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ABSTRACT
Liver fibrosis is caused by excessive accumulation of extracellular
matrix during chronic liver injuries. Although clinical evidence
suggests that liver fibrosis can be reversed, there is no standard
therapy for liver fibrosis. Moreover, there is a lack of diagnostic
tools to detect early-stage liver fibrosis. Activation of hepatic
stellate cells (HSCs) is the key step during liver fibrogenesis, and
itsmechanism has been extensively studied by various cell culture

and animal models. Targeted delivery of therapeutic agents to
activated HSCs is therefore critical for the successful treatment of
liver fibrosis. A number of protein markers have been found to be
overexpressed in activated HSCs, and their ligands have been
used to specifically deliver various antifibrotic agents. In this
review, we summarize these HSC-specific protein markers and
their ligands for targeted delivery of antifibrotic agents.

Introduction
Liver fibrosis is a worldwide health problem and character-

ized by excessive accumulation of extracellular matrix (ECM)
after chronic liver injuries. If detected early, liver fibrosis can
be reversed by removing the underlying etiologies, followed by
treatments to attenuate liver injuries. Otherwise, liver fibro-
sis will advance to liver cirrhosis, which is irreversible and one
of the leading causes of mortality and morbidity in the world
(Lozano et al., 2012; Yoon et al., 2016). Currently, there is no
standard therapy for liver fibrosis, and there are no noninva-
sive diagnostic tools to detect early-stage liver fibrosis.
Activation of quiescent hepatic stellate cells (HSCs) in the

liver is the key milestone during liver fibrogenesis. HSCs
can be activated by various conditions including viral infec-
tion, nonalcoholic fatty liver disease, alcoholic steatohepatitis,

toxins, and autoimmune and biliary diseases. After activation,
quiescent HSCs migrate to the injury site, differentiate into
myofibroblasts, and secrete large amounts of ECM as well as
proinflammatory cytokines (Hernandez-Gea and Friedman,
2011). The composition of ECM in the liver is shifted from
type IV collagen to type I and type III collagen during liver
fibrogenesis.
ActivatedHSCs are themajor cells in fibrotic liver to secrete

excessive ECM (Kisseleva, 2017). As a result, activated HSCs
are the target cells for antifibrotic agents. HSCs interact
intensively with other cells in the liver, such as Kupffer cells,
hepatocytes, endothelial cells, and immune cells by autocrine
or paracrine functions of various cytokines and chemokines
(Schuppan et al., 2018).
A number of the mediators, such as the transforming

growth factor b1 (TGF-b1), insulin-like growth factor I (IGFI),
platelet-derived growth factor (PDGF), reactive oxygen spe-
cies, and endothelin-1 can activate quiescent HSCs. Among
them, TGF-b1 is the most crucial cytokine for liver fibrosis. It
binds to TGF-b receptors and regulates the synthesis and
degradation of type I collagen, which contains two a1 (I) and
one a2 (I) chains and is the major component of the ECM in
fibrotic liver (Verrecchia and Mauviel, 2007).
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PDGF, which is primarily secreted by Kupffer cells, is consid-
ered to be the secondmost important mitogen for the activation of
HSCs. The PDGF family consists of PDGF-A, PDGF-B, PDGF-C,
and PDGF-D. PDGF-D binds to PDGF receptor b (PGFGRb) and
induces autophosphorylation and activates the downstream sig-
naling molecules such as protein kinase B (PKB/Akt), mitogen-
activated protein kinase (MAPK), c-Jun N-terminal kinase p38
(JNK-p38), and extracellular signal–regulated kinases 1/2
(ERK1/2) (Borkham-Kamphorst et al., 2007).
A wide range of therapeutic agents including small mole-

cules, proteins, small interfering RNA (siRNAs), microRNA
(miRNAs), and plasmids have been investigated for the
treatment of liver fibrosis (Tu et al., 2014; Wang et al.,
2015; Yoon et al., 2016; Liu et al., 2017; Middleton et al.,
2018). However, antifibrotic agents cannot easily reach
HSCs in fibrotic liver because HSCs only account for 5% to
8% of total liver cells (Geerts, 2001). In addition, accumu-
lated ECM and closure of endothelial fenestrae inhibit the
delivery of antifibrotic agents to the liver (Garcia-Banuelos
et al., 2002). Delivery of antifibrotic agents to HSCs is also
reduced by the reduced space of Disse (Varin and Huet,
1985). Targeted delivery of therapeutic agents to HSCs is
thus critical for the successful treatment of liver fibrosis.
A number of receptors—including type VI collagen recep-

