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A systems framework for vaccin
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Numerous challenges have been identified in vaccine

development, including variable efficacy as a function of

population demographics and a lack of characterization and

mechanistic understanding of immune correlates of protection

able to guide delivery and dosing. There is tremendous

opportunity in recent technological and computational

advances to elucidate systems level understanding of

pathogen–host interactions and correlates of immunity. A

systems biology approach to vaccinology provides a new

paradigm for rational vaccine design in a ‘precision medicine’

context.
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Introduction
The historical emphasis on an empirical model for

vaccine development has been largely ineffective for

some of the most rapidly evolving pathogens, such as

HIV and tuberculosis, suggesting the need for a new

direction in vaccine strategies [1]. New approaches to

vaccine development must be able to encompass host

genetic and demographic variability, pathogen variability,

as well as the interactions between host and pathogen

including the diverse immune cell subsets that can be

involved.

The power of a systems perspective
The immune response to vaccination depends on inter-

actions between a multitude of factors, including genetic,

epigenetic, physiologic and environmental factors, such

as coinfections and the microbiome. This view, first

proposed by Poland and colleagues [2,3], known as the
www.sciencedirect.com
immune response network theory, illustrates the com-

plexity of the immune response and provides the ration-

ale for systems level approaches to vaccine development.

For example, one of the most important and difficult areas

of vaccine research is the discovery of biomarkers (e.g.

omic signatures) capable of predicting an individual’s

response to vaccination. The identification of these

immune correlates of protection may allow for the de-

velopment of more individualized vaccination strategies.

Systems level data analyses, such as the integration of

multiple high-throughput omics data sets in combination

with network-based methods, hold particular promise for

this line of research [4,5].

Recently, systems level approaches have been successful

in identifying genomic signatures predictive of the

response to both yellow fever and influenza vaccines

[6–8]. In these studies, advanced machine learning

approaches were used to identify gene expression signa-

tures predictive of the immune response to vaccination,

including the CD8+T cell and antibody response.

The findings from these studies are significant in that

they provide strong evidence of the ability to identify

biomarkers of vaccine protection soon after vaccine

administration. Biomarkers that are predictive of immune

response, if found to be reliable across different patient

populations, could prove invaluable for the design of

clinical trials for new vaccines [9].

An overview of the systems biology workflow for vaccine

development, from multi-omic measurement to discovery

of immune correlates of protection and improved clinical

trial design, is shown in Figure 1.

Data integration: finding a path forward
The ability to integrate information from a diversity of

data sources, such as genome-wide DNA variation along

with transcript and protein abundance measures, is what

makes systems biology methods so powerful. However,

data integration remains a major challenge in the field.

Immunology and vaccine research present additional

complexities given the need to model both host and

pathogen systems. And the need to track the immune

response over time greatly increases the amount of data

produced.

Nakaya and colleagues provide a comprehensive over-

view of the methods of systems vaccinology, including
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System-level approach to vaccine development from bench to bedside. The integration of multi-omic measurements (proteomic, transcriptomic, etc.)

along with information about host–pathogen interactions will allow for a system-level view of the host reponse to infection (or vaccination). Analysis

with network-based approaches (module identification, differential network analysis, etc.) will enable discoveries about the host immune response,

including insights into the mechanism of action of vaccines, biomarkers of immune protection, and potentially new vaccine candidates (targets),

leading to improved vaccine development and delivery.
the benefits gained from integrating multiple sources of

omics data, using research on the yellow fever vaccine as a

proof of concept [10].

Expression microarray experiments, which measure gen-

ome-wide transcript abundances, have been the main

focus of many systems biology studies of vaccines so

far [11–16]. These studies have provided new insights

relevant to two major goals in vaccinology: the elucidation

of a vaccine’s mechanism of action, and the identification

of a molecular signature able to predict a patient’s

response to vaccination (i.e. whether or not the vaccine

will confer protection). For instance, Obermoser et al.
recently used blood transcriptome measurements to

investigate the differences in immune response after

vaccination with influenza and pneumococcal vaccines.

They observed significant differences in the gene expres-

sion profiles elicited by the two vaccines, with the influ-

enza vaccine producing a strong interferon signature and

the pneumococcal vaccine producing an increase in

inflammation-related transcripts [17]. The authors

suggest that ‘comparing global immune response elicited

by different vaccines will be critical to our understanding

of the immune mechanisms underpinning successful

vaccination.’
Current Opinion in Immunology 2013, 25:551–555
Methods that can model the interactions between

multiple genes are crucial for providing a truly system-

level view of the transcriptome and its response to vacci-

nation (or infection). Regev, Hacohen, and colleagues

have used a system-level perturbation strategy to recon-

struct regulatory networks involved in the immune

response. In dendritic cells they measured gene expres-

sion profiles after stimulation with pathogen components

to identify candidate regulators of immune response.

