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A key translational issue for neuroscience is to under-

stand how genes affect individual differences in brain

function. Although it is reasonable to suppose that

genetic effects on specific learning abilities, such as

reading and mathematics, as well as general cognitive

ability (g), will overlap very little, the counterintuitive

finding emerging from multivariate genetic studies is

that the same genes affect these diverse learning abili-

ties: a Generalist Genes hypothesis. To conclusively test

this hypothesis, we exploited the widespread access to

inexpensive and fast Internet connections in the UK to

assess 2541 pairs of 10-year-old twins for reading, math-

ematics and g, using a web-based test battery. Heritabil-

ities were 0.38 for reading, 0.49 for mathematics and 0.44

for g. Multivariate genetic analysis showed substantial

genetic correlations between learning abilities: 0.57

between reading and mathematics, 0.61 between read-

ing and g, and 0.75 between mathematics and g, pro-

viding strong support for the Generalist Genes

hypothesis. If genetic effects on cognition are so general,

the effects of these genes on the brain are also likely to

be general. In this way, generalist genes may prove

invaluable in integrating top-down and bottom-up ap-

proaches to the systems biology of the brain.
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Naturally occurring genetic variation is a Rosetta Stone for
translating causal effects from genes to brain to cognition,

especially once specific genes are identified (Plomin et al. in
press). Although learning abilities and disabilities are highly

heritable, specific genes responsible for their heritability
have not yet been identified despite several promising

candidate genes for reading disability (Fisher & Francks
2006). Nonetheless, more can be gleaned from quantitative

genetic research, such as twin studies that compare identical

and fraternal twins, than the mere fact that they are heritable.
A major advance in quantitative genetics is multivariate

genetic analysis, which investigates not only the variance
of traits considered one at a time but also the covariance

among traits. In this way, it indicates the extent to which the
same or different genes affect several traits (Neale et al.

2006), using a statistic known as a genetic correlation
(Plomin et al. in press). These findings can constrain explan-

ations of brain processes that underlie the traits. For exam-
ple, it is reasonable to suppose that genetic effects will be

specific to the substantially different cognitive processes
involved in reading and mathematics. Such genetic specific-

ity would indicate the need to identify the genetically driven
differences in brain processes that underlie these cognitive

differences.
However, a very different result is emerging from multi-

variate genetic research on learning abilities and disabilities.
Most genetic effects appear to be general in that the same

genes affect different learning abilities and disabilities. A
review of multivariate genetic research on learning abilities

found that genetic correlations varied from 0.67 to 1.0
between reading and language (five studies), 0.47 to 0.98

between reading and mathematics (three studies) and 0.59 to
0.98 between language and mathematics (two studies)

(Plomin & Kovas 2005). The average genetic correlation was
about 0.70. Moreover, the general effects of genes appear to

extend beyond specific learning abilities such as reading and
mathematics to other cognitive abilities such as verbal

abilities (e.g. vocabulary and word fluency) and non-verbal
abilities (e.g. spatial and memory). The average genetic

correlation between specific learning abilities and general
cognitive ability (g), which encompasses these verbal and

non-verbal cognitive abilities, is about 0.60 (Plomin & Kovas

2005). These findings have led to a Generalist Genes hypoth-
esis (Plomin & Kovas 2005), which has far-reaching implica-

tions for cognitive neuroscience (Kovas & Plomin 2006).
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However, the Generalist Genes hypothesis has yet to be
tested by direct cognitive test measures in a sample large

enough to conclusively establish themagnitude of the genetic
correlations between learning abilities. To address this prob-

lem, we developed an online test battery that includes
measures of reading, mathematics and g and used it to

assess a UK-representative population sample of 2541 pairs
of 10-year-old twins: by far the largest twin sample with

cognitive test data. The purpose of the present study was to
exploit the potential of web-based administration to provide

a powerful test of the Generalist Genes hypothesis.

