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IntroductIon
Stroke, also known as cerebral vascular event, is one of 
the world’s leading causes of mortality and morbidity, es-
pecially in the aged population (Donnan et al., 2008; Zhou 
et al., 2014). There are mainly two pathological types of 
stroke: ischemic and hemorrhagic (Chen et al., 2014b; Har-

REVIEW

ris et al., 2014; Liu et al., 2014a; Hafez et al., 2015), among 
which ischemic stroke accounts for about 80% (Thrift et al., 
2001; Khanna et al., 2014). Recent clinical studies suggest 
that neurosurgical procedures, as well as endovascular and 
cardiovascular surgery (such as carotid endarterectomy, 
intracranial aneurysm resection, deep hypothermia aortic 
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repair) are associated with high risk of perioperative cere-
bral ischemia/reperfusion injury (Arrowsmith et al., 2000; 
Kelley, 2001), which may cause irreversible damage to 
patients’ postoperative neurological function (Liu et al., 
2014b; Hill et al., 2015). The catastrophic consequence 
and high risk of cerebral ischemic stroke make it a huge 
concern for anesthesiologists and perioperative care provid-
ers (Lapchak, 2015). The mechanisms of cerebral ischemic 
injury are complex, possibly involving energy metabolism 
disorder (Lioutas et al., 2015; Yu et al., 2015), oxygen free 
radical injury (Bozkurt et al., 2014; Hu et al., 2014; Aras et 
al., 2015; Zheng et al., 2015), calcium overload (O'Bryant 
et al., 2014; Pignataro et al., 2014), excitotoxicity (Baxter 
et al., 2014; Ruan et al., 2014; Song and Yu, 2014), inflam-
matory reaction (An et al., 2014; Zhou et al., 2014; Petrone 
et al., 2015; Rossi, 2015; Waje-Andreassen et al., 2015) 
and apoptosis (Li et al., 2014c; Liu et al., 2014c; Yan et al., 
2015). In the recent three decades, an increasing number of 
studies support the idea that various pharmaceutical agents 
can provide organ protection (Zhu et al., 2014; dela Pena 
and Borlongan, 2015; Kandadai et al., 2015; Soliman et al., 
2015; Wang et al., 2015) including inhalational anesthetics, 
which exhibit protective profiles in major organs, such as 
the heart, brain, lung and liver (Schumacher et al., 2014; 
Vargas-Martinez et al., 2014; Ferreira et al., 2015; Lourenco 
et al., 2015; Ohno et al., 2015; Waterford et al., 2015). 
Moreover, pre-, pro-, and postconditioning by isoflurane 
or sevoflurane have all been demonstrated to significantly 
reduce cerebral infarct size and improve recovery of neu-
rological function after cerebral ischemia (McBride et al., 
2015). As for the underlying protective mechanism, a great 
effort has been made to uncover the ambiguous mechanisms 
and remarkable progress that has been achieved in this field 
(Deng et al., 2014). The pursuit of further understanding 
of the mechanism underlying the inhalational anesthetics 
conferred neuroprotection against cerebral ischemia may 
potentially move its clinical translation forward and shed 
new light on the discovery of novel therapeutic targets. 

neuroprotectIon paradIgMs of InhalatIonal 
anesthetIcs-precondItIonIng, procondItIonIng 
and postcondItIonIng
Inhalational anesthetics can provide neuroprotective ef-
fect against brain ischemia by three treatment paradigms 
according to the timing of intervention: preconditioning, 
proconditioning and postconditioning. Preconditioning is 
a process in which a relatively small amount of damage 
or chemical/pharmacological agent is administered prior 
to the ischemic insult (Shah and Aizenman, 2014; Stetler 
et al., 2014). With preconditioning treatment, the ischemic 
tolerance to the predictable ischemic injury of the brain 

is increased through a series of mechanisms (Keep et al., 
2014). Treatment of inhalational anesthetics during the 
cerebral ischemic period is termed as proconditioning (Wu 
et al., 2014). Postconditioning, however, is applied after 
cerebral ischemic event has developed (Liu et al., 2014c; 
Khan et al., 2015). 

