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Background: Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are preclinical 
stages of Alzheimer’s disease (AD). Individual biomarkers are essential for evaluating altered neurological 
outcomes at both SCD and MCI stages for early diagnosis and intervention of AD. In this study, we aimed 
to investigate the relationships between topological properties of the individual brain morphological network 
and clinical cognitive performances among healthy controls (HCs) and patients with SCD or MCI. 
Methods: The topological measurements of individual morphological networks were analyzed using graph 
theory, and inter-group differences of standard graph topology were correlated and regressed to scores of 
clinical cognitive functions. 
Results: Compared with HCs, the topology of the individual morphological networks in SCD and MCI 
patients was significantly altered. At the global level, altered topology was characterized by lower global 
efficiency, shorter characteristics path length, and normalized characteristics path length [all P<0.05, 
false discovery rate (FDR) corrected]. In addition, at the regional level, SCD and MCI patients exhibited 
abnormal degree centrality in the caudate nucleus and nodal efficiency in the caudate nucleus, right insula, 
lenticular nucleus, and putamen (all P<0.05, FDR corrected). 
Conclusions: The topological features of individual gray matter morphological networks may serve as 
biomarkers to improve disease prognosis and intervention in the early stages of AD, namely SCD and MCI. 
Moreover, these findings may further elucidate the relationships between brain morphological alterations 
and cognitive dysfunctions in SCD and MCI.

Keywords: Subjective cognitive decline (SCD); mild cognitive impairment (MCI); normalized individual gray 

matter morphological network; graph theory analysis; cognitive performance; early detection

5270

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-22-1373


Quantitative Imaging in Medicine and Surgery, Vol 13, No 8 August 2023 5259

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5258-5270 | https://dx.doi.org/10.21037/qims-22-1373

Introduction

Alzheimer’s disease (AD), resulting in approximately 
50–80% of all dementia cases (1), is a progressive and 
irreversible neurodegenerative disorder. Currently, no 
disease modifying therapy is available for AD and applied 
clinical drug trials feature a high risk of failure (2). The 
clinical hypothesis for such outcomes is that AD patients 
have a long preclinical phase (2) and their brain pathology 
emerges years before the manifestation of clinical cognitive 
impairment (3). Recently, studies have investigated the 
earlier clinical stages of neurodegeneration that bear a high 
risk of progression to AD, including subjective cognitive 
decline (SCD), the preclinical stage of AD, and mild 
cognitive impairment (MCI), the early symptomatic stage 
of AD.

SCD is characterized by self-perceived deterioration 
of cognitive performance, but does not usually represent 
clinical neuropsychological dysfunction (4). Most studies 
have reported that SCD is the earliest alert of AD, and that 
individuals with SCD are at higher risk of developing MCI 
or even AD (5-7). In comparison, MCI refers to objective 
cognitive impairment but with general preservation of daily 
cognitive functioning compared to dementia (8,9), and 
is regarded as a transitional phase between the cognitive 
changes associated with aging and early AD (10,11). Thus, 
it is crucial to find effective biomarkers to identify SCD and 
MCI, so as to diagnose and intervene in AD at earlier stages 
(6,12).

Amyloid accumulation in the brain is one of the 
initially altered biomarkers that may be associated with 
the occurrence of AD (13-15). However, the abnormality 
of amyloid level is only weakly associated with the rate of 
clinical cognitive decline, probably because it plateaus at a 
very early stage of the disease (16). Alternatively, the loss 
of synapses has been robustly related to dementia (17).  
Synaptic dysfunction disrupts brain connectivity, and 
increasing evidence shows that brain connectivity and 
networks start changing early during the progression of AD 
(18-20). Therefore, topological properties of brain networks 
may be sensitive to incipient brain damage (21).

Magnetic resonance imaging (MRI), due to its intrinsic 
properties of high image resolution and well depicted tissue 

contrast, may show promise in identifying imaging markers. 
Meanwhile, graph theory analysis has been a useful tool to 
assess brain function with topological measurements. With 
this method, different modalities of MRI data, including 
structural MRI, diffusion MRI, and functional MRI (fMRI), 
have been used to construct brain networks and study 
altered brain connectivity in a variety of neurodegenerative 
diseases (22-25). However, relative to structural MRI, 
diffusion and fMRI usually require longer acquisition time 
and are thus more challenging due to motion artifacts 
for patients with neurological and psychiatric diseases. 
Therefore, high resolution structural MRI has attracted 
considerable interest for analyzing brain morphological 
networks in recent years (18,20,26-28). Moreover, an inter-
individual level analysis was proposed recently, based on 
cortical similarities in gray matter morphology within 
single cases (19,21,29-34). In this method, brain network 
graphs were constructed with nodes representing cortical 
regions and edges characterizing connected cortical 
regions, which share significant statistical similarities. 
Compared to the often-used volumetric features (9%) in 
the construction of morphological networks, increased 
variance in measurements of general cognitive decline can 
be largely explained by using the topological properties of 
the morphological network (32%) (29).

