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The prognostic value of adaptive nuclear
texture features from patient gray level
entropy matrices in early stage ovarian cancer
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Abstract. Background: Nuclear texture analysis gives information about the spatial arrangement of the pixel gray levels in a
digitized microscopic nuclear image, providing texture features that may be used as quantitative tools for prognosis of human
cancer. The aim of the study was to evaluate the prognostic value of adaptive nuclear texture features in early stage ovarian
cancer.

Methods: 246 cases of early stage ovarian cancer were included in the analysis. Isolated nuclei (monolayers) were prepared
from 50 �m tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of
each nuclear image and stored in gray level entropy matrices. A compact set of adaptive features was computed from these
matrices.

Results: Univariate Kaplan-Meier analysis showed significantly better relapse-free survival (p < 0.001) for patients with low
adaptive feature values compared to patients with high adaptive feature values. The 10-year relapse-free survival was about 78%
for patients with low feature values and about 52% for patients with high feature values. Adaptive features were found to be of
independent prognostic significance for relapse-free survival in a multivariate analysis.

Conclusion: Adaptive nuclear texture features from entropy matrices contain prognostic information and are of independent
prognostic significance for relapse-free survival in early stage ovarian cancer.

Keywords: Adaptive texture features, early stage ovarian cancer, nuclear texture analysis, pattern classification,
prognostic marker

1. Introduction

Most women undergoing treatment for early stage
ovarian cancer have a favorable prognosis, but about
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20% will eventually relapse and die of the disease.
Identifying patients with increased risk of relapse is
important, as it could be used to select patients in need
for adjuvant treatment after surgery.

In digital pathology, the field of nuclear texture anal-
ysis gives information about the spatial arrangement
of the pixel gray levels in a digitized microscopic
nuclear image, providing statistical texture measures
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that may be used as quantitative tools for diagnosis and
prognosis of human cancer. At present, there are sev-
eral hundred published peer-reviewed studies in which
image texture-based methods have been applied to dig-
ital microscopy for screening, diagnosis, and prognosis
of human cancer. These studies relate to a wide range
of organ systems, encompassing brain, head and neck,
breast, pulmonary, gastrointestinal, kidney, prostate,
bladder, ovary, and the uterine cervix [15].

In several frequently used texture analysis meth-
ods, second or higher order statistics on the relation
between pixel gray level values are stored in matrices,
e.g., gray-level co-occurrence matrices [9] and gray-
level run length matrices [8]. Texture features are then
extracted that directly describe the probability distri-
bution within the matrix and indirectly describe the
image texture. Each feature may be seen as a weighted
sum of the normalized matrix element values. By vary-
ing the weighting function, different aspects of the
texture can be extracted. These static weighting func-
tions extract information from predefined parts of e.g.,
the co-occurrence matrix, indifferent to whether or not
these parts actually contain useful information for dis-
crimination between the classes. Thus, a large number
of static, predefined features are usually extracted from
a number of matrices stemming from a combination
of free parameters (number of gray levels, inter-pixel
distance, orientation).

In order to find nuclear features that discriminate
robustly between cases from different diagnostic or
prognostic classes, a statistical evaluation of features
must be performed, and this requires careful experi-
mental design. Often, a feature selection is performed
to obtain the best reduced set of features, either by
exhaustively searching through all possible combina-
tions, or following some suboptimal scheme, see e.g.,
[11]. In [21, 22] we showed that if the number of
samples is low, a low number of feature candidates is
important in order to select the correct features. In the
field of nuclear texture analysis, it is quite common to
evaluate a large number of features on a limited learn-
ing set of clinical cases, without testing the chosen
classifier on an independent validation data set. This
easily leads to false or overoptimistic results [15].

Only a few studies are published on diagnostic or
prognostic classification of patients with ovarian can-
cer based on nuclear texture analysis. Deligdisch et al.
[4] used the slope of the line corresponding to the
declining rate of the autocorrelation as a measure of
nuclear texture. Geisler et al. [7], Werness et al. [24],

Protopapa et al. [20] and Brewer et al. [2, 3] used
features extracted from co-occurrence and run-length
matrices for analyzing nuclear texture. However, none
of these studies evaluated their findings on an indepen-
dent validation set.