Methods

Participants

The Twins Early Development Study (TEDS) recruited families of
twins born in England andWales in 1994, 1995 and 1996: three annual
cohorts (Oliver & Plomin 2007; Trouton et al. 2002). The present paper
describes results at 10 years, where a two-cohort subsample of TEDS
(twins born in 1994 and 1995) was tested. Despite inevitable attrition
(Oliver & Plomin 2007), the sample remains representative of the UK
population (ascertained by comparison with census data from the
Office of National Statistics). Notably, because of the widespread
availability of fast Internet access, we found no evidence of sampling
bias in favor of higher socioeconomic status families. Informed
consent was obtained by post or online consent forms, and a test
administrator was then assigned who telephoned the family, sorted
out any problems with the Internet or testing and generally assisted
and encouraged the participating family. Ethical approval for TEDS has
been provided by the Institute of Psychiatry Ethics Committee,
reference number 05/Q0706/228.

We excluded from the analyses children with severe current
medical problems and children who had suffered severe problems
at birth or whose mothers had suffered severe problems during
pregnancy from the analyses. We also excluded twins whose
zygosity was unknown or uncertain or whose first language was
other than English. Finally, we included only twins whose parents
reported their ethnicity as ‘white’, which was 93% of this UK sample.
The present analyses are based on 2541 twin pairs [919 monozygotic
(MZ) pairs, 817 same-sex dizygotic (DZ) and 805 opposite-sex DZ].

Internet testing

Widespread access to inexpensive and fast Internet connections in
the UK has made online testing an attractive possibility for collecting
data on the substantial samples necessary for genetic research,
especially for multivariate genetic research. The advantages and
potential pitfalls of data collection over the Internet have been
reviewed in detail elsewhere (Birnbaum 2004). For older children,
most of whom are competent computer users, it is an interactive and
enjoyable medium. Through adaptive branching, it allows the use of
hundreds of items to test the full range of ability, while requiring
individual children to complete only a relatively small number of items
to ascertain their level of performance. In tests where it is appropriate,
streaming voiceovers can minimize the necessary reading. In addi-
tion, the tests can be completed over a period of several weeks,
allowing children to pace the activities themselves, although they are
not allowed to return to items previously administered. Finally, it is
possible to intersperse the activities with games. All of these factors
help maintain children’s engagement with the tests.

Measures

Reading was assessed by an adaptation of the Peabody Individual
Achievement Test (PIAT-Revised; Markwardt 1997) Reading Com-
prehension Scale, and mathematics by three subtests based on the

nferNelson Math 5-14 Series (nferNelson 2001): Understanding
Number, Non-Numerical Processes and Computation and Knowl-
edge. gwas indexed by two verbal tests – WISC-III-PI multiple-choice
Vocabulary and Information (Wechsler 1992) – and two non-verbal
tests – WISC-III-UK Picture Completion (Wechsler 1992) and Raven’s
Standard Progressive Matrices (Raven et al. 1996). We created a g
score with equal weights for the four tests by summing their
standardized scores. This unit-weighted score correlated 0.99 with
the corresponding factor score. Further information about the meas-
ures is available elsewhere (Oliver & Plomin 2007). We have shown
that the web-based tests are reliable, stable and valid (Haworth et al.
2007). As an index of reliability, Cronbach’s alpha was 0.95 for PIAT
subtests, 0.78–0.93 for the math subtests and 0.74–0.91 for the g
subtests (n ¼ 2569–2924). In terms of stability and validity, scores on
the online version of our reading and mathematics tests correlate
highly with traditional in-person versions administered in person 1–
3 months later: r ¼ 0.80 for PIAT and 0.92 for mathematics (n ¼ 30).
Download time, a proxy for computer performance, accounted for
less than 2% of the variance in the PIAT and less than 0.5% of the
variance in the other tests.

Statistical analyses

According to the quantitative genetic model (Plomin et al. in press;
Rijsdijk & Sham 2002), same-sex twins reared together resemble
each other because of the additive effects of shared genes (A) or
shared (common) environmental factors (C). For identical or MZ twins,
the correlation between their genes is 1.00, whereas for non-identical
or DZ twins, the correlation is 0.50 because DZ twins on average
share half of their segregating alleles. The correlation between twins
for shared environment is, by definition, 1.00 for both MZ and DZ
twins growing up in the same family, while non-shared environmental
influences (E) are uncorrelated and contribute to differences between
twins. For the twin analyses, standardized residuals correcting for age
and sex were used because the age of twins is perfectly correlated
across pairs, which means that, unless corrected, variation within
each age group at the time of testing would contribute to the
correlation between twins and be misrepresented as shared environ-
mental influence (Eaves et al. 1989). The same applies to the sex of
the twins because MZ twins are always of the same sex. Likewise,
download time, a proxy for computer performance, was also re-
gressed out of the twins’ test scores. The assumptions of the
classical twin model, and their validity, have been discussed in detail
elsewhere (Boomsma et al. 2002; Martin et al. 1997; Rijsdijk & Sham
2002).