Pre- and postconditioning of isoflurane exhibit 
neuroprotection consistently but proconditioning 
remains controversy
A growing number of studies have demonstrated the pro-
tective effect of isoflurane against ischemic brain damage 
both in rodents and in vitro (Bickler et al., 2005; Shah and 
Aizenman, 2014). The preconditioning paradigms differ a 
lot among different studies. Animals exposed to 1.2% or 
2% isoflurane for 1 hour for 5 consecutive days (Sun et al., 
2015; Tong et al., 2015), 1.5% isoflurane for 30 minutes (Li 
et al., 2013) or 1% isoflurane for 4 hours (Zhu et al., 2010) 
before middle cerebral artery occlusion (MCAO) were 
all shown to exhibit significantly alleviated neurological 
deficits and reduced infarct volume. Consistent with the in 
vivo studies, pretreatment with isoflurane 24 hours prior to 
oxygen glucose deprivation (OGD) injury in primary corti-
cal neurons cultured cells preserved neuronal activity and 
reduced lactate dehydrogenase (LDH) release (Kapinya et 
al., 2002; Kaneko et al., 2005). 

In a rat MCAO model, postconditioning significantly 
decreased neurobehavioral deficit scores and infarct volume 
(Li et al., 2014b). Additionally, isoflurane postconditioning 
decreased the numbers of PI-positive cells 24 hours after 
reperfusion compared with the ischemia/reperfusion group 
(Wang et al., 2016). In cultured human neuron-like cells, 
isoflurane postconditioning also showed protection against 
the OGD insult. In terms of the paradigm of isoflurane 
postconditioning, postconditioning with 1.5%, 2% and 
3.0% isoflurane for 1 hour since reperfusion has all been 
demonstrated as effective in previous animal studies (Lin et 
al., 2011). Post-treatment with 2% isoflurane for 30 minutes 
immediately after the 15-minute OGD dose-dependently 
has been shown to reverse the OGD-induced decrease of 
2,3,5-triphenyltetrazolium chloride (TTC) conversion and 
to improve neurologic outcome after brain ischemia (Lee 
et al., 2008).

Although the protection of isoflurane pre- and post-
conditioning against cerebral ischemic stroke has been 
well documented by many studies, the effectiveness of 
isoflurane protreatment is still uncertain due to conflicting 
evidences. Little neuroprotective effect of isoflurane on fo-
cal or global cerebral ischemia was observed on the tissue 
damage and neurological function. In some studies, even 
worsening effect was detected. For example, isoflurane at 
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and reperfusion (Peng et al., 2011).
Sevoflurane preconditioning is somehow comparable 

to sevoflurane anesthesia in surgical patients. In addition 
to its anesthetic effect, sevoflurane treatment also shows 
protection in OGD-induced rat brain slices (Toner et al., 
2001). However, in vivo studies investigating sevoflurane 
preconditioning in cerebral ischemic animals models are 
still lacking. With a number of advantages over isoflurane, 
sevoflurane is widely used in clinical anesthesia nowadays. 
Considering the large number of surgical patients receiv-
ing sevoflurane anesthesia, it would be intriguing to know 
whether sevoflurane treatment can confer neuroprotection 
against cerebral ischemia. 

Desflurane preconditioning is potentially neuroprotective
Desflurane is a highly fluorinated methyl ethyl ether used 
in clinical anesthesia. It is gaining popularity because of its 
extremely low blood-gas solubility which allows fast induc-
tion and fast emergence while used in general anesthesia 
(Shan et al., 2015). Although studies on neuroprotective 
effect of desflurane preconditioning, postconditioning and 
proconditioning in cerebral ischemia are still limited, studies 
in cerebral ischemic related animal models, such as circula-
tory arrest or cardiopulmonary bypass, suggest the potential 
neuroprotective effect of desflurane preconditioning. The 
neuroprotective effect of desflurane has been demonstrated 
in focal cerebral ischemia in rats and also in newborn pigs 
under deep hypothermic circulatory arrest (Haelewyn et al., 
2003; Tsai et al., 2004). In neonatal rats with incomplete 
cerebral ischemia and low-flow cardiopulmonary bypass, 
neurologic function was improved with desflurane anesthe-
sia (Kurth et al., 2001). Desflurane postconditioning was 
suggested as protective in an in vitro study showing that 
LDH release at 1 hour after OGD was reduced by desflu-
rane postconditioning in the human neuroblastoma cell line 
(Lin et al., 2011). Considering the increasing popularity of 
desflurane in clinical anesthesia, it would be intriguing to 
investigate the protective effect of pre-, post- and precon-
ditioning of desflurane in cerebral ischemic injury. 