tor, retinol-binding protein (RBP) receptor, platelet-derived growth
factor receptor (PDGFR), synaptophysin, insulin-like growth fac-
tor-II receptor (IGFIIR), low-density lipoprotein receptor (LDLR),
and cluster of differentiation 44 (CD44)—are overexpressed in
activated HSCs (Fig. 1), and their ligands have been used to
specifically deliver various antifibrotic agents (Table 1). Several
articles have reviewed the mechanisms of liver fibrogenesis,
therapeutic targets for liver fibrosis, nanoscale delivery systems
for antifibrotic agents, and some targeting ligands for fibrotic liver
(Li and Wang, 2009; Schon et al., 2016; Schuppan et al., 2018). In
this review, we summarize all the possible HSC-specific markers
that can be potentially exploited for targeted delivery of antifibrotic
agents to fibrotic liver. We hope this review article will serve as a
one-stop reference for scientists who are interested in improving
the specificity of their antifibrotic agents to the liver.

Type VI Collagen Receptor
Type VI collagen is a minor but important matrix protein

in the liver. In a normal liver, type VI collagen is mainly

distributed in the portal areas and at the membranes of
endothelial cells, hepatocytes, and HSCs. The expression of
type VI collagen ismarkedly elevated during liver fibrogenesis
(Schuppan et al., 1985; Loreal et al., 1992; Takahara et al.,
1995; Beljaars et al., 2000). Type VI collagen is one of the most
important matrix proteins involved in cell adhesion to the
surrounding matrix. It also modulates the homeostasis of
matrix by maintaining the interaction between matrix mole-
cules and the cells (Li et al., 2015). Type VI collagen receptor
contains three a chains and is mainly expressed on activated
HSCs but not in normal liver cells (Popov and Schuppan,
2009). Type VI collage receptor has thus been exploited for
targeted delivery of antifibrotic agents to HSCs (Beljaars
et al., 2000; Du et al., 2007).
A cyclic arginylglycylaspartic acid (RGD) peptide

C*GRGDSPC* (* denotes the cyclizing cysteine residue)
was discovered as a ligand for the type VI collagen receptor
(Marcelino and McDevitt, 1995). The cyclic peptide was
conjugated to human serum albumin (HSA) in a 10:1 molar
ratio (Fig. 2). In vitro studies showed that the cyclic peptide-
modified HSA would specifically bind to activated rat HSCs
and enter the cells via internalization. A biodistribution
study in rats with induced liver fibrosis demonstrated high
accumulation of the peptide-modified HSA in activated HSCs
(Beljaars et al., 2000). The cyclic RGD peptide was also
attached to a biodegradable polymersome encapsulating
the antifibrotic agent oxymatrine. The polymersome signifi-
cantly inhibited the proliferation of activated HSCs and
reduced the expressions of a smoothmuscle actin and collagen
in the cells. The peptide-modified polymersome exhibited
higher antifibrotic activity in bile duct-ligated (BDL) rats
than did the unmodified polymersome (Yang et al., 2014).
Another cyclic RGD peptide, C*GRGDSPK*, was also

exploited as a targeting ligand for the type VI collagen
receptor. The peptide preferentially binds to activated HSCs
rather than hepatocytes. An interferon-a1b loaded liposome
was coupled with the RGD peptide to achieve targeted
delivery to fibrotic liver via recognition of type VI collagen
receptors on HSCs. In rats with BDL-induced liver fibrosis,
the RGD peptide-coupled liposome exhibited 10-fold higher
accumulation in HSCs than the unmodified liposome. More-
over, the RGD peptide-modified liposome demonstrated sig-
nificant higher antifibrotic activity in the rats with liver
fibrosis (Du et al., 2007).