As well as examining twin correlations, we used standard ACE
model-fitting analysis in MX1.7.01 (Neale et al. 2006) where ACE
stands for additive genetic influences (A), shared or common envi-
ronmental influences (C) and non-shared environmental influences
(E), as above. Model-fitting analysis specifies a correlational structure
(a model) using matrix algebra. This model is a hypothesis about the
structure of the dataset and is derived from what we know about how
MZ and DZ twins are related to each other (see above). By fitting the
model to the data using an iteration process, we can derive its
‘goodness of fit’ and parameter estimates for the contributions of A, C
and E. Before embarking on our multivariate analysis, we initially
examined sex differences in the genetic and environmental parameter
estimates by comparing the fit of three full univariate ACE models
(one each for reading, mathematics and g) with that of various nested
models, dividing the twin pairs into five groups: MZ male, MZ female,
DZ male, DZ female and DZ opposite-sex pairs. These sex-limitation
models (Eley 2005) allowed us to estimate qualitative and quantitative
etiological differences between the sexes (Galsworthy et al. 2000).

Finally, we used multivariate genetic model fitting to investigate
the genetic and environmental etiology of the covariation between
learning abilities. Figure 1 shows the phenotypic Cholesky decom-
position, which partitions variance into a universal factor influencing
all three traits, a factor influencing reading and mathematics
independent of g and a factor influencing mathematics independent
of reading and g. As shown on the left of Fig. 2, the genetic
Cholesky decomposition partitions this variance further into genetic,
shared environmental and non-shared environmental components.
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As in the phenotypic Cholesky, variance attributable to genetic
influences is divided into a universal genetic factor influencing g,
reading and mathematics (A1); a genetic factor specific to reading
and mathematics (A2) and a genetic factor unique to mathematics
(A3). The shared environmental influences (C1, C2, C3) and non-
shared environmental influences (E1, E2, E3) are partitioned in the
same way.

The correlated factors model (on the right) can be derived from the
Cholesky model. It specifies three latent genetic factors, one for each
trait, and calculates the correlation between them. Once again, the
same is true for the shared and non-shared environments. These
statistics, the genetic, shared environmental and non-shared environ-
mental correlations, are unique to multivariate analysis. Along with
bivariate heritability and environmentality (the proportion of the
phenotypic correlation accounted for by genes or the environment),
they give us an essential insight into how genetic factors and
environments are shared in the etiology of learning abilities. It is
important to note that the genetic and environmental correlations are
independent of the heritability or environmentality of the traits. For
example, two traits with very little heritability can nevertheless be
highly correlated genetically (i.e. share the same genetic influence),
and two highly heritable traits can be genetically uncorrelated
(independent genetic influences).

In Fig. 2, the squared path coefficients influencing each measured
variable in the correlated factors model can be derived from the
corresponding squared paths in the Choleskymodel. Finally, individual
Cholesky pathways were dropped one at a time, and the fit was
compared with the full model. This tests the statistical significance of
the influence of each latent factor on g, reading and mathematics and
indicates the most parsimonious model.

Results

Phenotypic analyses

As shown in Table 1, the measures exhibited small mean
differences for sex (boys higher for mathematics and g) and

zygosity (DZs higher for reading and g), although the differ-
ences are statistically significant, given the large sample

sizes. Altogether, sex and zygosity accounted for less than
1% of the variance in all measures.

Phenotypic correlations for the age-, sex- and download-
time-regressed indicators were as follows (using one member

of each twin pair): mathematics–reading, r ¼ 0.51, n ¼ 2457,
P ¼ 0.000; mathematics–g, r ¼ 0.63, n ¼ 2342, P ¼ 0.000;

reading–g, r ¼ 0.54, n ¼ 2333, P ¼ 0.000.