Other inhalational anesthetics
Besides the above mentioned anesthetic agents, there are 
also some other inhalational anesthetics that have been 
shown to be protective in cerebral ischemia. Halothane, as 
a classic volatile anesthetic, was demonstrated to attenuate 
cerebral ischemic injury both in cats and rodents 16 hours to 
7 days after ischemia and hypoxia (Zausinger et al., 2002; 
Haelewyn et al., 2003). Xenon is a colorless, dense, odor-
less noble gas that has recently been used as an inhalation 
anesthetic in clinical practice. Several studies have shown 
that xenon has a beneficial effect on rodent cardiopulmonary 

lower concentrations could enact quicker brain protection 
afterinjury (Lee et al., 2008). Using cultured neurons or rat 
brain sections, it was suggested that isoflurane procondition-
ing provided protection against ischemic or other forms of 
neuronal damage (Lee et al., 2008). Isoflurane procondi-
tioning in rat cerebellum and hippocampal slices decreased 
neuronal apoptosis at 5 to 14 days after OGD (Robert et al., 
2000; Liniger et al., 2001; Breandan et al., 2002; Li et al., 
2002). The protective effect of isoflurane was demonstrated 
to be dose-dependent (Nasu et al., 2006). High concentrations 
of isoflurane were more likely to attenuate OGD-induced 
neurotoxicity in rat cortical striatum slices (Toner et al., 
2002). Thus, the exact impact of isoflurane proconditioning 
on ischemic brain injury still merits further investigation.

Divergent effect of sevoflurane pre-, post- and 
proconditioning on cerebral ischemic injury
As a new inhalational anesthetic that is gaining popularity 
in clinical anesthesia practice, sevoflurane is increasingly 
studied in the research of anesthetic treatment against cere-
bral ischemia. Multiple paradigms of sevoflurane treatment 
have been proposed. 

Preconditioning with the single inhalation of sevoflurane 
enabled to protect animals from cerebral ischemic insults, 
while repeated preconditioning of sevoflurane also pro-
vided neuroprotection against focal or global brain damage 
induced by ischemia/reperfusion in short period (3 days) 
after ischemia (Wang et al., 2011; Wang, 2016). In vitro 
studies consistently reveals the protection of sevoflurane 
preconditioning (Zheng and Zuo, 2005), as evidenced by 
attenuated OGD injury and increased the number of surviv-
ing neurons in hippocampal slices (Kehl et al., 2004; Wang 
et al., 2007a, b), and dose-dependently reduced neuronal 
apoptosis in primary cultured cortical neurons (Wise-
Faberowski et al., 2001). 

Sevoflurane postconditioning also yields protection 
against cerebral ischemia consistently. Postconditioning 
with sevoflurane significantly decreased apoptotic cell 
counts at 3 days (Kim et al., 2016) and preserved the CA1 
neuron histology and reduced necrotic or apoptotic cells 
at 7 days after global cerebral ischemia in rats (Seo et al., 
2013). In this study, the postconditioning paradigms ranged 
from single treatment of 10 minutes after transient global 
ischemia to two repeats of 5 minutes treatment of 2.5% 
sevoflurane and a subsequent washout time of 10 minutes 
after ischemia (Seo et al., 2013). In vitro experiments dem-
onstrated that postconditioning with sevoflurane decreased 
the release of LDH and reduced OGD injuries of human 
neuroblastoma cell line at the early phase of reperfusion 
(Lin et al., 2011). It also attenuated ischemic injury of the 
neurons in the CA1 region of rat hippocampus after OGD 
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Proconditioning of inhalational anesthetics inhibits 
glutamate release and antagonizes the α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) and 
N-methyl-D-aspartate (NMDA) receptors
After cerebral ischemia, there is increased glutamate 
release, which activates AMPA and NMDA receptors, 
thus cell excitotoxicity and neuronal injury ensues (Lai 
et al., 2014; Leng et al., 2014). Inhalational anesthetics 
can inhibit the glutamate release trigger by cerebral isch-
emia. It was demonstrated that sevoflurane reduced the 
glutamate concentration in the ratcortex and hippocampus 
after global cerebral ischemia (Engelhard et al., 2003). 
Administration of halothane, isoflurane, sevoflurane and 
enflurane reduced the release of glutamate in the rat brain 
slices exposed to hypoxia, chemical hypoxia and OGD 
(Bickler et al., 1995; Eilers and Bickler, 1996; Toner et 
al., 2001). 