Fig. 1. Receptors overexpressed in activated HSCs: synaptaphysin (SYN), insulin growth factor receptor 2 receptor (IGFIIR), platelet-derived growth
factor receptor (PDGFR), cluster of differentiation 44 (CD44), collagen type VI receptor, retinol-binding protein (BBP) receptor, low-density lipoprotein
receptor (LDLR), and TNF-related apoptosis-inducing ligand receptor (TRAILR).
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Retinol-Binding Protein (RBP) Receptor
A key role of quiescent HSCs in the liver is to store up to 80% of

vitaminAas retinyl palmitate in lipid droplets. VitaminAbinds to
RBP in the systematic circulation and is taken up by HSCs via
RBP receptors (Higashi et al., 2005). In addition, vitamin A is
takenupmore efficiently by activatedHSCs rather than quiescent
HSCs (Senoo et al., 2007; Sato et al., 2008). As a result, vitamin A
and RBP have been used as ligands for HSC-specific delivery.
In one study, the domain III of an albumin was fused to RBP

for HSC-specific delivery. The fusion protein can be efficiently
taken up by HSCs in vitro and in vivo. More importantly, the
fusion protein ameliorated liver fibrosis in rats induced by
carbon tetrachloride (CCl4) or BLD (Park et al., 2012; Lee et al.,
2015). Using a similar concept, Zhang et al. (2015) developed a
retinol-modified nanoparticle encapsulating an antifibrotic
antisense oligonucleotide. The nanoparticle binds to RBP in
the serum and is selectively taken up by HSCs via the RBP
receptor. The nanoparticles successfully suppressed the expres-
sion of type I collagen in the liver and reversed BDL- and CCl4-
induced liver fibrosis in mice (Zhang et al., 2015).
In a pioneering in vivo study using siRNA for liver fibro-

sis therapy, a gp46 siRNA was encapsulated in a liposome
coupled with vitamin A. The functionalized liposome efficiently
silenced gp46, inhibited collagen secretion in HSCs, and re-
versed CCl4- and BDL-induced liver fibrosis in rats. This was
one of the first animal studies demonstrating the therapeutic
potential of siRNAs in an animal model (Sato et al., 2008).
Similar strategies have been adopted by scientists to deliver

various antifibrotic agents to HSCs (Sauvant et al., 2011;
Duong et al., 2015; Lee et al., 2015; Pan et al., 2016). A phase
1b/2 clinical trial was recently conducted to evaluate the safety
and tolerability of a vitamin A–coupled lipid nanoparticle
containing siRNA targeting heat shocking protein 47 (HSP47)
in patients with moderate to extensive liver fibrosis (Clinical-
Trials.gov Identifier: NCT02227459).

Platelet-Derived Growth Factor Receptor-b
(PDGFR-b)

Platelet-derived growth factor (PDGF) plays a critical role
in the initiation and progression of liver fibrogenesis (Beljaars
et al., 2003). It binds to PDGFR and regulates the migration,

proliferation, and survival of HSCs. PDGFR is not only
up-regulated in activated HSCs in animals but also is
up-regulated in human fibrotic livers (Campbell et al., 2005;
Borkham-Kamphorst and Weiskirchen, 2016). Particularly,
PDGFR-b is dramatically overexpressed on activated
HSCs, and its expression is much higher than that on other
PDGFR-b-positive cells (Friedman, 2003). Therefore, sev-
eral PDGFR-b-targeted delivery systems have been inves-
tigated for antifibrotic agents (Bansal et al., 2011a,b;
Li et al., 2012).
The cyclic peptide C*SRNLIDC* (* denotes the cyclizing

cysteine residue) was designed based on the receptor-
binding residues of the PDGF B-chain. The cyclic peptide-
conjugated HSA highly accumulated in the liver of the rats
with BDL-induced liver fibrosis. Moreover, an intrahepatic
distribution study showed that the majority of the peptide-
conjugate HSA is located in HSCs, indicating selective
binding of the cyclic peptide to PDGFR-b on activated HSCs
(Beljaars et al., 2003).
In another study, the cyclic peptide C*SRNLIDC*was fused

to a single-chain antibody fragment targeting the knob of a
recombinant adenovirus. After binding to the adenovirus, the
fusion protein retargeted the adenovirus to activated HSCs
and abolished the virus’s natural tropism for hepatocytes