Through a series of methodical papers, we have
established a unified approach to extracting a compact
set of superior features [1, 16–19]. Instead of searching
through a large number of possible feature combi-
nations, we have developed methods to incorporate
as much class discriminating information as possible
into as few features as possible, preferably includ-
ing adaptivity into the computation of the features. In
[17], we found that the new adaptive feature extrac-
tion scheme as applied to four relevant texture analysis
methods (e.g., co-occurrence and run-length matrices)
outperformed the classical static texture features when
applied to the most difficult set of 45 Brodatz texture
pairs. In a retrospective study including 134 cases of
early stage ovarian cancer, a single adaptive feature
extracted from either the co-occurrence, run-length, or
co-occurrence of run-length matrices [1] discriminated
the cases into two prognostic classes with a correct
classification rate of 70% [19].

Yogesan et al. [25] and Jørgensen et al. [13] intro-
duced the use of non-adaptive entropy-based textural
features as a new prognostic tool in an effort to pre-
dict which patients with metastatic prostate cancer that
were most likely to respond to hormone treatment.
In a recent study we applied adaptive entropy-based
textural features for the assessment of dysplasia in
Barrett’s oesophagus and found that nuclear texture
features (Nucleotyping) differentiated dysplastic and
non-dysplastic cases with a greater correct classifi-
cation rate than image cytometric DNA analysis [6].
The aim of the present study has been to apply the
methodology of adaptive feature extraction using the
gray-level entropy matrix method on a learning set of
134 cases of early stage ovarian cancer, and then to esti-
mate the prognostic value of a single adaptive texture
feature on a validation set of 112 cases. This has been
done both representing each patient by a mean value
of adaptive texture feature values from the 2D entropy
matrices of all nuclei within selected area groups, as
well as representing the patient by a single 4D entropy
matrix per patient, where nuclear area is one of the
axes.

For the threshold value of the adaptive texture fea-
ture that discriminates best between the two prognostic
classes of patients, we have also performed a survival
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analysis, both on the learning, validation, and the com-
plete data set.

2. Material and methods

2.1. Cell nuclei from early stage ovarian cancer

This retrospective study was performed on tissue
samples from patients treated for early stage ovarian
cancer during 1982–1989 [14]. 246 cases of ovarian
cancer classified as International Federation of Gyne-
cology and Obstetrics (FIGO) stage I were included
in the analysis. A more detailed description of the
material is given in [14].

Paraffin-embedded tissue fixed in 4% buffered for-
malin was used for preparation of nuclei suspension.
The tumor tissue was selected by a pathologist [14].
Monolayers (isolated nuclei) were prepared from one
or more 50 �m sections using a modification of Hed-
ley’s method [10]. The nuclei were Feulgen-Schiff
stained according to an established protocol [23].

The Fairfield DNA Ploidy System (Fairfield Imag-
ing Ltd, Nottingham, UK), which consisted of a
Zeiss Axioplan microscope equipped with a 40/0.75
objective lens (Zeiss), a 546 nm green filter and a
high-resolution digital camera (C4742-95, Hamamatsu
Photonics K.K., Hamamatsu, Japan) with 1024×1024
pixels/image and a gray level resolution of 10 bits/pixel
was used to capture each image field. Shading cor-
rection was performed for each such image field. The
pixel resolution was 166 nm/pixel on the cell speci-
men. Trained personnel performed a screening of the
nuclei at the microscope and selected tumor nuclei for
the analysis. Stromal nuclei, necrotic nuclei, doublets
or cut nuclei were discarded. Each nucleus was seg-
mented from the background using a global threshold.
The segmented nuclei were stored in galleries in each
case. The mean number of measured tumor nuclei per
case was about 300.

2.2. Learning and validation data sets

The data set was randomly divided into a learn-
ing set and a validation set. The 134 cases included
in the learning data set were grouped into two differ-
ent prognostic classes, which were used for designing
classifiers based on single features. The 94 cases (70%)
included in the good prognosis class survived for at
least ten years without a relapse, whereas the 40 cases

(30%) included in the poor prognosis class relapsed or
died of a cancer-related disease within ten years [19].
The validation set included 105 cases of which 69 cases
(66%) could be grouped into the good prognosis class
and 36 cases (34%) could be grouped into the poor
prognosis class. An additional 7 cases did not relapse
during a follow-up period of less than ten years, and
could therefore not be defined into the good or the poor
prognostic class. However, these were included in the
survival analysis.

2.3. 2D gray level entropy matrices

The Gray Level Entropy Matrix (GLEM) element
P(i,j) contains the estimated probability of a local first
order gray level entropy value j within a window of size
w × w centered around a pixel with gray level value i
[25]. The first order entropy is defined as

j = −
G∑

i=1

P(i) In{P(i)}, P(i) > 0,

where P(i) is the estimated probability of occurrence
of gray level i within the window of size w×w, and G
is the number of gray level quantization levels in the
image. The entropy measures the gray level uniformity
within the window. Homogeneous structures will give
low entropy values whereas inhomogeneous structures
will give high entropy values.