In addition to the inhibition on the glutamate release, 
inhalational anesthetics also antagonize the AMPA and 
NMDA receptors, which can be activated by glutamate 
after ischemic injury. Studies have found that in both the 
cerebellar and the mouse cortex brain slices, administration 
of isoflurane attenuated excitotoxicity both during and after 
administration of AMPA (Li et al., 2002). Halothane attenu-
ates AMPA receptor-mediated excitatory responses more 
profoundly compared with xenon, cyclopropane, enflurane, 
isoflurane and desflurane (Pirot et al., 1995) Besides the 
AMPA receptor, halothane and sevoflurane inhibited the 
NMDA receptor (Solt et al., 2006). Isoflurane and sevoflu-
rane antagonized NMDA excitotoxicity and NMDA-gated 
currents in hippocampal slices, cultured cortical neurons, 
and neuron-glial mixed cell cultures (Beirne et al., 1998; 
Harada et al., 1999; Kimbro et al., 2000; Kudo et al., 2001; 
Ming et al., 2002). Thus, attenuating the excitotoxicity by 
inhibiting the AMPA and NMDA signaling plays a role 
in the inhalational anesthetic-conferred neuroprotection 
(Figure 1).  

bypass and other brain injury models of neuronal damage 
and neurological damage (Kitano et al., 2007). Post-MCAO 
administration of xenon showed reduced cortical damage 
in animal models (David et al., 2003; Abraini et al., 2005). 
However, there’s also conflicting evidence showing that xenon 
exacerbates ischemic brain damage and neurological deterio-
ration in the model of rat cardiopulmonary bypass combined 
with cerebral air embolization (Jungwirth et al., 2006). 

Taken together, a great body of evidence has confirmed 
the protection of pre- and postconditioning of the two 
commonly used inhalational anesthetics, isoflurane and 
sevoflurane against cerebral ischemic injury, but the 
impact of proconditioning of these two anesthetics still 
remains ambiguous. The impact of desflurane on cerebral 
ischemic injury is also uncertain and thus warrants further 
investigation. 

pleIotropIc MechanIsMs Involved In InhalatIonal 
anesthetIc-Induced neuroprotectIon
Modulating excitotoxicity glutamate release plays a role in 
pre-, pro-, and postconditioning of inhalational anesthetic 
treatments
Preconditioning of inhalational anesthetics inhibits 
glutamate release
Some studies have shown that prior to cerebral ischemia, 
the administration of inhalational anesthetic produces neu-
roprotective effects by inhibiting glutamate release (Bickler 
et al., 1995). In a rat global cerebral ischemia model, sevo-
flurane enabled reduction of the concentration of glutamate 
in the brain. Isoflurane preconditioning decreased Purkinje 
neuronal damage induced by glutamate excitotoxicity in the 
rat cerebellar slice. Moreover, the use of a specific gluta-
mate transporter inhibitor during OGD reversed this effect 
(Zheng and Zuo, 2003, 2005). Thus the impact of glutamate 
release of preconditioning of isoflurane may contribute to 
its protection against cerebral ischemia. 

Figure 1: Modulation of cell excitotoxicity plays a role in the 
neuroprotection of inhalational anesthetics against cerebral ischemia.
Note: Inhalational anesthetics attenuate the cell cytotoxicity induced by cerebral 
ischemia via inhibiting the glutamate release and activation of AMPA and NMDA 
receptors. It thus increases the activity of nNOS and the concentration of Ca2+, 
activating the MAPK-ERK pathway. Consequently, it decreases oxidative 
stress injury and promotes neuron survival after ischemia. On the other hand, 
it opens and promotes the KATP activity in mitochondria, which reduces 
cerebral cell death. AMPA: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid; NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptor; 
nNOS: neuronal nitric oxide synthase; MAPK-ERK: mitogen-activated protein 
kinases-extracellular regulated protein kinase; CaMK: calcium/calmodulin-
dependent protein kinase; PSD95: postsynaptic density protein 95; MEK: 
mitogen-activated extracellular signal-related kinase kinase.
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Postconditioning of inhalational anesthetics both modulates 
the excitatory and inhibitory amino acids
Postconditioning with sevoflurane significantly increased 
excitatory amino acids (aspartic acid, glutamic acid) and 
decreased inhibitory amino acids (GABA) in a concen-
tration-dependent manner and consequently ameliorated 
OGD-reperfusion injury in the rat hippocampus (Peng et al., 
2011). Current evidence in this regard is relatively limited 
and further studies are needed to confirm the protection of 
inhalational anesthetic postconditioning. 