TABLE 1
HSC-specific markers for targeted delivery of antifibrotic agents

HSC-Specific Marker Targeting Ligand Carrier Drug Reference

Type VI collagen
receptor

Cyclic RGD peptide
(C*GRGDSPC*)

Liposome IFN-a1b Du et al., 2007
Polymersome Oxymatrine Yang et al., 2014
Conjugate HSA Beljaars et al., 2000

RBP receptor Vitamin A Liposome siRNA Sato et al., 2008
Nanoparticle Oligonucleotide Zhang et al., 2015

PDGFR-b Cyclic peptide (C*SRNLIDC*) Conjugate HSA Beljaars et al., 2003
Liposome IFNg Li et al., 2012

Synaptophysin scAb Conjugate Tributyltin Douglass et al., 2008a
IGFIIR M6P Conjugate Y27632 Bansal et al., 2011b

Peptide Nanocomplex siRNA Zhao et al., 2018
Aptamer Conjugate siRNA Chen et al., 2017

LDLR Cholesterol Conjugate Oligonucleotide Cheng et al., 2006
Nanocomplex siRNA Shukla et al., 2013

CD44 Hyaluronic acid Nanoparticle Curcumin Chen et al., 2016
Micelle Losartan Thomas et al., 2015
Nanocomplex siRNA Park et al., 2011
Conjugate TRAIL Yang et al., 2015

Fig. 2. Cyclic RGD peptide C*GRGDSPC* conjugated human serum
albumin for type VI collagen receptor.
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and Kupffer cells (Fig. 3). This assembly provides a platform
to selectively deliver antifibrotic genes to activated HSCs
without nonspecific uptake by neighboring cells, such as
Kupffer cells and hepatocytes (Schoemaker et al., 2008).
The cyclic peptide C*SRNLIDC* was also conjugated to

interferon-g (IFNg) using polyethylene glycol (PEG) as a linker.
The peptide-conjugated IFNg showed specific binding to
PDGFR-b on cultured HSCs and inhibited their activation. It
also significantly inhibited fibrogenesis in acute liver injury and
in CCl4-induced liver fibrosis animal models without inducing
IFNg-related side effects. By contrast, unmodified IFNg failed to
inhibit fibrogenesis in both animal models (Bansal et al., 2011b).
Instead of direct conjugation to IFNg, the cyclic peptide

C*SRNLIDC* was also coupled to a liposome encapsulating
IFNg, leading to higher uptake in activated HSCs. Com-
pared with free IFNg and unmodified liposome encapsulat-
ing IFNg, the cyclic peptide-coupled liposome demonstrated
higher inhibitory effect on the proliferation of HSCs. In vivo
studies in rats with thioacetamide-induced liver fibrosis
showed a high accumulation of the peptide-coupled lipo-
some in activated HSCs. Moreover, an enhanced antifi-
brotic effect of the peptide-coupled liposome was observed
(Li et al., 2012).

Synaptophysin
Synaptophysin (SYN) is a membrane glycoprotein present

in the presynaptic vesicles of neurons, adrenal medulla, and
other neuroendocrine epithelial cells (Wiedenmann et al.,
1986). Its main function involves exocytosis of neurotransmit-
ter. HSCs also express several neuroectodermal differentia-
tion markers such as glial fibrillary acidic protein (GFAP) and
nestin (Cassiman et al., 1999). SYN was found present in
HSCs in both human and rat liver biopsies. After only
36 hours of galactosamine intoxication, rat liver biopsies
revealed significant SYN expression in comparison with
normal rat liver biopsies. This result suggests that SYN is a
potential marker for HSCs (Cassiman et al., 1999).