Some studies have applied this recently proposed 
method to study single subject gray matter morphological 
network alterations in SCD, MCI, or AD (21,29,30,32). 
For AD patients, the topology randomness of the brain 
morphological network has a positive correlation with the 
levels of cognitive impairment (29,30,32). Moreover, at 
predementia stages, such as SCD or MCI, the alterations 
of topological properties of the gray matter network 
can predict faster atrophy in brain regions related to 
AD progression (35), and identify patients featuring fast 
clinical progression (21,36). These studies demonstrated 
a certain potential of topological measures of individual 
morphological networks over other reported biomarkers 
in predicting clinical cognitive decline. Based on these 
promising findings, we assumed that this method may have 
potential for distinguishing the two preclinical phases of 
AD in the aspect of gray matter morphological network 
alterations, by comparing with healthy controls (HCs), 
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and for further predicting the clinical cognitive differences 
based on the topological property alterations. To the best 
our knowledge, this concept had not been previously 
investigated.

Therefore, the aim of this study was first to explore the 
differences of individual morphological network features 
among HCs, SCD, and MCI, and second to identify 
potential imaging biomarkers for early diagnosis and 
intervention of SCD and MCI.

Methods

Participants

A total of 78 non-demented patients (SCD =39, MCI =39) 
were included in this study. Additionally, 26 (13 males and 
13 females) HCs matched with both SCD and MCI groups 
for sex, years of education, hypertension, diabetes, lacunar 
infraction, and Hachinski Ischemic Scale (HIS), were also 
recruited. This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the First Affiliated 
Hospital of Nanjing Medical University, and written 
informed consent was provided by each of the participants.

Patients with MCI all met the following criteria: (I) age 
between 55 and 85 years; (II) diagnosis of MCI according to 
the latest standards of the National Institute on Aging and 
Alzheimer’s Association guidelines (9); (III) the presence of 
memory complaint for more than 6 months but preserved 
activities of daily living.

The cr i ter ia  of  SCD were  def ined as  fo l lows : 
(I) age between 55 and 85 years; (II) the results of 
neuropsychological examination test were normal, or 
although there was some cognitive impairment, it did not 
meet the neuropsychological diagnostic standard of MCI; 
(III) according to the chief complaint, there was cognitive 
impairment compared with the healthy state, and there 
were no related acute events.

The criteria of the HC group were as follows: (I) no 
chief complaints of cognitive impairment; (II) cognitive test 
failed to meet the standard of SCD and MCI.

The exclusion criteria were as follows: (I) diagnosis 
of vascular dementia; (II) the score of the HIS was >4; 
(III) failure to cooperate with the cognitive function 
examination; (IV) complication with severe illness such as 
diabetes or cardiovascular disease, cerebrovascular disease, 
liver disease, and mental illness; (V) structural abnormalities 
such as brain tumor, subdural hematoma, head trauma, or 

a neurological or psychiatric disorder that could impact 
cognitive functions; (VI) lack of complete demographic 
information and poor magnetic resonance (MR) image 
quality.

Clinical performance evaluation

Each participant was assessed with multiple clinical scales, 
including the following: (I) general cognitive function 
assessed by Mini-Mental State Examination (MMSE), 
which is the most commonly used screening scale for 
dementia. A higher MMSE score indicates better cognitive 
function (37); (II) short-term memory assessed by Auditory-
Verbal Learning Test (AVLT) (38), using delayed recall and 
recognition; (III) executive function assessed by the Trail 
Making Test (TMT) A&B (39); (IV) language function 
assessed by Animal Verbal Fluency Test (AVFT) (40) and 
Boston Naming Test (BNT) (41).