Yogesan et al. [25] computed GLEM matrices with
eight different window sizes between w×w = 2×2 and
15×15, and defined nine texture features based on the
GLEM. Each of the nine pre-defined non-adaptive fea-
tures may be seen as a weighted sum of the normalized
gray-level entropy matrix element values, where the
weighting applied to each element is based on a given
weighting function. By varying the weighting function,
different aspects of the texture can be extracted. The
weighting functions fall into two general categories:

1. Weighting based on the value of the GLEM
element. Four features are examples of this:
The entropy homogeneity (EH), entropy non-
normality (ENN), roughness (RH), and minimum
gray-level entropy (MGE).

2. Weighting based on the position in the GLEM.
Five features use position-dependent weights:
The average entropy (AE), low-entropy empha-
sis (LEE), and high-entropy emphasis (HEE) use
weights that only contain entropy j, while the low
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gray-level entropy emphasis (LGEE) and high
gray-level entropy emphasis (HGEE) use fea-
ture weights depending on both gray-level i and
entropy j.

In the present study we have extracted these nine
texture features from GLEM matrices computed for
G = 64 and w = 9, resulting in 36 possible pairs of the
nine predefined features.

2.4. Adaptive features from 2D gray level entropy
matrices

As an alternative to the nine features defined in [25]
we extract only two adaptive features from each gray
level entropy matrix [18, 6]. The nuclear images were
grouped into ten area groups a = 1,2, . . . ,10, according
to the number of pixels in the nucleus (where a = 1
corresponds to a nuclear area of 1000−1999 pixels,
a = 2; nuclear area of 2000–2999 pixels, . . . , a = 10;
nuclear area >10 000 pixels) [19]. As discussed in [19],
there is a clear relation between nuclear DNA content,
area, first- order gray level statistics, and texture. We
found that nuclei having an area between 2000–4999
pixels contained most of the class distance information
discriminating between the good and poor prognostic
classes of patients with early stage ovarian cancer, and
by using area groups we avoided problems caused by
mixing data from cells having different nuclear area
[19]. In the learning set, these three area groups contain
72.4% of all nuclei.

For each cell nucleus from a patient, the number of
gray levels in the image was reduced by re-quantization
to G = 64, and a 2D entropy matrix was computed,
using a window size w = 9. The choice of number of
gray levels and window size is not important for the
classification result (see Section 4 for a discussion).

The nuclear images from the n-th patient of class
ωc (c = 1,2; ω1 = good prognosis, ω2 = poor prognosis)
give a set of average patient matrices Pn(i,j|a, ωc), for
a = 1, . . . , 10. Based on these patient matrices, we then
calculate average matrices over all the N(a,ωc) learning
set patients in each area group of the two classes

P̄(i, j|a, ωc)

= 1

N(a, ωc)

N(a,ωc)∑
n=1

Pn(i, j|a, ωc),

a = 1, . . . , 10; c = 1, 2

Based on these matrices, we compute a class difference
matrix in each area group (see Fig. 1)

�P(i, j|a, ω1, ω2)

= P̄(i, j|a,ω1) − P̄(i, j|a, ω2), a = 1, . . . , 10

as well as a class variance matrix in each area group

�2
P (i, j|a, ωc)

= 1

N(a,ωc)

N(a,ωc)∑
n=1

{Pn(i, j|a, ωc) − P̄(i, j|a, ωc)}2,

a = 1, . . . , 10; c = 1, 2

and finally the Mahalanobis class distance matrices

JP(i, j|a, ω1, ω2)

=
[

2
{P̄(i, j|a, ω1) − P̄(i, j|a, ω2)}2

�2
P (i, j|a, ω1) + �2

P (i, j|a, ω2)

]1/2

,

a = 1, . . . , 10

In the present study, the computation of class aver-
age, variance, difference and distance matrices were
computed from 2D patient matrices, whereas in [16,
17, 19] the matrices were computed from the entropy
matrices of all the cell nuclei of the learning cases in
each class.

For each nuclear image, we extract two adaptive
features from the 2D entropy matrix by using the 2D
Mahalanobis class distance as weights, and the dis-
joint positive/negative parts of the 2D class difference
matrix as the domains of the weighted summations.
Class distance and difference matrices were selected
according to the nuclear area (area group a) of each
nucleus.