Researchers have used SYN as a marker to differentiate
portal fibroblasts from HSCs of fibrotic livers of humans, rats,
and mice (Iwaisako et al., 2014). However, studies have found
that canine HSCs (quiescent and activated) are negative for
SYN.
Ijzer et al. (2006) investigated the morphologic characteris-

tics of canine HSCs and myofibroblasts. They reported that
muscle-specific actin clone HHF35 (HHF35) and a smooth
muscle actin were potent markers for canine HSCs and
myofibroblasts, but liver sections were consistently negative
for SYN andGFAP. SYN has been used as a diagnosticmarker
because of its variable expressions with respect to different
liver stresses and injuries. In a study, rats with nonalcoholic
fatty liver disease (NAFLD) showed high hepatic inflamma-
tion, necrosis and fatty infiltration. Apart from Sirius Red
staining, which is a primary staining method for collagen
fibers, SYN staining was used to evaluate HSC activation and
the fibrogenesis. Xiao et al. (2014) reported distinct increase in
SYN positive areas in a rat model of NAFLD and subsequent
decline in SYN expression after therapeutic intervention with
Epigallocatechin gallate.
Despite its unique expression patterns during liver fibrosis

and NAFLD, SYN has not been thoroughly investigated as a
ligand for targeted drug delivery. However, SYN is advanta-
geous over other markers for targeted delivery of antifibrotic
agents because it forms part of endocytosing vesicles, leading
to increased chance of endocytosis of its ligand and associated
cargos (Douglass et al., 2008a). A group of researchers
discovered a single-chain antibody (scAb), C1-3, that binds to
SYN on activated HSCs in fibrotic mouse liver. C1-3 scAb was
generated by phage display biopanning against the peptide
sequence that is part of the extracellular domain of SYN
(Elrick et al., 2005). Studies have shown that C1-3 scAb binds
specifically to activated HSCs but not hepatocytes. The C1-3
scAb-conjugated tributyl tin was delivered into HSCs and
exert its activity (Douglass et al., 2008a). This demonstrated
the feasibility of using C1-3 scAb as a targeting ligand for
HSC-specific delivery. One potential limitation of this strategy

Fig. 3. A fusion protein to change the tropism of adenovirus to HSCs. The PDGFRb-specific cyclic peptide C*SRNLIDC* was fused to a single-
chain antibody fragment targeting the knob of a recombinant adenovirus. After binding to the adenovirus, the fusion protein retargets the
adenovirus to activated HSCs and abolishes its natural tropism for hepatocytes and Kupffer cells.
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is the nonspecific delivery to neuroendocrine and neural cells.
However, there are no evidence showing that scAb can cross
the blood–brain barrier, which addresses the nonspecific issue
to some degree (Douglass et al., 2008b).

Insulin-Like Growth Factor II Receptor (IGFIIR)
Also known as the cation-independent mannose-6-

phosphate receptor (M6PR), the 300 kDa IGFIIR is amember
of the IGF signaling family (Morgan et al., 1987). The major
functions of IGFIIR include regulating the activity of insulin
like growth factor II (IGFII); transportation of M6P-tagged
lysosomal enzymes fromGolgi network and outside of cells to
lysosomes; and activation of TGF-b. M6P-tagged proteins are
transported to lysosomes for degradation by lysosomal acid
hydrolases (Puxbaum et al., 2012). It is noteworthy that
IGFIIR is unrelated to tyrosine kinase activity and pro-
liferation (Sedlaczek et al., 2003). As a result, IGFIIR can be
exploited as a surface maker for targeted drug delivery
without inducing the proliferation of HSCs.
While IGFIIR is expressed in quiescent HSCs, its expres-

sion is strongly upregulated (∼20 folds) in activated HSCs
relative to quiescent HSCs (Beljaars et al., 1999; Mousavi
et al., 2013). The expression of IGFIIR is often positively
correlated with chronic liver injury (Hellemans et al., 2004).
Moreover, IGFIIR-mediated ligand internalization is 3 times
faster than cellular endocytosis in activated HSCs (York et al.,
1999). Therefore, IGFIIR is considered as a promising receptor
for HSC-targeted drug delivery (Ye et al., 2005; Gary-Bobo
et al., 2007; Mousavi et al., 2013). Additionally, upregulation
of IGFIIR is also a signature feature of nephroblastoma,
hepatocellular carcinoma and rhabdomyosarcoma (Sedlaczek
et al., 2003).
Mannose 6 phosphate (M6P) is the natural ligand for