MRI data acquisition

All MRI experiments were performed on a 3-T MRI system 
(Discovery 750 W, GE Healthcare, Chicago, IL, USA) with 
a 24-channel phased array head coil employed. We acquired 
3-dimensional (3D) 1-mm isotropic high-resolution T1-
weighted (T1w) brain images using a spoiled gradient 
echo-based 3D-brain volume imaging (BRAVO) sequence 
for each case, with the scan parameters shown as follows: 
repetition time (TR) =8.5 ms, echo time (TE) =3.2 ms, 
flip angle =12°, matrix size =256×256, field of view (FOV) 
=256×256 mm2, slice thickness =1 mm, number of slices 
=188, and bandwidth =31.25 kHz. The scan time was less 
than 5 minutes.

MRI data analysis

High-resolution T1w structural data were preprocessed with 
Computational Anatomy Toolbox (http://www.neuro.uni-
jena.de/cat/) and SPM12 (https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) in MATLAB (R2021b, MathWorks, Natick, 
MA, USA). Briefly, individual T1w images were segmented 
into grey matter, white matter, and cerebrospinal fluid via the 
standard segmentation model. All automatic segmentation 
results were first visually confirmed and then spatially 
normalized to the Montreal Neurological Institute (MNI) 
space, with the classic AAL90 template. Finally, the data were 
downsampled to 2×2×2 mm3 and spatially smoothed with 
Gaussian kernel with a full width at half maximum of 6 mm.

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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In the normalized individual morphological network, nodes were defined as the anatomical regions in the automated 
anatomical labeling (AAL) atlas, and edges were defined as the interregional similarity measured with the multivariate 
Euclidean distances (MEDs) approach. The edge of e(X,Y) between each pair of nodes (X,Y) in the morphological network 
was computed as follows (42): 
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where X = {x1, …, xn} and Y = {y1, …, yn}, xi, and yi denote 
imaging intensity of each voxel in region X and Y, 
respectively. In addition, n1 and n2 are the number of voxels 
in X and Y. The edge of e(X,Y) influences the morphological 
feature distribution; when inter-regions have the same 
morphological feature, e(X,Y) =0. Further, a normalization 
of min–max between regions of X and Y was performed to 
minimize possible bias in different regions across different 
participants. The similarity-based connectivity value was 
converted with the following equation:
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Finally, a 90×90 similarity-based connectivity matrix 
for each participant was obtained; the value range was 
circumscribed from 0 to 1, of which 1 represents identical 
morphological feature distributions between the 2 regions.

Topological properties of the individual morphological 
network were calculated with the GRETNA software (43).  
A set of sparsity (S) thresholds (0.10< S <0.40, with a 
step of 0.01) were applied to the morphological network 
correlation matrices to ensure their small-worldness. This 
step transformed the weighted network into binary graphs. 
By varying the sparsity thresholds from 0.1 to 0.4 with an 
increment of 0.01, we obtained different morphological 
network structures and different values of the topological 
metrics accordingly. To summarize the overall topological 
features of the morphological networks across different 
sparsity thresholds, we computed both global and regional 
network metrics at each sparsity threshold, and then 
integrated them via the area under the curve (AUC). The 
AUC of a topological metric was calculated by plotting 
the values against the corresponding sparsity thresholds 
and estimated using the trapezoidal rule. This resulted in a 
single value that reflects the average topological property of 
the network over a range of sparsity levels.

The global topological measurements were performed 
in terms of network efficiency and small-world parameters. 
For network efficiency, the further divided global efficiency 
(Eg) and local efficiency (Eloc) were assessed; for small-
world parameters, the detailed clustering coefficient (Cp), 

normalized Cp (Gamma), characteristic path length (Lp), 
normalized Lp (Lambda), and small-world coefficient 
(Sigma) were determined. Meanwhile, the regional 
topological metrics, including nodal efficiency (Ne) and 
degree centrality (DC), were also obtained.

Statistical analysis

All statistical analyses were performed with custom-
developed scripts in MATLAB (R2021b, MathWorks, 
USA).

For demographic and clinical data, analysis of variance 
(ANOVA) was applied for testing the group differences 
in age, education year, HIS, and clinical cognitive scores, 
and chi-squared test was employed to assess the group 
differences in sex, hypertension, diabetes, and lacunar 
infraction among HCs, SCD, and MCI groups.

To test the differences of each integrated network 
topological features among the 3 groups, analysis of 
covariate (ANCOVA) was first performed, with age as a 
covariate, and the post-hoc t-test was further conducted if 
a group difference was revealed. Moreover, Benjamini-
Hochberg false discovery rate (FDR) correction was used to 
adjust for multiple comparisons to maintain an FDR <0.05.