Signaling pathways involved in the anti-apoptotic effect of 
inhalational anesthetics in cerebral ischemia
Preconditioning induced anti-apoptosis 
Apoptosis is one of the important cell death signaling fol-
lowing cerebral ischemia (Hosaka and Hoh, 2014) and 
anti-apoptosis is one of the pivotal common mechanisms 
underlying the inhalational anesthetic-afforded neuropro-
tection against ischemic injury, including pre-, pro- and 
postconditioning. 

It was demonstrated that halothane and isoflurane inter-
vention before OGD could attenuate neuronal apoptosis in 
a dose-dependent manner in rat cortical neurons (Wise-Fa-
berowski et al., 2001). Isoflurane-induced ischemic toler-
ance is mediated by the activation of p38 mitogen-activated 
protein kinases (MAPK). Because p38MAPK inhibitor 
can reverse the preconditioning effect of isoflurane in rat 
permanent MCAO model, the activation of p38MAPK 
can mimic the pretreatment of isoflurane (Zheng and 
Zuo, 2004). Pre-intervention with sevoflurane markedly 
decreased activation of caspase3 and apoptosis inducing 
factor, and robustly suppressed pro-apoptotic protein and 
increased anti-apoptotic protein in Bcl-2 super family in 
the rat MCAO model (Zhu et al., 2016). Furthermore, 
preconditioning with sevoflurane attenuated the activation 
of JNK and p53 pathway (Wen et al., 2016). The above 
evidence suggest that suppression of apoptotic responses 
may contribute to the neuroprotection of inhalational 
anesthetic preconditioning against focal ischemic brain 
injury (Wang et al., 2016) (Figure 2).

Proconditioning of inhalational anesthetics attenuates 
neuronal apoptosis by modulating Bax expression 
Mounting evidence suggest that inhalational anesthetics 
are able to modulate the neuronal cell apoptosis thus exert 
its neuroprotective effect (Leung et al., 2014). It reduces 
the expression of apoptosis-inducing protein Bax at 4 
hours after ischemia, while p53, Bcl-2 and Mdm-2 show 
no changes (Engelhard et al., 2004). Isoflurane attenuates 
neuronal apoptosis 24 hours after focal cerebral ischemia 
in rats (Kawaguchi et al., 2004).

Postconditioning of inhalational anesthetics modulates the 
post-stroke apoptosis in multiple pathways
Several signalings have been suggested in the anti-apoptotic 
effect of inhalational anesthetic postconditioning, including 
JAK-STAT pathway, Bcl-2 and glycogen synthase kinase 
(GSK) 3β pathway (Figure 2). Sevoflurane postcondition-
ing reduced apoptosis by increasing phosphorylated Janus 
kinase (p-JAK) and phosphorylated signal transducer and 
activator of transcription (p-STAT) expression after tran-
sient global ischemia in rats, and the Janus kinase- signal 
transducer and activator of transcription (JAK-STAT) 
inhibitor, AG490 reversed the beneficial anti-apoptotic ef-
fects of sevoflurane postconditioning, suggesting that the 
JAK-STAT pathway may be involved in the anti-apoptotic 
mechanism of sevoflurane postconditioning (Kim et al., 
2016). Postconditioning with 2.5% sevoflurane in rats 
alleviated ischemic damage against global cerebral isch-
emic insults by suppressing Bax and and increasing Bcl2 
expression.(Seo et al., 2013). Isoflurane postconditioning 
also robustly increased the phosphorylation of GSK3β at 
Ser9 in SH-SY5Y cells 1 hour after the OGD. In addition, 
GSK3β inhibitors reduced OGD and triggered LDH release. 
The combination of GSK3β inhibitors and isoflurane post-
conditioning did not present a greater protective effect than 
isoflurane post-conditioning alone (Lin et al., 2011).

Taken together, anti-apoptosis represents one of the critical 
common mechanisms underlying the inhalational anesthetic 
conferred neuroprotection against cerebral ischemia. Com-
pared to pre- and postconditioning, studies in procondition-
ing of inhalational anesthetics are relatively limited. Further 
mechanistic investigations in this regard are warranted. 