AF+ =
∑

�P(i,j|a,w,ω1,ω2)>0

P(i, j|a)[JP(i, j|a, ω1, ω2)]

AF− =
∑

�P(i,j|a,w,ω1,ω2)<0

P(i, j|a)[JP(i, j|a, ω1, ω2)]

Each case (patient) is represented by the (scalar) mean
value of the adaptive texture feature values extracted
from the 2D matrices of all nuclei within area groups
a = 2, 3, 4 [19]. Matrices from a = 1 contained almost
no class distance information, while matrices froma =
5, . . . , 10 were based on a decreasing number of nuclei,
resulting in more noise, and a risk of very uncertain or
even missing feature values for some patients.
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i,j=(0,0)  i,j=(G,0)

i,j=(0,E) 

(a)

(b)

Fig. 1. (a) Gray level entropy matrix (GLEM) class difference matrices �P(i, j|a, ω1, ω2) between the two prognostic classes of early ovarian
cancer, computed from the learning set nuclear images within area groups a = 2–4. For each gray-scale plot, areas that are lighter (darker) than
the background correspond to GLEM matrix elements that contain a higher (lower) probability for the good prognosis class compared to the
poor prognosis class. (b) GLEM Mahalanobis class distance matrices JP(i, j|a, ω1, ω2).

2.5. Adaptive features from 4D patient matrices

For each nucleus representing a given patient, a 2D
entropy matrix is computed, and a 3D patient matrix
P(i,j,a|w) using the nuclear area group a as a third axis
is accumulated. The 3D patient matrix is normalized by
dividing each element by the number of nuclei repre-
senting the patient. Such 3D patient matrices are then
computed for several different window sizes, w = 3,
5,.., 31, and a 4D patient matrix P(i,j,a,w) is obtained
by concatenating the 3D matrices computed for the 15
different window sizes.

Assuming that the n-th patient of class ωc gives a
4D patient matrix Pn(i,j,a,w|ωc) we then calculate
an average matrix over all the learning set patients
in each class ωc, as well as two 4D class variance
matrices. Based on these matrices, we compute a 4D
class difference matrix and a 4D Mahalanobis class
distance matrix in the same manner as described in
the previous subsection. Finally, we extract two adap-
tive features from each 4D patient matrix by using
the 4D Mahalanobis class distances as weights, and
the disjoint positive/negative parts of the 4D class
difference matrix as the domains of the weighted sum-
mation. Here the adaptive features are extracted from

a single 4D matrix per patient, where nuclei from all
area groups are included, and nuclear area is one of the
axes. This contrasts the use of one 2D entropy matrix
per area group for three selected area groups in the
previous subsection.

2.6. Classification of each case

In order to evaluate the prognostic value of each
adaptive feature, minimum Euclidean distance clas-
sifiers [5, page 39] based on single features were
constructed to classify each case (patient) into the
good or poor prognosis classes. The classifiers were
designed on the learning data set, and the “best” clas-
sifier with the highest correct classification rate (CCR)
was applied on the independent validation data set. The
classification results were then used as input to survival
analysis.

For comparison, we have extracted the nine texture
features defined in [25] from GLEM matrices com-
puted for G = 64 and w = 9, resulting in 36 possible
pairs of predefined features. Linear discriminant anal-
ysis was performed for each feature combination and
a minimum Euclidean distance classifier based on the
resulting discriminant function was used to classify
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each patient. The learning set was split into two parts
for training (101 cases) and testing (33 cases).

2.7. Survival analysis

The SPSS statistical package (SPSS Statistics 18)
was used for survival analysis. Survival of patients
was estimated using univariate Kaplan-Meier analy-
sis. Relapse-free survival was calculated from start of
treatment to relapse or the end of the study period
(31.12.1998). The log-rank test was used for test of
equality of survival distributions for the different levels
of each feature. The Cox proportional hazards regres-
sion model with backward stepwise variable selection,
and a conditional algorithm for variable removal, was
used for multivariable analysis.

3. Results

3.1. Results on the learning set

GLEM class difference matrices showed that the
tumor nuclei from patients with good prognosis have
a higher probability of higher gray level values and
lower local entropy values compared to nuclei from
patients with poor prognosis (Fig. 1a). Nuclei from
patients with poor prognosis have lower gray level val-
ues, while the local entropy is higher, implying that the
gray level variability within the local windows is higher
in poor prognosis patients. The Mahalanobis class dis-
tance matrices Jp(i,j|a) shown in Fig. 1b demonstrate
that the weight functions used in the computation of
the features adapt to the differences in gray level and
entropy values described above.