Exploratory partial correlation analysis was applied to 
evaluate the associations of topological features, which 
exhibited significant differences among the 3 groups, with 
multiple clinical scales, using age as a covariate. Moreover, 
for network metrics presenting significant correlations 
with clinical scales, multiple stepwise regression analyses 
were subsequently used to further identify the significant 
topological predictors of cognitive performance, with age 
as a covariate. A P value <0.05 was considered to indicate 
statistical significance.

Results

Demographic and clinical characteristics

A total of 24 patients (13 SCD, 11 MCI) were excluded 
from the study. The final sample consisted of 25 (10 males 
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 Table 1 Demographic and clinical characteristics of the participants

Variables
Group

P value (FDR corrected)
HC (n=26) SCD (n=25) MCI (n=29)

Age (years) 72.53±6.09 66.00±7.09 70.34±7.79 <0.01

Sex (M/F) 13/13 10/15 13/16 0.77

Education (years) 13.19±2.51 12.36±2.69 11.83±2.82 0.17

Hypertension (Y/N) 13/13 10/15 9/20 0.58

Diabetes (Y/N) 4/22 2/23 4/25 0.65

Lacunar infarction (Y/N) 0/26 0/25 0/29 1.00

HIS 1.19±0.49 1.40±0.76 1.34±0.72 0.52

MMSE 28.46±1.56† 27.48±1.56 26.72±11.58§ <0.01

TMT-A 60.73±19.41 67.96±17.76‡ 90.34±28.37§ <0.01

TMT-B 154.42±49.37 153.12±43.46‡ 228.93±65.04§ <0.01

BNT 23.88±2.92 23.24±3.24‡ 18.21±4.95§ <0.01

AVFT 20.58±3.92† 17.72±3.84 15.76±5.77§ <0.01

AVLT-H (delayed recall) 4.31±1.87 4.84±2.37‡ 1.97±2.24§ <0.01

AVLT-H (recognition) 21.77±1.75 21.24±2.00‡ 18.31±2.54§ <0.01

Demographic and clinical data are demonstrated as mean ± standard deviation. Statistically significant differences: †, between HC and 
SCD participants; ‡, between SCD and MCI participants; §, between MCI and HC participants. FDR, false discovery rate; HC, healthy 
control; SCD, subjective cognitive decline; MCI, mild cognitive impairment; M, male; F, female; Y, yes; N, no; HIS, Hachinski Ischemic 
Scale; MMSE, Mini-mental State Examination; TMT-A, Trail Making Test part A; TMT-B, Trail Making Test part B; BNT, Boston Naming Test; 
AVFT, Animal Verbal Fluency Test; AVLT-H, Auditory Verbal Learning Test-Huashan version.

and 15 females) SCD patients and 29 (13 males and 16 
females) MCI patients.

The demographic and clinical characteristics of the 
participants are listed in Table 1. There was no significant 
difference in sex, educational years, hypertension, diabetes, 
lacunar infraction, and HIS among the 3 groups, except 
for age (P<0.01). Statistically significant differences were 
observed in clinical cognitive performances among the 
3 groups (P<0.01), including MMSE, delayed recall and 
recognition in Auditory Verbal Learning Test-Huashan 
version (AVLT-H), TMT A&B, AVFT, and BNT (FDR 
correction to maintain false positive error rate <0.05).

Comparison analysis of global topological features

Investigation of global topological feature variations 
was conducted via ANCOVA, using age as a covariate. 
Significant differences were revealed among the 3 groups 
in the metrics of Eg, Lp, and Lambda (all P<0.01). With 
further post-hoc t-test, a significant sequential decrease 

(all P<0.01) was seen in the Eg among the 3 groups. 
Meanwhile, there was a significant successive increase 
in the global metrics of Lp (all P<0.01) and Lambda 
(all  P<0.05) among the 3 groups (FDR correction 
to maintain false positive error rate <0.05; Table 2,  
Figure 1). However, no statistically significant difference 
was observed in the global features of Eloc, Cp, Gamma, 
and Sigma among the 3 groups.