Targeting inflammation by the inhalational anesthetics in 
cerebral ischemic injury
Suppressing inflammation and affecting the related 
molecular signaling pathway by preconditioning of 
inhalational anesthetics
Our previous study found that pretreatment with sevoflurane 
inhibited the activation of microglial cells in the early stage 
of cerebral ischemic injury, decreased the expression of 
inflammatory factors such as cyclooxygenase-2 (COX-2), 
interleukin 6 (IL-6), interleukin-1α (IL-1α), interleukin-1β 
(IL-1β), tumor necrosis factor-α (TNF-α) and inducible 
nitric oxide synthase (iNOS), and suppressed the activa-
tion of its upstream transcription factor, nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB), 
leading to significantly improved neurological function 
after ischemic brain injury in rats (Wang et al., 2011). We 
further confirmed that the role of sevoflurane was directly 
mediated by its anti-inflammatory effects, but not from other 
pathways to reduce secondary injury after the brain injury 
(Wang et al., 2011) (Figure 3). 
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iNOS has been suggested to play a critical role in the 
protective effect of inhalational anesthetics preconditioning 
(Tanaka et al., 2004). Furthermore, the neuroprotection of 
isoflurane against ischemic neuronal injury was dependent 
on iNOS (Kapinya et al., 2002; Zheng and Zuo, 2004). How-
ever, this may not be the case in halothane preconditioning, 
because using nonspecific nitric oxide synthase (NOS) 
inhibitors at 2 hours after transient focal cerebral ischemia 
in rats did not alter the pretreatment effect of halothane 
(Drummond et al., 2005).

Inhalational anesthetic postconditioning protects against 
ischemic brain injury via inhibiting inflammatory cytokines
Isoflurane postconditioning led to greater accumulation of 
hypoxia-inducible factors (HIF-1α) and iNOS gene expres-
sion, inducing augment of HIF-1α transcriptional activity and 
co-localization of HIF-1α and iNOS and thus propagating 
the inflammatory response. Accordingly, silencing of HIF-
1α attenuated the accumulation of iNOS and the protective 
effects of isoflurane post-conditioning in the primary cortical 
neuron cultures. These findings suggested the involvement of 
HIF-1α in the attenuation of iNOS during tolerance against 

cerebral ischemia caused by isoflurane postconditioning 
(Fang Li et al., 2012). Serum levels of proinflammatory 
cytokines including TNF-α and IL-1β were higher in the 
control group when compared with the sevoflurane groups 
2 hours after ischemia (Seo et al., 2013). These data suggest 
postconditioning with sevoflurane exerts the neuroprotective 
effect by suppressing the inflammation triggered by primary 
ischemic insults and induced secondary neuronal damage. 

Taken together, the anti-inflammatory effect of pre- and 
postconditioning of inhalational anesthetics has been identi-
fied by the above mentioned evidences. However, the evi-
dence regarding the anti-inflammation of proconditioning of 
inhalational anesthetics is still lacking, which is an important 
question that deserves further investigation (Figure 3).  

Regulating of the ion channels by the inhalational anesthetics 
in the protection against cerebral ischemia
Preconditioning of inhalational anesthetics regulates 
calcium and potassium channels in their protection against 
cerebral ischemia
Ca2+ concentration in the brain plays an important role in 
NMDA receptor activation (Raval et al., 2003; Song and Yu, 

Figure 2: The anti-apoptotic signaling pathways are involved in the 
neuroprotection of inhalational anesthetics against cerebral ischemia. 
Note: Inhalational anesthetics exerts anti-apoptotic effects through several 
classical apoptotic pathways: 1) isoflurane preconditioning activates the p38-
MAPK pathway, which subsequently inhibits cell apoptosis and promotes cell 
survival; 2) sevoflurane preconditioning attenuates neuronal apoptosis by 
decreasing the activation of caspase 3 and AIF, and thus robustly suppresses 
pro-apoptotic protein and increases anti-apoptotic protein in Bcl-2 super 
family; 3) sevoflurane preconditioning attenuates the activation of JNK and p53 
pathway; 4) inhalational anesthetic proconditioning reduces the expression 
of Bax, which can induce neuronal apoptosis after ischemia; 5) sevoflurane 
postconditioning increases JAK-STAT signaling, which is an anti-apoptotic 
pathway; 6) isoflurane postconditioning increases the phosphorylation of 
GSK3β to exert the anti-apoptotic effect. MAPK: Mitogen-activated protein 
kinases; AIF: apoptosis inducing factor; JNK: c-Jun N-terminal kinases; (p-)
STAT: (phosphorylated) signal transducer and activator of transcription;  (p-)
GSK3β: (phosphorylated) glycogen synthase kinase3β; JAK: Janus kinase; 
Cas9: caspase9.