The CCR of the best adaptive feature extracted from
either the ordinary 2D cell nuclear entropy matrices or
from the 4D patient matrices are given in Table 1.

A boxplots of the adaptive feature, AF−, computed
from the 2D cell entropy matrices is shown in Fig. 2a,
and Kaplan-Meier curves based on the same feature are
shown Fig. 3a. The P-value estimated by the log-rank
test was <0.001.

3.2. Evaluation on the independent validation set

The CCR of the adaptive features are given in
Table 1, and a boxplot of the adaptive feature, AF−, is
shown in Fig. 2b.

(a)

(b)

Fig. 2. Boxplot of the feature distribution of the adaptive feature
AF− for good (1) and poor (2) prognosis cases. Boxplots are shown
for (a) the learning set and (b) the validation set. Outliers are plotted
individually (+). (Colours are visible in the online version of the
article; http://dx.doi.org/10.3233/ACP-2012-0065)

Univariate Kaplan-Meier analysis showed signifi-
cantly better relapse-free survival for patients with low
adaptive feature values compared to patients with high
adaptive feature values on the basis of a single adaptive
entropy matrix feature value (Fig. 3). P values esti-
mated by the log-rank test for survival curves estimated
from the validation set and from the complete data
set were 0.023 and <0.001, respectively. The 10-years
relapse-free survival was about 78% for patients with
low adaptive feature value and about 52% for patients
with high adaptive feature value in our 2D entropy
matrix approach, and did not change significantly when
we used the 4D patient matrix (Table 2).

In an earlier study based on the same clinical
material, DNA ploidy classification, histological grade
(including clear cell tumors in the group of poorly dif-
ferentiated tumors), and FIGO stage were found to
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Table 1

The learning and validation set correct classification rate (CCR), sensitivity and specificity for the “best” single feature extracted from either
2D entropy matrices or 4D patient matrices

Feature CCR (in %) Sensitivity (in %) Specificity (in %)
learning/validation learning/validation learning/validation

2D:
AF−(A2A4) 70.2/62.9 57.5/41.7 75.5/73.9
4D:
AF−(4D) 69.4/65.7 60.0/47.2 73.4/75.4

Table 2

Relapse-free survival related to histological grade (including clear cell tumors in the group of poorly differentiated tumors), FIGO stage, and
texture analysis by the adaptive features AF−(A2A4) and AF−(4D) in stage I ovarian cancer. The complete data set (246 cases) was included in

the analysis

Feature n 10-year relapse- Hazard ratio P
free survival (95% CI)

Degree of differentiation:
Grade 1–2 142 86.5 1.0
Grade 3/clear cell 104 47.9 5.1 (3.1–8.5) <0.0001
FIGO stage:

Ia 86 82.5 1.0
Ib-c 160 62.9 2.6 (1.5–4.6) 0.001

Texture:
Low AF−(A2A4) 167 78.3 1.0
High AF−(A2A4) 79 51.9 2.7 (1.7–4.2) <0.0001
Low AF−(4D) 163 79.6 1.0
High AF−(4D) 103 50.6 2.9 (1.9–4.6) <0.0001

be of independent prognostic significance for relapse-
free survival in multivariate analysis [14]. Histological
grade and FIGO stage were included in the present
study for comparison (Table 2). In a multivariate anal-
ysis including histological grade, FIGO stage, and the
adaptive feature AF−, the adaptive feature was found to
be of independent prognostic significance for relapse-
free survival (Table 3). Histological grade was the
strongest predictor of survival in the multivariate anal-
ysis followed by FIGO stage and the adaptive feature.
A similar analysis based on the 4D patient matrix fea-
tures gave almost exactly the same results.