Comparison analysis of regional topological features

ANCOVA, with age as a covariate, was used to identify the 
group variations of regional topological features. Significant 
differences were shown in DC at the caudate nucleus (all 
P<0.01), Ne at the caudate nucleus, right insula, lenticular 
nucleus, and putamen (all P<0.05) among 3 groups. Post-
hoc t-tests further revealed that, for the regional metric of 
DC, there was a significant successive decrease (all P<0.01) 
at the caudate nucleus and a sequential decrease (all P<0.01) 
in Ne at the left caudate nucleus. Furthermore, compared 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 8 August 2023 5263

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5258-5270 | https://dx.doi.org/10.21037/qims-22-1373

Table 2 Statistically significant global topological features in all participants

Variables 
Group

F P value
HC SCD MCI 

Eg 0.117±0.003 0.115±0.002 0.113±0.003 F(2,77) =17.95 <0.01

Lp 0.465±0.011 0.474±0.007 0.483±0.014 F(2,77) =17.97 <0.01

Lambda 0.264±0.005 0.268±0.004 0.272±0.006 F(2,77) =13.79 <0.01

Data are presented as mean ± standard deviation. HC, healthy control; SCD, subjective cognitive decline; MCI, mild cognitive impairment. 
Eg, global efficiency; Lp, characteristics path length; Lambda, normalized characteristics path length.

Figure 1 Box and whisker plots showing a significant sequential decrease in the global metric of Eg, and a significant increase in Lp 
and Lambda among three groups. Median (line within the box), the 25th and 75th percentiles (outer limits of each box) and the 5th and 
95th percentiles (whiskers) are illustrated, with outliers plotted as dots. *, P<0.05; **, P<0.01. Eg, global metric of global efficiency; Lp, 
characteristics path length; Lambda, normalized characteristics path length; HC, healthy control; SCD, subjective cognitive decline; MCI, 
mild cognitive impairment. 
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with HCs, SCD and MCI patients exhibited a significant 
decrease (all P<0.05) in Ne at the right insula. Compared 
with MCI participants, HCs and SCD cases showed a 
significant increase (all P<0.05) in Ne at regions of the 
right caudate nucleus, and lenticular nucleus, putamen, 
respectively (FDR correction to maintain false positive 
error rate <0.05; Table 3, Figure 2).

Association analysis of topological disturbances with clinical 
cognitive scales

The significant partial correlations between network metric 
alterations and clinical scales, when the age of participants 
was taken into account as a covariate, are displayed in  
Table 4. The partial correlation results showed that regional 
measurements of DC and Ne in caudate nucleus were 
statistically correlated with all clinical scales.

To further identify the significant topological predictors 
of cognitive performance, network metrics significantly 
correlated with clinical scales, including global and regional 
topology measurements, were subsequently used for multiple 
stepwise regression analysis. The stepwise regression model 
(Table 5) indicated that regional measurements of DC 
and Ne at caudate nucleus could statistically predict the 
cognition performance of HCs, SCD, and MCI patients 
(all P<0.05). However, no global topological metrics could 
significantly predict the cognitive performances.

Discussion

In the present study, the topological differences of 
normalized individual brain morphological networks, 
extracted in gray matter, were investigated among HCs 
and patients with SCD and MCI. Compared to HCs, both 
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Table 3 Statistically significant regional topological features in all participants

Variables and brain regions
Group

F P value
HC SCD MCI 

DC

Left caudate nucleus 4.329±1.808 2.673±0.765 1.629±0.679 F(2,77) =35.72 <0.01

Right caudate nucleus 4.261±2.049 3.126±1.380 1.615±0.941 F(2,77) =21.31 <0.01

Ne

Right insula 0.097±0.011 0.090±0.012 0.085±0.013 F(2,77) =6.64 0.04

Left caudate nucleus 0.119±0.017 0.103±0.013 0.074±0.024 F(2,77) =40.03 <0.01

Right caudate nucleus 0.119±0.020 0.106±0.018 0.070±0.028 F(2,77) =32.80 <0.01

Left lenticular nucleus, putamen 0.070±0.028 0.059±0.021 0.044±0.026 F(2,77) =7.24 0.03

Right lenticular nucleus, putamen 0.073±0.031 0.061±0.023 0.043±0.026 F(2,77) =8.68 0.01

Data are presented as mean ± standard deviation. HC, healthy control; SCD, subjective cognitive decline; MCI, mild cognitive impairment; 
DC, degree centrality; Ne, nodal efficiency.