IGFIIR. IGFIIR consists of two M6P binding extracellular
domains. Generally, the affinity of M6P toward IGFIIR is
low, but it can be enhanced by oligomerization of the receptor
(Byrd and MacDonald, 2000). Dimerization of a ligand has
also proven to increase its binding affinity toward IGFIIR
(Chen et al., 2015). Researchers have conjugated multiple
M6Ps to HSA to deliver triplex-forming oligonucleotide
(TFO) to activated HSCs in rats. This delivery system
demonstrated high specificity toward HSCs and efficiently
delivered the therapeutic load to target cells. Moreover,
in vivo studies also revealed that TFO was selectively
distributed in HSCs of fibrotic rats (Ye et al., 2006).
Similarly, the Rho-kinase inhibitor (1)-(R)-trans-4-

(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihy-
drochloride (Y27632) was conjugated with M6P/HSA, and its
in vivo biodistribution was studied (van Beuge et al.,
2011a,b). In comparison with free Y27632, the Y27632-
M6P/HSA conjugate demonstrated exclusive distribution in
HSCs. The conjugated Y27632 significantly reduced the
collagen deposition in the extracellular matrix in contrast
to the free Y27632. M6P-GlcNAc is another such conjugate,
which has shown high binding affinity toward IGFIIR
(Liu et al., 2013). Despite the high binding affinity of
the M6P conjugate toward IGFIIR, the greatest limita-
tions remain the difficulty in conjugation and relatively
low binding affinity (approximately KD 23 mM) of M6P
(Jeanjean et al., 2006).

Using a novel combinatorial biopanning strategy, Chen
et al. (2015) discovered an IGFIIR-specific peptide, peptide-
431. Peptide-431 demonstrated high specificity toward
IGFIIR expressed on human and rat HSCs. It has been
used as a promising ligand for antifibrotic siRNA nano-
complexes (Fig. 4).(Zhao et al., 2018) This novel peptide is a
promising ligand for the delivery of a therapeutic payload to
activated HSCs.
Chen et al. (2017) also discovered IGFIIR-specific aptamer

using systematic evolution of ligands exponential enrichment
(SELEX). The aptamerwas annealed to the 39 end of an siRNA
and effectively delivered the siRNA to rat and human HSCs.
The aptamer-siRNA chimera also exhibited high accumula-
tion in the liver of the rats with CCl4-induced liver fibrosis.

Low-Density Lipoprotein Receptor (LDLR)
The liver is the major organ for cholesterol homeostasis by

controlling lipid synthesis and uptake in the body (van de
Sluis et al., 2017). The expressions of LDLR and high-
density lipoprotein receptor-scavenger receptor class B
type1 (SR-B1) are high in the liver (Gao and Brigstock,
2003; Wolfrum et al., 2007). Clearance of plasma lipids in
the liver is mediated by LDLR and LDLR-related protein
1 (van de Sluis et al., 2017).
LDLR plays a critical role in cholesterol metabolism via

recognizing the apolipoprotein B100 of cholesterol-rich
LDL and mediating a rapid endocytosis recycling process
(Rudenko et al., 2002). LDLR binds to cholesterol-rich LDL at
neutral pH through the “ligand-binding domain” with the
help of Ca21 but rapidly dissociates from these ligands at
acidic pH in the endosome (Rudenko et al., 2002; Rudenko
and Deisenhofer, 2003). LDLR also induces receptor-
mediated endocytosis for very-low-density lipoprotein and
chylomicron remnants through binding with apolipoprotein
E (Rudenko et al., 2002).
Cholesterol was found accumulated in HSCs of the mice

with CCl4- and BDL-induced liver fibrosis. Accumulation of
cholesterol in HSCs leads to sensitization of the cells to TGF-b
and subsequently aggravates fibrogenesis (Teratani et al.,
2012). Furthermore, the exacerbation of liver fibrosis and
activation of HSCs also enhance the accumulation of choles-
terol in HSCs, which is partially correlated with the increased
expression of LDLR (Tomita et al., 2014).
A triplex-forming oligonucleotide targeting the genomic

DNA of Type I collagen was conjugated with cholesterol
and showed higher uptake in the liver of the rats with
dimethylnirosamine-induced liver fibrosis (Cheng et al.,
2006). In another study, cholesterol was used as a target-
ing ligand and was coupled to a streptavidin-based siRNA
nanocomplex. The cholesterol-modified nanocomplex show-
ed a higher uptake in HSC-T6 (LDLR1) cells rather than in
Caco-2 (LDLR-) cells. Meanwhile, incubation of HSC-T6
cells with puromycin, an LDLR inhibitor, suppressed the
cellular uptake of the cholesterol-modified nanocomplex
(Shukla et al., 2013).