Univariate genetic analyses

Intraclass correlations (Shrout & Fleiss 1979; twin similarity
coefficients) are shown in Table 2 for the total group of MZ,

DZ same-sex and DZ opposite-sex twins, as well as for the
male and female subgroups among the same-sex twin pairs.

Correlations between MZ twins were consistently higher
than those between DZ twins, suggesting a genetic contri-

bution to reading, mathematics and g. As a first estimate,
doubling the difference between the MZ and same-sex DZ

correlations yields moderate heritability estimates of 40% for
mathematics, 40% for reading and 36% for g. Shared

environmental influences are also moderate, estimated as
the extent to which MZ resemblance exceeds heritability:

31% for mathematics, 24% for reading and 35% for g. The
remainder of the variance is attributed to non-shared environ-

mental influences (plus error of measurement): 29% for
mathematics, 36% for reading and 29% for g.

As shown in Table 3, ACE model-fitting results are consis-
tent with estimates based on the twin correlations in Table 2.

For mathematics, reading and g, genetic influence is moder-
ate (49%, 38% and 44%, respectively, for the best-fitting

model). Shared and non-shared environmental influences are
more modest.

Moreover, across zygosity, correlations within male and

female pairs (Table 2) were similar, suggesting similar ACE
estimates for boys and girls. In addition, correlations between

same-sex DZ twins were similar to those between opposite-
sex DZ twins, suggesting no qualitative sex differences.

Sex-limitation model fitting (Eley 2005) confirmed these
expectations, yielding no significant sex differences in ACE

parameter estimates or in comparisons between same-sex
and opposite-sex DZ twins. The best-fitting model from the

sex-limitation analyses was the null model, which includes no
quantitative or qualitative differences in etiology between

males and females: likelihood ratio w2 test with Ddf compared
with full sex-limitation model for mathematics, reading and

g, respectively: 4.17, 3, P ¼ 0.24; 0.18, 3, P ¼ 0.98; 3.79, 3,
P ¼ 0.29. For this reason, and to maximize power, our multi-

variate genetic analyses combined sexes.

Multivariate genetic analysis

Cross-trait twin correlations (e.g. twin 1 reading versus twin 2
mathematics) are the essence of multivariate genetic analy-

sis. Table 4 shows that cross-trait twin correlations are
consistently greater for MZ than for DZ twins; the MZ

cross-trait twin correlations are nearly as great as the pheno-
typic correlations for the same individual, shown in the third

column of Table 4. Doubling the difference between the MZ
and DZ cross-trait correlations estimates the genetic contri-

bution to the phenotypic correlations (0.18, 0.32 and 0.32,
respectively, for the three rows of Table 4), and dividing these

Figure 1: Path diagram for the full phenotypic Cholesky

decomposition model. The Cholesky partitions variance into a

universal factor influencing all three traits (latent factor 1), a factor

influencing reading and mathematics (latent factor 2) and a factor

influencing mathematics alone (latent factor 3).
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Figure 2: Multivariate analysis. The top panel gives the estimates for the additive genetic (A) component of the variance, with the

Cholesky solution on the left and the correlated factors solution on the right. The middle panel does the same for the shared environment

(C) and the bottom panel gives the estimates for non-shared environmental effects (E). In the Cholesky diagrams, line weights and

intensities represent strength of association. Dotted paths can be dropped individually without a significant (P > 0.05) decrement

in model fit. In the correlated factors diagrams, the curved arrows represent correlations between the latent factors. R, reading;

M, mathematics.
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estimates by the phenotypic correlations for the same

individual (third column of Table 4) indicates the proportional
contribution of genetic influences to the phenotypic correla-

tion: the bivariate heritability (35%, 51% and 59%). As
indicated in the Methods, the genetic correlation, unlike

bivariate heritability, is independent of heritability. The genetic
correlation can be estimated by dividing the genetic contribu-

tion to the phenotypic correlation by the product of the square
roots of the heritabilities of the two traits (Plomin & DeFries

1979). These rough estimates of genetic correlations are
substantial: 0.40 for reading and mathematics, 0.73 for

reading and g, and 0.68 for mathematics and g.
The results of multivariate model-fitting analyses echo this

simple analysis based on the cross-trait twin correlations.

The Cholesky decomposition model is shown in Fig. 1.