SCD and MCI patients had altered network topology, 
which was characterized by significantly decreased Eg and 
longer Lp at the global level, and decreased DC and Ne at 
the regional level. The regional alterations were identified 
at caudate nucleus for DC, and at stratums and right insula 
for Ne. All these topological alterations were significantly 
associated with clinical cognitive scales, indicating that gray 
matter morphological networks could help to discriminate 
SCD and MCI patients from HCs. Overall, the individual 
morphological network abnormalities identified in this 
study highlighted clinically relevant alterations in the brain 
network topology for SCD and MCI patients. This may 
further provide evidence for the hypothesis that disruptions 
in brain connectivity result from synaptic dysfunction 
underlie cognitive decline.

Our findings of sequentially decreased Eg and increased 
Lp among the 3 groups of HC, SCD, and MCI indicated 
a successively decreased information integration in 
the brain morphological networks. The integration in 
network qualifies the ability to rapidly integrate specialized 
information from distributed brain regions (44), and 
the findings provide further evidence of the underlying 
mechanisms of disconnection in the AD spectrum. This 
damage of network topology was in line with the severity of 
cognitive impairment, illustrating that the Eg and Lp might 
serve as sensitive biomarkers in diagnosis of preclinical 
stages of AD. Our findings of abnormal global topology 
of the gray matter network in SCD and MCI were partly 
consistent with previous studies. Xue et al. [2020] found a 

significant reduction in the amnestic MCI (aMCI) group 
on small-worldness and Eg based on the resting state  
fMRI (45), and Berlot et al. [2016] also showed that Eg and 
the mean Cp of networks were reduced in MCI by means of 
diffusion tensor imaging (DTI) (46). However, they found 
no significant difference in network topological properties 
between SCD patients and HCs. In our study, we revealed 
the damage of network topology in the SCD group, 
suggesting an earlier detection of disruption in preclinical 
stages of AD. With this finding, we may add new value to 
the previous understandings of a reduction in Eg of network 
structure in AD and MCI (47,48).

On the regional level, compared with HCs, decreased 
DC was identified at the caudate nucleus, and lower Ne 
was distributed at the caudate nucleus, right insula, and 
lenticular nucleus, putamen for SCD and MCI patients, 
respectively. This demonstrated a decreased regional 
centrality at these brain regions at preclinical stages of AD. 
The regional centrality metrics measure the importance of 
brain regions in interacting with other regions, facilitating 
information integration, and network resilience to insult 
(44,49). Yan et al. [2018] (50) found extensive disrupted rich 
club organization in MCI and AD patients based on DTI 
analysis. However, in SCD, aberrant connections were only 
found at the left caudate nucleus, middle frontal gyrus, orbital 
part, and the right caudate nucleus compared to HCs (50). 
The present study also found significantly different regional 
topological features at caudate nucleus, which was highly 
correlated with cognitive domains including executive, 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 8 August 2023 5265

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5258-5270 | https://dx.doi.org/10.21037/qims-22-1373

Figure 2 Box and whisker plots showing a significant sequential decrease in the nodal metrics of DC at the caudate nucleus [71, 72], and 
Ne at the left caudate nucleus [71]. Compared with HCs, participants with SCD and MCI exhibited significant decreases in Ne at the 
brain regions of right insula [30], right caudate nucleus [72], and lenticular nucleus, putamen, respectively [73, 74]. Median (line within 
the box), the 25th and 75th percentiles (outer limits of each box) and the 5th and 95th percentiles (whiskers) are illustrated, with outliers 
plotted as dots. *, P<0.05; **, P<0.01. 30, right insula; 71, left caudate nucleus; 72, right caudate nucleus; 73, right insula; 74, right lenticular 
nucleus, putamen. DC, degree centrality; Ne, nodal efficiency; HC, healthy control; SCD, subjective cognitive decline; MCI, mild cognitive 
impairment.
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Table 4 Significant partial correlation between the altered topological properties and cognitive scales

Variables
TMT-B AVFT AVFT-H (delayed recall)

rho P value rho P value rho P value

DC71 −0.39 <0.01 0.31 <0.01 0.32 <0.01

DC72 −0.33 <0.01 0.32 <0.01 0.29 <0.01

Ne30 – – 0.28 0.013 – –

Ne72 −0.45 <0.01 0.37 <0.01 0.34 <0.01

Ne73 −0.44 <0.01 0.42 <0.01 0.34 <0.01

Ne74 −0.22 0.047 0.25 0.029 – –

Eg – – 0.34 <0.01 – –

Lp −0.39 <0.01 0.31 <0.01 – –

Lambda 0.38 <0.01 −0.29 <0.01 – –

30, right insula; 71, left caudate nucleus; 72, right caudate nucleus; 73, right insula; 74, right lenticular nucleus, putamen. TMT-B, Trail 
Making Test part B; AVFT, Animal Verbal Fluency Test; AVLT-H, Auditory Verbal Learning Test-Huashan version; DC, degree centrality; Ne, 
nodal efficiency; Eg, global efficiency; Lp, characteristics path length; Lambda, normalized characteristics path length.