3.3. The non-adaptive GLEM features

For G = 64 and w = 9, there are 36 possible pairs of
the 9 non-adaptive GLEM features defined by [25].
Four of these gave a training CCR >70%, but the test
CCR dropped by an average of 10.5% for these four
pairs (to an average of 60%), compared to an average
drop of 2.1% for all 36 pairs. This may be linked to

Table 3

Significant variables for survival in multivariate analysis including
histological grade (including clear cell tumors in the group of poorly
differentiated tumors), FIGO stage, and the adaptive texture feature

AF−(A2A4)

Characteristic Hazard ratio P
(95% CI)

Degree of differentiation:
Grade 1–2 1.0
Grade 3/clear cell 4.2 (2.5–7.1) <0.0001

FIGO stage:
Ia 1.0
Ib-c 2.3 (1.3–4.0) 0.002

Texture:
Low AF−(A2A4) 1.0
High AF−(A2A4) 1.8 (1.1–2.8) 0.015

the fact that all four pairs included the rather volatile
feature MGE, which may be based on the gray level
entropy within a single window around the minimum
intensity in the image. Apart from the MGE feature,
there are 6 feature pairs giving a training CCR above
65% and a test CCR barely above 60%.
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4. Discussion

Texture features used for classification in digital
pathology are often selected from a large number
of predefined and static features. Both the gray-level
co-occurrence matrix method [9] and the gray-level
run length method [8] are good examples of texture
methods with a relatively large number of predefined
features. Identifying a few consistently valuable fea-
tures is important for many applications as it improves
classification reliability, particularly when working
with small data sets [12], but it also enhances our
understanding of the phenomena that we are model-
ing. Therefore, through a series of methodical papers
[1, 16, 17, 19], we have established a unified approach
to extract a compact set of adaptive features.

Instead of extracting a relatively large set of fea-
tures from a given probability matrix, using a set of
predefined weighting functions (for example from the
co-occurrence matrix) and subsequently perform a fea-
ture selection to obtain the best reduced set of features,
we have suggested

1) To use weighting functions that are based on
a class distance matrix and a class difference
matrix. Thus, the weighting functions adapt to the
image material under study, giving features that
extract information from the parts of the matrix
that actually contain information about differ-
ences between two different clinical classes.

2) To extract only a low dimensional feature set,
thus avoiding feature selection, and thereby the
risk of selecting the wrong features, based on a
relatively small number of samples per feature
candidate and class [21, 22].

In [17, 19] we applied this approach to four rele-
vant texture analysis methods. For each of the texture
analysis methods, we found that one adaptive fea-
ture contained most of the discriminatory power of
the method [17]. We found that class difference and
distance matrices clearly illustrated the difference in
texture between the cell nucleus images from the two
different prognostic classes of early stage ovarian can-
cer. We also found that tumor nuclei having an area

Fig. 3. Kaplan-Meier survival curves based on the adaptive feature
AF− computed from the 2D entropy matrices. Survival curves are
shown for (a) the learning set, (b) the validation set and (c) the
complete data set.
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between 2000–4999 pixels contained most of the class
distance information separating the prognostic classes
[19].

In the present study, we have extracted adaptive
features from patient gray level entropy matrices and
found that one such feature classified the learning cases
into good and poor prognosis with a correct classi-
fication rate of about 70%. This result is similar to
the classification results obtained extracting one adap-
tive feature from other relevant texture matrices (e.g.,
co-occurrence matrices and run-length matrices) [19].
Both the correct classification rate of about 70% and
the classifications of each case are similar using one
adaptive feature from either co-occurrence, run length,
or entropy matrices. So it seems that each of these
methods capture the changes in chromatin structure
that contains prognostic information.

In the present study, we have chosen to use G = 64
and a window size of 9×9. As seen in Fig. 1, the class
difference and class distance matrices do not contain
classification-relevant fine structures that would be sig-
nificantly affected if the number of gray levels were
further reduced. This supports the choices made in
earlier studies [1, 16, 17, 19], where we reduced the
number of gray levels to only 16 before extracting
nuclear adaptive texture features. Experiments have
shown that the number of gray levels (16, 32, . . . 1024)
is not important for the prognostic classification of
the ovarian cancer cases based on one adaptive fea-
ture from either co-occurrence, run-length, or entropy
matrices.

As an additional experiment, we have computed
class distance and difference matrices with several dif-
ferent window sizes, i.e. w = 3, 5, . . . , 31. The adaptive
feature AF− computed with different window sizes
gave similar correct classification rates and classifi-
cations of each case in the learning set (e.g., w = 3 and
w = 31 gave a correct classification rate of 69.4% and
70.2%, respectively).

We have applied the methodology of adaptive fea-
ture extraction using both 2D entropy matrices to
extract features from each nuclear image to obtain an
average for nuclei within certain area limits, and using
4D entropy matrices that include all nuclear areas and
then extracting just the two features per patient. The
results from the validation data set shows that the 4D
patient matrix approach improves the single-feature
CCR by 2.8% (to 65.7%), while the sensitivity and
specificity are increased by 5.5% and 1.5% (to 47.2
and 75.4%), respectively.