Tables 5 and 6 show parameter estimates and confidence
intervals, with the results summarized visually in Fig. 2. As

shown in Table 5 and Fig. 2 (curved arrows, top right),
genetic correlations are substantial (0.57 for reading and

mathematics, 0.61 for reading and g, and 0.75 for mathe-
matics and g), providing evidence in support of the Gener-

alist Genes hypothesis. Bivariate heritabilities (Table 5) are
about 50%, indicating that about half of the phenotypic

correlations across g, reading and mathematics are medi-
ated genetically. The Cholesky analysis (Table 6 and left side

of Fig. 2) also indicates that, independent of g, there is no
residual genetic overlap between reading and mathematics

and that there are significant genetic influences specific to
reading and mathematics.

Shared environment also shows substantial overlap
between reading, mathematics and g, contributing almost

as much as genetics to their phenotypic correlations and
yielding correlations of 0.89–0.94. Non-shared environment,

which includes error of measurement, is the chief contributor
to differences between abilities, accounting for only about

10% of the phenotypic correlations and yielding correlations
of 0.15–0.22.

Discussion

Using direct tests of cognitive ability, reading and mathema-

tics in the largest representative twin sample to date, the

Table 1: Measure means (M) and standard deviations (SDs) by sex and zygosity

Measure

MZM DZM DZOM MZF DZF DZOF ANOVA P values

M SD M SD M SD M SD M SD M SD Sex Zygosity

Sex �
Zygosity R2 n

Mathematics 0.04 1.02 0.15 1.01 0.03 1.01 �0.11 0.96 �0.05 1.05 0.00 0.94 0.00** 0.11 0.49 0.01 4922

Reading �0.06 1.06 0.04 1.04 0.04 1.02 �0.06 0.96 0.02 1.00 0.05 0.93 0.92 0.00** 0.90 0.00 5351

g 0.06 0.97 0.14 0.96 0.05 1.02 �0.11 1.03 �0.08 1.03 0.00 0.95 0.00** 0.04* 0.58 0.01 4684

DZF, DZ females; DZM, DZ males; DZOF, females in DZ opposite-sex pairs; DZOM, males in DZ opposite-sex pairs; MZF, MZ females; MZM, MZ

males.

*P values significant at the <0.05 level.

**P values significant at the <0.01 level.

Table 2: Twin similarity coefficients (intraclass correlations) for mathematics, reading and g

Measure MZ DZS DZO DZall MZM MZF DZM DZF

Mathematics 0.71 (0.68–0.75),

(n ¼ 863)

0.51 (0.45–0.56),

(n ¼ 762)

0.43 (0.37–0.49),

(n ¼ 751)

0.47 (0.43–0.51),

(n ¼ 1513)

0.69 (0.63–0.74),

(n ¼ 356)

0.73 (0.68–0.77),

(n ¼ 507)

0.47 (0.38–0.55),

(n ¼ 343)

0.54 (0.47–0.60),

(n ¼ 419)

Reading 0.64 (0.60–0.67),

(n ¼ 919)

0.44 (0.39–0.50),

(n ¼ 817)

0.42 (0.36–0.47),

(n ¼ 805)

0.43 (0.39–0.47),

(n ¼ 1622)

0.64 (0.58–0.70),

(n ¼ 383)

0.63 (0.58–0.68),

(n ¼ 536)

0.43 (0.34–0.51),

(n ¼ 373)

0.46 (0.38–0.53),

(n ¼ 444)

g 0.71 (0.67–0.74),

(n ¼ 833)

0.53 (0.47–0.58),

(n ¼ 728)

0.44 (0.38–0.50),

(n ¼ 709)

0.48 (0.44–0.52),

(n ¼ 1437)

0.71 (0.65–0.76),

(n ¼ 342)

0.71 (0.66–0.75),

(n ¼ 491)

0.50 (0.42–0.58),

(n ¼ 328)

0.54 (0.47–0.61),

(n ¼ 400)

All similarity coefficients are based on age-, sex- and download-time-corrected scores.

95% confidence intervals in parentheses.

Dzall, all DZ pairs; DZO, opposite-sex DZ pairs; DZS, same-sex DZ pairs; MZ, MZ pairs; MZF, MZ female pairs; MZM, MZ male pairs; n, number of

twin pairs.