Figure 3: Neuroprotection of inhalational anesthetics in cerebral 
ischemia bytargeting inflammation. 
Note: Inhalational anesthetics have profound impact on the inflammatory 
responses induced by cerebral ischemia. Inhalational anesthetic preconditioning 
inhibits the activation of microglia and suppresses the activation of NFκB, thus 
decreasing the expression of a variety of inflammatory cytokines, such as 
COX-2, IL-6, IL-1α, IL-1β and TNFα. The preservation of BBB also contributes 
to the anti-inflammatory responses of inhalational anesthetics by reducing 
the levels of MMPs and CAMs. COX-2: Cyclooxygenase-2; IL-6: interleukin 
6; IL-1α: interleukin-1α; IL-1β: interleukin-1β; TNFα: tumor necrosis factor-α; 
NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells; MMPs: 
matrix metalloproteinases; CAMs: cell adhesion molecules; BBB: blood-brain-
barrier; iNOS: inducible nitric oxide synthase; IkB: nuclear factor of kappa light 
polypeptide gene enhancer in B-cells inhibitor; IKK: IkB kinase.
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2014), opening of voltage-gated Ca2+ channels (Bickler and 
Fahlman, 2004; Shenoda, 2015). Isoflurane precondition-
ing may regulate the calcium-binding protein calmodulin 
and activate the MAPK-extracellular regulated protein 
kinase (ERK) pathway by increasing intracellular calcium 
concentration in hippocampal neurons in rat OGD model 
(Bickler et al., 2005). Likewise, isoflurane preconditioning 
was shown to maintain the calcium/calmodulin-dependent 
protein kinase II activity in a dog cardiac arrest model 
(Blanck et al., 2000).

In addition to the regulation on calcium channels and 
calcium-binding proteins, inhalational anesthetics precon-
ditioning also activates ATP-sensitive potassium channel 
(KATP). KATP exists in the brain and brain circulation, 
there are two types: sarcolemma and mitochondria (McCully 
and Levitsky, 2003; Chen et al., 2014a). These channels, 
especially the mitochondrial KATP, play important roles 
in reducing or delaying cerebral cell death (Ockaili et al., 
1999). Inhalational anesthetics preconditioning provides 
neuroprotection against ischemic brain tissue by opening 
and activating KATP (Obal et al., 2005). The neuroprotection 
can be reversed by either glibenclamide or 5-hydroxydeca-
noic acid, two mitochondrial KATP blockers (Xiong et al., 
2003; Kehl et al.; Kaneko et al., 2005; Wang et al., 2007b). 
Isoflurane also activates KATP by activating adenosine A1 
receptors and thus provides neuroprotection against focal 
cerebral ischemic in rats (Liu et al., 2006) (Figure 1). 

Involvement of adenosine 5'-triphosphate-sensitive 
potassium channel in the postconditioning of inhalational 
anesthetic conferred protection
Lee et al. (2008) demonstrated application of 2% isoflu-
rane for 30 minutes started at 10 minutes after the OGD 
reduced the OGD-decreased TTC conversion. The pres-
ence of glibenclamide, a general adenosine 5'-triphosphate-
sensitive potassium channel blocker, or 5-hydroxydecanoic 
acid, a mitochondrial adenosine 5'-triphosphate-sensitive 
potassium channel blocker, during the application of 2% 
isoflurane abolished the isoflurane preservation of TTC 
conversion, suggesting the adenosine 5'-triphosphate-
sensitive potassium channel plays an important role in the 
isoflurane postconditioning afforded protection against 
neuronal injury in the OGD model. 

Distinct mechanisms identified respectively in pre-, pro- or 
postconditioning of inhalational anesthetics affording 
neuroprotection against cerebral ischemia
Sevoflurane preconditioning preserves the integrity of 
blood-brain-barrier (BBB) after cerebral ischemic injury 
Both ischemic and hemorrhagic strokes are associated 
with BBB disruption which results in vascular edema 
and blood extravasation. The expression and activation 

of matrix metalloproteinases (MMPs) has been repeti-
tively suggested as a critical player in BBB disruption 
(Merali et al., 2015; Reuter et al., 2015). Sevoflurane 
preconditioning administered 24 hours before transient 
MCAO protected BBB by suppression of cell adhesion 
molecules (CAMs) and MMPs after ischemia. Evans 
blue extravasation and electron microscopy results both 
showed that sevoflurane pretreatment markedly improved 
BBB integrity and neurological outcomes after ischemia. 
Sevoflurane preconditioning upregulated intracellular 
adhesion molecule-1 (ICAM-1), vascular cell adhesion 
molecule-1 (VCAM-1), MMP-2, MMP-9 thus robustly 
suppressed ischemia-induced degradation of occludins 
(Yu et al., 2011) (Figure 3). 