Dividing the 134 patient learning set into a training
(101 cases) and a test set (33 cases), we have con-
cluded that the best pair of non-adaptive entropy matrix
features obtained a test CCR of about 60%, and was
outperformed by the best single adaptive feature. The
non-adaptive features were therefore not applied on the
final validation data set.

As discussed above, using our adaptive feature
extraction, neither the choice of texture method (co-
occurrence, run-length, entropy matrix), the number
of gray-level quantization levels G, or the window size
w in the computation of the entropy matrices, were
important for the classification of each case of early
stage ovarian cancer. In the present study, we there-
fore have chosen to evaluate one adaptive entropy
matrix feature computed with G = 64 and w = 9 on
an independent validation set of 112 cases of early
stage ovarian cancer. Univariate Kaplan-Meier anal-
ysis showed significant better relapse-free survival for
patients classified as “good” prognosis (with low adap-
tive feature values) compared to patients classified as
“poor” prognosis (with high adaptive feature values) on
the basis of a single adaptive entropy matrix feature.

In a multivariate analysis including DNA ploidy
classification, histological grade, FIGO stage, and
the adaptive feature AF−, the adaptive feature was
removed. However, in a multivariate analysis includ-
ing histological grade, FIGO stage, and the adaptive
feature AF−, the adaptive feature was found to be of
independent prognostic significance for relapse-free
survival. In the present study, DNA ploidy classifica-
tion and nuclear texture analysis were based on the
same high-resolution digital images. However, DNA
ploidy classification is not a routine method that is
implemented at every lab. Furthermore, our main goal
is to perform nuclear texture analysis on histologi-
cal sections, where DNA ploidy classification is not
an option. In our department, we are now performing
high-throughput nuclear texture analysis in order to
perform a prognostic classification of cancer patients,
based on up to 50.000 measured nuclei/case.

In conclusion, we have demonstrated that adaptive
nuclear texture features contain prognostic informa-
tion and are of independent prognostic significance
for relapse-free survival in early stage ovarian cancer.
Univariate Kaplan-Meier analysis showed significant
better relapse-free survival for patients with low adap-
tive feature values compared to patients with high
adaptive feature values on the basis of a single adap-
tive entropy matrix feature. The 10-years relapse-free
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survival was about 78% for patients with low adaptive
feature values and about 52% for patients with high
adaptive feature values. Adaptive nuclear texture anal-
ysis is a promising high-resolution, high-throughput
method for assessing large scale genomic instability
that may aid pathologists in prognosis of cancer.

Acknowledgments

We thank John Arne Nesheim, John Maddison and
Rolf Anders Syvertsen for computer programming and
Arne Jørgen Ryther and Christopher Kise for technical
assistance. We also thank Tarjei Sveinsgjerd Hveem for
valuable input and discussions.

References

[1] F. Albregtsen and B. Nielsen, Texture classification based
on cooccurrence of gray level run length matrices, Aus-
tralian Journal of Intelligent Information Processing Systems
6 (2000), 38–45.

[2] M.A. Brewer, J. Ranger-Moore, M.H. Greene, D.S. Alberts, Y.
Liu, H.G. Bartels, A.C. Baruch and P.H. Bartels, Preneoplastic
changes in ovarian tissues, Anal Quant Cytol Histol 26 (2004),
207–216.

[3] M.A. Brewer, J. Ranger-Moore, A. Baruche, D.S. Alberts,
M. Greene, D. Thompson, Y. Liu, J. Davis and P.H. Bartels,
Exploratory study of ovarian intraepithelial neoplasia, Cancer
Epidemiol Biomarkers Prev 14 (2005), 299–305.

[4] L. Deligdisch, J. Gil, H. Kerner, H.S. Wu, D. Beck and R.
Gershoni-Baruch, Ovarian dysplasia in prophylactic oophorec-
tomy specimen – Cytogenetic and morphometric correlations,
Cancer 86 (1999), 1544–1550.

[5] R.O. Duda, P.E. Hart and D. Stork, Pattern Classification, 2nd
edition, Wiley-Interscience: New York, 2001, p. 39.

[6] J.M. Dunn, T. Hveem, M. Pretorius, D. Oukrif, B. Nielsen,
F. Albregtsen, L.B. Lovat, M.R. Novelli and H.E. Danielsen,
Comparison of nuclear texture and image cytometric DNA
analysis for the assessment of dysplasia in Barrett’s oesoph-
agus, British Journal of Cancer 105 (2011), 1218–1223.