language, and memory in all participants. This finding 
aligned with those of previous studies that had shown that 
the caudate nucleus plays an important role in learning 
and working memory due to its heavy connection to the 
dorsolateral prefrontal cortex (51,52). It is also involved 
both in the integration of many sources of information 
along with instructions, and in the coordination of the 
transmission of information among cortical regions when 
no established pathways exist (53). 

Previous studies have reported the right insula as a rich 
club which is the absolute network center, responsible for 
information exchange and integration (50). Our study also 

found the disturbance of right insula in SCD and MCI 
compared to HCs, indicating that the decreased Ne might 
reveal the pathology of the early AD spectrum.

The lenticular nucleus and putamen comprise the 
remaining parts of the striatum beside the caudate nucleus. 
The putamen has been found to be highly correlated with 
motor control (54). We found a weak correlation of the 
reginal topological parameters of the lenticular nucleus and 
putamen with executive and language domains. However, 
with age as a covariant, the correlation not significant 
according to multiple stepwise regression. This may be 
because the putamen does not dominate the executive 

Table 5 Stepwise regression analysis for clinical performance

Clinical performance and topological metric Beta P value Adjusted R2

TMT-B <0.01 0.14

Ne71 −934.40 <0.01

AVFT <0.01 0.19

Ne30 81.50 0.049

Ne72 61.11 <0.01

AVLT-H (delayed recall) <0.01 0.09

DC71 0.48 <0.01

30, right insula; 71, left caudate nucleus; 72, right caudate nucleus. TMT-B, Trail Making Test part B; Ne, nodal efficiency; AVFT, Animal 
Verbal Fluency Test; AVLT-H, Auditory Verbal Learning Test-Huashan version; DC, degree centrality. 
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and language function but may assist in trial marking or 
language production during motor control of vocal organs.

Interestingly, the regional topological properties of DC 
and Ne outperformed the global topological metrics in 
predicting the cognition levels for HCs, SCD, and MCI. An 
explanation for this result might be that at the predementia 
stages of SCD and MCI, the morphological network 
alterations at specific brain regions are more significant 
compared with global topology alterations. With the 
clinical progression, the disturbance of global topological 
measurements may become more significant and severe.

In the present study, we applied a methodology recently 
proposed by Yu et al. [2018] (42) which normalizes the 
individual large-scale networks to a common framework, 
so that each individual network has the same network size. 
It has been confirmed that the size of network may have an 
effect on other network topological properties, and therefore, 
the normalization of individual networks may offer distinct 
advantages for comparative analyses (55). However, Tijms 
et al. [2014] (1) argued that the enforcement of identical 
network degree and size might introduce bias. Therefore, at 
this point, the question of how to fairly compare individual 
graphs with different size may remain open. The robustness 
of the 2 methods might be tested by further investigation 
using sophisticated machine learning classification 
algorithms on a large clinical cohort.

This study had some limitations. First, the sample size 
in our study was modest, and further verification of our 
findings should be conducted via a large clinical cohort. 
Second, the research was based on cross-sectional MRI data. 
A corresponding longitudinal study will be implemented to 
further monitor the alterations of individual morphological 
networks during the clinical progression. Third, although 
the construction of normalized individual morphological 
networks was based on the similarity of gray matter, the 
underlying physiological correlations of these structural 
network alterations remain unknown and need to be 
investigated in the future.

Conclusions

With the graphical analysis, this study demonstrated 
an altered topology in the normalized individual brain 
morphological network of SCD and MCI patients, 
compared with HCs. Their cognitive dysfunction was 
significantly related with the altered topological properties. 
Particularly, the regional centrality measurements of 
DC and Ne outperformed the global topological metrics 

in predicting clinical cognitive performances for all 
participants. Therefore, these regional topological metrics 
might serve as biomarkers, to assist in identifying incipient 
brain damage at preclinical stages, namely, SCD and MCI, 
of AD.
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