The regulation of cerebral blood flow and brain metabolic 
rate of inhalational anesthetics in ischemic brain injury
The administration of inhalational anesthetic has profound 
impact on the cerebral blood flow (Fumagalli et al., 2014). 
Inhalational anesthetics has been found to dose-dependently 
increase the CBF in humans (Schlunzen et al., 2006), ex-
perimentally in rabbits (Scheller et al., 1986) and monkeys 
(Li et al., 2014a). Likewise, the impact of inhalational 
anesthetics on brain metabolic rate (CMR) may contribute 
to their neuroprotection against ischemic injury. Almost 
all inhalational anesthetics can reduce the metabolic rate 
when the energy supply to the brain is reduced in the case 
of cerebral ischemia (Warner, 2004). It was suggested that 
the CMR reduction might be associated with the attenua-
tion of brain injury by inhalational anesthetics. Isoflurane 
exhibited stronger reduction in CMR as compared to 
halothane (Verhaegen et al., 1992), and meanwhile the 
isoflurane treated animals developed less severe brain 
damage following global cerebral ischemia (Nellgard et al., 
2000). However, other studies also showed that there were 
differences among CMR, brain histology and neurological 
functions in cerebral ischemic models, which could pos-
sibly be attributed to the impact of inhalational anesthetics 
on brain energy (high-energy phosphate) storage (Sano et 
al., 1992). Cerebral ischemic dogs treated with inhalational 
isoflurane had higher storage of ATP and creatine phosphate 
compared to the controls. Thus the lactate accumulation 
was also reduced, suggesting the neuroprotective effect 
of isoflurane is partially mediated by inhibition of brain 
metabolism (Newberg and Michenfelder, 1983). The re-
covery of ATP and intracellular pH in halothane anesthesia 
occured significantly later than that in sevoflurane and iso-
flurane anesthesia in the rat model of ischemia/reperfusion 
injury (Nakajima et al., 1997). Therefore, distinct impact 
of inhalational anesthetics on brain energy storage might 
contribute to the distinct protection of these anesthetics on 
the neuroprotection against ischemia.
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Inhalational anesthetics reduces catecholamine release 
both in the brain and circulation after cerebral ischemia
The acute release of catecholamine after cerebral ischemia 
exacerbates the progression of brain injury (Bhardwaj et 
al., 2001). Isoflurane can reduce the release of dopamine, 
epinephrine, and phenylephrine in brain tissue and also the 
level of epinephrine and phenylephrine in the circulation. 
Sevoflurane can reduce the release of dopamine, epineph-
rine and phenylephrine in the brain tissue and the release 
of norepinephrine in the circulation, but has no effect on 
adrenaline. Desflurane and N2O reduced the release of 
norepinephrine and epinephrine in the circulation (Miura 
et al., 1999; Engelhard et al., 2003). Therefore, reducing 
catecholamine release may represent one of the underlying 
mechanisms of inhalational anesthetic afforded protection 
against cerebral ischemia.

conclusIons
In summary, the efforts on the inhalational anesthetic 
treatment research in the recent years have led to a better 
understanding in their neuroprotection against cerebral 
ischemia. Multiple paradigms have been demonstrated to 
be protective and potentially translatable into clinical stroke 
therapy. The mechanisms underlying different paradigms 
of inhalational anesthetic treatments may converge in 
some common pathways, such as anti-excitotoxicity, anti-
inflammation, anti-apoptosis and et al. While some of the 
mechanisms are so far exclusively identified in specific 
paradigms, such as the blood flow and brain metabolism 
regulation and catecholamine regulation. All above new 
findings have reshaped our understanding of inhalational 
anesthetic treatment in cerebral ischemic stroke. There 
are still a great amount of unknowns which merit further 
investigation. In addition to the bench side researches, large-
scale clinical studies would be of great interest to determine 
the neuroprotective effects of inhalational anesthetics in 
cerebral ischemic stroke patients. 
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