Table 3: Parameter estimates for mathematics, reading and g

Measure A C E

Mathematics 0.49 (0.40–0.57) 0.23 (0.15–0.30) 0.29 (0.26–0.31)

Reading 0.38 (0.29–0.48) 0.25 (0.17–0.33) 0.37 (0.33–0.40)

g 0.44 (0.36–0.53) 0.27 (0.19–0.35) 0.28 (0.26–0.31)

These estimates are based on the best-fitting submodel of the full

sex-limitation model, the null model, indicating no quantitative or

qualitative differences in etiology between males and females.

95% confidence intervals in parentheses.

A, additive genetic influence; C, shared environmental influence;

E, non-shared environmental influence.
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present study provides conclusive evidence in favor of the
Generalist Genes hypothesis, the first time it has been tested

by direct assessment of cognitive abilities in a large sample.
The key results are the genetic correlations of 0.57 between

reading and mathematics, 0.61 between reading and g, and
0.75 between mathematics and g, which are similar to the

average result for previous multivariate genetic studies
(Markowitz et al. 2005; Plomin & Kovas 2005). Despite the

large sample, 95% confidence intervals range from 0.45 to
0.86 across the three domains, indicating that the differences

in genetic correlations are not significant, and only permitting
the conclusion that all three genetic correlations are sub-

stantial. The genetic correlations between domains imply that
genetic correlations within domains would be even higher,

and this is what research suggests (Plomin & Kovas 2005).
For example, genetic correlations have been reported to be

about 0.90 between reading processes such as word recog-
nition, orthographic coding and phonological decoding (Gayan

& Olson 2003), about 0.90 between mathematical computa-
tion, application and comprehension (Kovas et al. 2007), and

about 0.80 between verbal and spatial abilities (Petrill 2002).
Likewise, the correlations between shared environmental

factors are strong in this childhood sample, accounting for

about 40% of the phenotypic correlation between traits. We

would expect the shared environmental contribution to the
etiology of g to diminish throughout childhood and into

adolescence while the genetic contribution increases
(Boomsma 1993). In contrast, the non-shared environment

accounts for very little of the phenotypic correlation between
traits, contributing largely to discrepancies in cognitive pro-

files.
The Generalist Genes hypothesis proposes that some, but

not all, genetic effects are general – what is novel is the
substantial extent to which genetic effects are general.

Nonetheless, these genetic correlations are not 1.0, suggest-
ing that there are also genetic effects specific to each domain.

The Cholesky analysis (Table 6, left side of Fig. 2) indicates
significant domain-specific genetic variance for both reading

and mathematics.
These results predict that, when genes are identified that

account for the substantial heritability of reading, mathemat-
ics and g, genes associated with one domain such as reading

Table 4: Cross-trait twin similarity coefficients (ICC1.1) for reading, mathematics and g

Measures MZ DZall Same individual

Twin 1 reading–twin 2 mathematics 0.46 (0.41–0.51), (n ¼ 875) 0.37 (0.33–0.41), (n ¼ 1548) 0.51 (0.48–0.54), (n ¼ 2457)

Twin 1 reading–twin 2 g 0.52 (0.47–0.56), (n ¼ 840) 0.36 (0.32–0.41), (n ¼ 1462) 0.54 (0.51–0.56), (n ¼ 2333)

Twin 1 mathematics–twin 2 g 0.56 (0.51–0.61), (n ¼ 838) 0.40 (0.36–0.44), (n ¼ 1457) 0.63 (0.60–0.65), (n ¼ 2342)

All similarity coefficients are based on age-, sex- and download-time-corrected scores. Correlations for same individual are based on one random

twin from each pair. Reversing the ordering of the pairs (e.g. twin 2 reading–twin 1 mathematics) produces the same results.

95% confidence intervals in parentheses.

Dzall, all DZ pairs; MZ, MZ pairs; n, number of twin pairs.