[7] J.P. Geisler, H.E. Geisler, G.A. Miller, M.C. Wiemann, Z. Zhou
and W. Crabtree, Markov optical texture parameters as prog-
nostic indicators in ovarian carcinoma, Int J Gynecol Cancer
9 (1999), 317–321.

[8] M.M. Galloway, Texture analysis using gray level run lengths,
CVGIP 4 (1975), 172–179.

[9] R.M. Haralick, K. Shanmugam and I. Dinstein, Textural fea-
tures for image classification, IEEE Trans. on Systems Man
and Cybernetics 3 (1973), 610–621.

[10] D.W. Hedley, DNA analysis from paraffin-embedded blocks,
Methods Cell Biol 41 (1994), 231–240.

[11] A. Jain and D. Zongker, Feature selection: Evaluation, appli-
cation, and small sample performance, IEEE Trans. on Pattern
Analysis and Machine Intell 19 (1997), 153–158.

[12] A.K. Jain and B. Chandrasekaran, Dimensionality and sample
size considerations in pattern recognition practice, In: Hand-
book of statistics, vol. 2, P.R. Krishnaiah, L.N. Kanal, eds.,
North-Holland Publishing: Amsterdam 1982, pp. 835–855.

[13] T. Jørgensen, K. Yogesan, K.J. Tveter, F. Skjørten and H.E.
Danielsen, Nuclear texture analysis: A new prognostic tool in
metastatic prostate cancer, Cytometry 24 (1996), 277–283.

[14] G.B. Kristensen, W. Kildal, V.M. Abeler, J. Kaern, C.G. Trope
and H.E. Danielsen, Large-scale genomic instability predicts
long-term outcome for women with invasive stage I ovarian
cancer, Annals of Oncology 14 (2003), 1494–1500.

[15] B. Nielsen, F. Albregtsen and H.E. Danielsen, Statistical
nuclear texture analysis in cancer research: A review of meth-
ods and applications, Critical Reviews in Oncogenesis 14
(2008), 89–164.

[16] B. Nielsen, F. Albregtsen, W. Kildal and H.E. Danielsen, Prog-
nostic classification of early ovarian cancer based on very low
dimensionality adaptive texture feature vectors from cell nuclei
from monolayers and histological sections, Analytical Cellular
Pathology 23 (2001), 75–88.

[17] B. Nielsen, F. Albregtsen and H.E. Danielsen, Low dimen-
sional adaptive texture feature vectors from class distance and
class difference matrices, IEEE Trans. on Medical Imaging
23(1) (2004), 73–84.

[18] B. Nielsen, F. Albregtsen and H.E. Danielsen, Nuclear texture
analysis of two different prognostic classes of early ovarian
cancer based on gray level entropy matrices, Analytical Cellu-
lar Pathology 25 (2003), D.17.

[19] B. Nielsen and H.E. Danielsen, Prognostic value of adaptive
textural features – The effect of standardizing nuclear first-
order statistics and mixing information from nuclei having
different area, Cellular Oncology 28 (2006), 85–95.

[20] E. Protopapa, G. Delides, G. Miaoulis, D. Thompson and P.H.
Bartels, Image analysis of mesoyhelioma. II. Discrimination of
mesothelioma from metastatic serous ovarian adenocarcinoma,
Anal Quant Cytol Histol 22 (2000), 338–345.

[21] H. Schulerud and F. Albregtsen, Effects of many feature can-
didates in feature selection and classification, Lecture Notes
Comput Sci 2396 (2002), 480–487.

[22] H. Schulerud and F. Albregtsen, Many are called but few
are chosen. Feature selection and error estimation in high
dimensional spaces, Comput Methods Programs Biomed 73(2)
(2004), 91–99.

[23] H.J. Tanke and E.M. van Ingen, A reliable Feulgen-acr iflavine-
SO2 staining procedure for quantitative DNA measurements,
J Histochem Cytochem 28 (1980), 1007–1013.

[24] B.A. Werness, A.M. Afify, K.L. Bielat, G.H. Eltabbakh, M.S.
Piver and J.M. Paterson, Altered surface and cyst epithelium
of ovaries removed prophylactically from women with a fam-
ily history of ovarian cancer, Human Pathol 30 (1999), 151–
157.

[25] K. Yogesan, T. Jørgensen, F. Albregtsen, K.J. Tveter and
H.E. Danielsen, Entropy-based texture analysis of chromatin
structure in advanced prostate cancer, Cytometry 24 (1996),
268–276.