Cluster of Differentiation 44 (CD44)
CD44 is the major receptor for hyaluronic acid (HA), which

is an important component of the extracellular matrix.
CD44 was initially found overexpressed in liver biopsies
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from patients with alcoholic liver disease (Urashima
et al., 2000). Similar results were observed in rats with
dimethylnitrosamine-induced liver fibrosis. CD44 was highly
expressed in fibrotic liver but only weakly expressed in
normal liver. Although HA was localized in HSCs and
endothelial cells, CD44 was mainly detected in infiltrating
lymphocytes, Kupffer cells, and some endothelial cells (Satoh
et al., 2000). In another study, researchers specifically investi-
gated the expression of CD44 in HSCs from normal and
fibrotic rats. The CD44 splice variant, CD44v6, is highly
expressed in activated HSCs and facilitates the migration of
the HSCs (Kikuchi et al., 2005).
HA is a well-established ligand for CD44 and has been used

for HSC-targeted delivery of antifibrotic agents. In one study,
curcumin was encapsulated in HA-modified polylactide nano-
particles. The nanoparticle induced cell death of activated
HSCs without affecting quiescent HSCs and hepatocytes
(Chen et al., 2016). In another study, HA was conjugated to
5b-cholanic acid to form micelles and encapsulate losartan.
The HAmicelles showed specific accumulation in fibrotic liver
and ameliorated liver fibrosis in mice (Thomas et al., 2015).
HA was also used for targeted delivery to cirrhotic livers in

mice. Quantum dots (QDots) were conjugated to HA and
demonstrated higher uptake by HSCs than by normal hepa-
tocytes. Biodistribution study showed specific delivery of the
QDots to HSCs in mice with liver cirrhosis (Kim et al., 2010).
The same group then developed HA-coupled polyethylenei-
mine to deliver a TGF-b siRNA for the treatment of liver
cirrhosis. The siRNA/HA-polyethyleneimine nanocomplex en-
tered HSCs via CD44-mediated endocytosis and significantly
attenuated liver cirrhosis (Park et al., 2011).

Tumor Necrosis Factor–Related Apoptosis-
Inducing Ligand Receptor (TRAILR)

The tumor necrosis factor receptor superfamily (TNFRSF)
are cytokine receptors, including TRAILR1 (death receptor 4),
TRAILR2 (death receptor 5), TRAILR3 (decoy receptor 1),
and TRAILR4 (decoy receptor 1) (Locksley et al., 2001).
TNF-related apoptosis-inducing ligand (TRAIL) is a known
anticancer agent that induces apoptosis of cancer cells by

specifically targeting TRAILRs (Singh et al., 2017). It was
recently found that some immune cells, such as natural killer
cells, play important roles in preventing liver fibrosis by
killing activated HSCs in a TRAIL-dependent manner. Once
activated, HSCs are more susceptible to apoptotic factors,
such as TRAIL.
TRAILR1/2 contain a death domain, which plays an

essential role in the apoptosis of HSCs (Ashkenazi and
Dixit, 1998; Singh et al., 2017). Moreover, TRAILR1/2 are
highly expressed in activated HSCs (Taimr et al., 2003;
Yang et al., 2015). For example, during the activation of
humanHSCs (LX-2), the mRNA expression of TRAILR1 and
TRAILR2 was increased by 18-fold and 17.6 fold, respec-
tively. Similar results were observed in murine HSCs
(Taimr et al., 2003).
In addition to binding to TRAILR1/2 to induce apoptosis of

