce the patient’s active adjustment
of the bilateral limb inter-coordination, a mirror visual feedback-based human–robot
interface was designed. To prove the efficiency of the MVF-based human–robot interface,
a comparison experiment was conducted. The subjects were instructed to perform the
bilateral isometric lifting task in three different conditions, including without MVF, with
MVF, and robot-assisted with MVF. The comparison results are shown in Figures 13 and 14.
The average errors of the without MVF condition, with MVF condition, and the robot-
assisted with MVF condition are 2.49, 4.02, and 2.04, respectively (shown as Figure 15).
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the MVF and robotic assistance with MVF.

From the experimental results, it is obvious that the subject performing the task with
MVF has a smaller average error than the condition without MVF. As the isometric force
is limited, the absolute equal bilateral output force is difficult to realize even for healthy
subjects. However, it may be caused for the isometric output force task. If the training task
is an isotonic lifting task, e.g., lifting a stick and keeping it horizontal, the good completion
of this task can be estimated for healthy subjects. This phenomenon can also be used to
explain that assistance or feedback is necessary for hemiplegia patients. When the MVF
human–robot interface was provided to the subjects, the average error declined significantly.
Benefiting from the MVF, the output force of bilateral limbs can be clearly obtained by
the visual feedback, which means the subject can voluntarily regulate the output force
of bilateral limbs for better inter-coordination. Considering the one-side disability of
hemiplegia, the PVSED was utilized to assist the patients in real-time according to the
different errors of bilateral output force. In the comparison experiment, the subjects were
asked to perform the same task wearing the PVSED and the smallest error was obtained
among three conditions. It might be caused by the control strategy of the PVSED. Due to
the force error that was used as the input of the PID controller, the PVSED will be quickly
activated once the error is too significant. The assistance of the PVSED will not be delivered
to the subject if the force error is too small. However, the too quick regulation of assistance
may lead to the high instantaneous contact force, which must be forbidden in rehabilitation
scenarios. Therefore, the parameters of the PID controller were set as a relatively low value
(Section 4).

7. Conclusions

As the mirror neurons of brains, bilateral rehabilitation training is considered a promis-
ing way to induce brain plasticity for hemiplegia patients. In this paper, a mirror bilateral
neuro-rehabilitation training system with sEMG-based patient active participation assess-
ment was proposed for the bilateral isometric force output coordination of the upper limb
elbow joint. With the mirror visual feedback of the human–robot interface, the hemiplegia
patients could perform bilateral isometric lifting tasks with modulated robotic assistance
intuitive cognition of motor control of bilateral limbs. To realize fast and adaptive real-
time active force assessment, a backpropagation neural network was utilized to map the
relationship of the sEMG signals and elbow joint output force by a time-domain multi-
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feature vector. This active force estimation enables the therapists and patient to observe
the patient’s active participation effort during the rehabilitation training for quantitative
motor recovery evaluation. Considering the one side disability of the hemiplegia patients,
the PVSED rehabilitation robotics was employed in this system for real-time assistance of
bilateral rehabilitation. The dynamics of the PVSED were analyzed and adapted for the
isometric lifting task requirements. Furthermore, a PID controller was implemented in the
robotic control framework for precise and fast output force tracking.

Preliminary experiments were carried out to evaluate the feasibility of the real-time
active force estimation and bilateral isometric force output assistance. As the three phases
for BPNN model training, validation, and testing, the feasibility and effectiveness of the
sEMG-based active force estimation method have been proven with good real-time perfor-
mance. In the five experimental trials of two healthy male volunteers, the experimental
results showed that the proposed mirror bilateral neuron-rehabilitation system allowed the
patients to perform bilateral equal isometric output force with robotic assistance. Further-
more, a comparison experiment was conducted to validate the effect of the MVF and robot
assistance on the isometric force inter-coordination of bilateral limbs. The future work will
mainly focus on involving hemiplegia patients to carry out the controlled clinical trials.
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