Table 5: Reading, mathematics and g: multivariate analysis

fitting a correlated factors model. Genetic and environmental

correlations, bivariate heritability and environmental influence

(proportion of phenotypic correlation mediated by A, C and E)

Reading and

mathematics

Reading

and g

Mathematics

and g

Correlation

rA 0.57 (0.45–0.71) 0.61 (0.48–0.75) 0.75 (0.65–0.86)

rC 0.94 (0.75–1.00) 0.89 (0.72–1.00) 0.89 (0.73–1.00)

rE 0.15 (0.08–0.21) 0.19 (0.12–0.25) 0.22 (0.15–0.28)

Mediation of rP

A (axayrA/rP) 0.47 (0.35–0.61) 0.46 (0.34–0.59) 0.55 (0.45–0.66)

C (cxcyrC/rP) 0.44 (0.32–0.54) 0.43 (0.32–0.53) 0.35 (0.25–0.44)

E (exeyrE/rP) 0.09 (0.05–0.13) 0.11 (0.07–0.15) 0.10 (0.07–0.13)

rA, rC, rE ¼ genetic, shared environmental and non-shared environ-

mental correlations. Model fit statistics are reported in the footnote to

Table 6.

95% confidence intervals in parentheses.

Table 6: Reading, mathematics and g: multivariate analysis

fitting a Cholesky model. Standardized, squared path coefficients

for g, reading and mathematics

Measure A1 A2 A3

g 0.44 (0.36–0.53)

Reading 0.14 (0.08–0.22) 0.24 (0.15–0.32)

Mathematics 0.27 (0.19–0.37) 0.01(0.00–0.05) 0.20 (0.12–0.27)

C1 C2 C3

g 0.27 (0.19–0.35)

Reading 0.20 (0.12–0.30) 0.05 (0.00–0.11)

Mathematics 0.18 (0.11–0.27) 0.03 (0.00–0.09) 0.02 (0.00–0.09)

E1 E2 E3

g 0.28 (0.26–0.31)

Reading 0.01 (0.01–0.02) 0.35 (0.32–0.39)

Mathematics 0.01 (0.01–0.02) 0.00 (0.00–0.01) 0.26 (0.24–0.30)

Likelihood ratio x2 test with Ddf compared with saturated phenotypic

model: 22.8, 24df, P ¼ 0.53. Sample-size-adjusted Bayesian Informa-

tion Criterion ¼ �17658.

95% confidence intervals in parentheses.

A, additive genetic influence; C, shared environmental influence;

E, non-shared environmental influence.
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are highly likely to be associated as well with mathematics
and g. The Generalist Genes hypothesis implies that molec-

ular genetic attempts to identify genes will profit from
targeting what is in common among cognitive domains, as

well as what is specific to each (Butcher et al. 2006).
For neuroscience, the general effect of genes across such

different domains warrants consideration of the possibility
that these genes will be found to have similarly general ef-

fects across brain structures and functions (Kovas & Plomin
2006). For example, the basic synapse comprises 1000

proteins, with 80% of unknown function in the nervous
system (Grant 2006; Jordan & Ziff 2006). The most well-

understood synaptic system, the neurotransmitter receptor
complex N-methyl-D-aspartate receptor complex (NRC/

MASC), includes 186 proteins that have been implicated in
synaptic plasticity and a wide range of cognitive processes

(Pocklington et al. 2006). Identifying generalist genes on
the basis of their association with downstream cognitive

processes could facilitate a systems approach to brain orga-
nization (Armstrong et al. 2006) because the genes are

all anchored in these functional cognitive products of the
brain.

For example, genome-wide association studies guided by
quantitative genetic findings are beginning to identify sets of

polymorphisms associated with cognitive abilities (Butcher
et al. 2005; Meaburn et al. 2007), enabling a top-down

approach complementary to bottom-up functional genomic

analysis: an approach we have termed behavioral genomics
(Harlaar et al. 2005; Haworth et al. 2007). This allows us to

take sets of genes related to cognitive abilities and look at
them from a variety of perspectives: multivariate (are the

genes associated with one cognitive trait also associated with
other cognitive traits?), longitudinal (do the associations

reflect changes in the heritability of a trait across time?) and
environmental (are the genes associated with a cognitive

trait also associated with relevant environments or does the
environment influence the strength of the association

between the genes and the trait?). We anticipate that the
patterns of association emerging from these studies will

reflect both the genetic and environmental etiology of cogni-
tion derived from quantitative genetics, and the biological

systems underlying those cognitive processes arrived at
through functional genomics. In this sense, generalist genes

could integrate top-down and bottom-up approaches to the
systems biology of the brain.
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