HSCs, TRAIL also binds to TRAILR3/4, which are also
expressed on human HSCs (Singh et al., 2017). Because they
lack a death domain, TRAILR3/4 act as a decoy receptors to
limit the engagement of TRAIL with TRAILR1/2 (Falschlehner
et al., 2007). A recent study has shown that silencing the
expression of TRAILR3/4 in human HSCs sensitizes the cells
to apoptosis (Singh et al., 2017).
Despite its therapeutic potential, TRAIL’s clinical applica-

tions are limited because of its very short half-life in the body.
HAwas conjugated to theN-terminal amino group of TRAIL to
achieve targeted delivery to HSCs because CD44 is overex-
pressed in fibrotic livers. The TRAIL-HA conjugate showed
similar biologic activity as native TRAIL but a higher
accumulation in the liver. Moreover, the conjugate exhibited
long circulation times in the blood for more than 4 days and
reversed liver fibrosis in a rat model (Yang et al., 2015). In
another study, PEG was conjugated to TRAIL to prolong its
half-life. The PEG-conjugated TRAIL showed an extended
half-life not only in rodents but also in nonhuman primates.
PEG-TRAIL also attenuated CCl4-induced liver fibrosis in
rats (Oh et al., 2016).
Although TRAILR has yet to be exploited as a marker for

HSC-specific drug delivery, it is possible to discover artificial
ligands of TRAILR using in vitro selection procedures, such as
phage display biopanning or SELEX. The artificial ligands can

Fig. 4. Peptide-431, an IGF2R-specific peptide, enhances the accumulation of a siRNA nanocomplex in fibrotic liver. (A) Structure of the peptide-431
dimer. (B) Biodistribution of the siRNA nanocomplexes modified with different ligands including cholesterol, vitamin A, and peptide-431. Adapted from
Zhao et al. (2018).
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then be conjugated to antifibrotic agents to increase their
uptake by HSCs.

Conclusion and Perspective
Scientists have made good progress in understanding the

mechanisms of liver fibrogenesis and have discovered numer-
ous potential targets for antifibrotic therapy. The major
hurdle in developing effective antifibrotic therapies is that
antifibrotic agents cannot easily reach activated HSCs, which
are the major players in liver fibrogenesis. HSCs only account
for a very small percentage of total liver cells (Geerts, 2001). In
addition, accumulated ECM and closure of endothelial fenes-
trae inhibit the delivery of antifibrotic agents to the fibrotic
liver (Garcia-Banuelos et al., 2002).
Targeted delivery of antifibrotic agents to activated HSCs is

therefore critical for the successful treatment of liver fibrosis.
Despite great efforts in developing targeted delivery systems
for liver fibrosis in preclinical studies, the importance of
targeted drug delivery has not been fully realized in clinical
trials. A number of clinical trials have been conducted for the
treatment of liver fibrosis using small molecules, proteins,
monoclonal antibodies, and nucleic acids. Among them, only
one clinical trial (NCT02227459) used vitamin A as a target-
ing ligand for the antifibrotic siRNA.
A number of protein markers, including type VI collagen

receptor, RBP receptor, PDGFR, synaptophysin, IGFIIR,
LDLR, and CD44, are overexpressed in activated HSCs, and
their ligands have been used to specifically deliver various
antifibrotic agents in preclinical studies. Currently, most inves-
tigators focus on natural ligands, which are very limited and
generally have low affinity for these receptors. In addition, some
of the natural ligands may activate downstream signaling
pathways after binding to their receptors on HSCs.
A potential solution for this dilemma is to use affinity

selection technology such as phage display biopanning to
discover peptide- or antibody-based ligands, or SELEX to
discover aptamer-based ligands. It is noteworthy that the
Nobel Prize in chemistry 2018 was awarded to two scientists
for “the phage display of peptides and antibodies,” supporting
the great promise of affinity selection technology.
Compared with natural ligands, artificial ligands including

peptides, antibody fragments, antibodies, and aptamers have
higher affinity and are more flexible for chemical modifica-
tion and coupling to antifibrotic agents or delivery systems. In
particular, peptides and aptamers are attractive ligands because
of their small size, ease of production, and nonimmunogenicity.
Considering the fact that targeted delivery of antifibrotic

agents has shown promising results in numerous animal
studies, we believe that incorporating HSC-specific ligands
in antifibrotic agents could dramatically increase their success
rate in clinical studies.
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