They then perturbed each candidate regulator using

shRNA knockdown, again stimulated the cells with

pathogen components, and observed the resulting

changes in a gene expression signature of immune

response. The direct responses to regulator perturbation

allowed construction of regulatory networks [18,19].

Network-based approaches [20] are ideally suited for

large data integration problems and have become a

powerful tool in systems biology research. Network

methods particularly relevant for infectious disease

research include differential network analysis and

cross-species interaction networks [21,22], which can

be used to model system-level changes during the pro-

gression of infection, as well as host–pathogen protein

interactions (discussed further below). Bisson et al.
www.sciencedirect.com
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recently reported on a mass spectrometry-based method

for measuring the changes in protein–protein interactions

in response to a stimulus [23]. If applied on a system level,

this type of method could vastly improve our understand-

ing of immune network remodeling in response to in-

fection or vaccination.

Multiple systems: modeling host and
pathogen interactions
The response to viral infection depends on the many

interactions between viral and host proteins [24]. Model-

ing these interactions will be essential for developing

predictive models of pathogen virulence and host

response.

The human viral infectome is an effort to model all

interactions that occur during human viral infection

[25]. This infectome was constructed by integrating

416 viral proteins into a human protein–protein inter-

action network through manually curated virus–host

protein interactions. Navratil and colleagues found that

viral proteins interact with approximately 5% of human

proteins, and that a significant number of these targeted

proteins interact with multiple viruses or virus families.

These observations suggest common molecular mechan-

isms of infection across viruses.

A particularly interesting finding that has come from

research on the human virome (the collection of all

viruses that infect humans) is the impact of coinfections

and the bacterial microbiome on the host immune

response [26]. Gaining a better understanding of the

human virome [27], and the ways in which viruses interact

with the immune system will provide valuable infor-

mation relevant for vaccine development, including the

identification of new vaccine targets and insights into the

variability of immune responses.

The National Institute of Allergy and Infectious Disease

(NIAID) created the Systems Biology for Infectious

Diseases Research program specifically to investigate

the interactions between viruses and the host immune

system [28]. Transcriptomic and proteomic analyses done

at two of the program’s centers, the Systems Virology

Center and the Center for Systems Influenza, have ident-

ified transcriptome changes in response to infection with

influenza and SARS-CoV, as well as novel interactions

between the H5N1 influenza polymerase and a number of

host proteins [29–31].

Efforts to identify the complete set of mechanisms by

which viruses interact with host immune systems will

provide numerous benefits for vaccine development. Not

only will this virus–host interaction data provide potential

targets for current vaccine development, but it may also

speed the development of vaccines or treatments for newly

emergent viral infections. Moreover, the identification of
www.sciencedirect.com
sequence variation among interacting proteins, which may

play a role in modifying the response to infection or the

protective effect of a vaccine, may allow for more person-

alized vaccination regimens (altered dosing schedules, the

use of adjuvants, etc.).

Moving toward clinically actionable results
Given the great need for new interventions to fight

infectious diseases, particularly those like malaria and

tuberculosis where drug resistance is a major issue, drug

repurposing/repositioning is becoming an important area

of research. In cancer research, drug repositioning is

becoming an effective path for improving treatment,

particularly as researchers gain a better understanding

of specific oncogenic mutations [32]. The repurposing of

Imatinib and Crizotinib for additional cancer types (but

with the same mutations) is example of the benefits

gained from precision medicine, particularly the

improved understanding of the genomic factors influen-

cing disease development [33,34].

So far, in infectious disease research most work in the area

of drug repositioning has been done for antimicrobial

treatments [35–37]. However, with increasing knowledge

about host–virus interactions and the evolutionary

relationships between viruses, along with improved de-

velopment of targeted vaccine adjuvants [38,39], could

repurposing techniques play a role in vaccine develop-

ment as well? This is an intriguing question that remains

to be answered, but which could provide promising

opportunities for new vaccine candidates.

While development of new interventions is crucial, tech-

niques for improving delivery of treatments available now

should also be a priority. With the advent of precision

medicine, there is an emphasis on the discovery of

clinically actionable information to ensure the well-timed

delivery of the correct drug at the accurate dose specific

for a given patient [40]. Precision medicine embraces the

notion that molecular information improves the precision

with which patients are stratified and treated [41] and has

clear implications for vaccine development and delivery.

Recent studies have begun to focus on examining the

genetic variation related to vaccine-specific immune

responses. For example, Ovsyannikova et al. have

reported polymorphisms in CD46 and SLAM, both cel-

lular receptors for the measles virus, are significantly

associated with the immune response to measles vaccine

[42,43]. Studies like these will help shape omics-guided

stratification and individualized delivery/dosing.

Conclusion
The advent of systems-level omics characterization, as

well as the computational and bioinformatics methods to

analyze, integrate and model this data offers an unpre-

cedented opportunity for vaccine discovery, develop-

ment, and delivery. Characterizing how genetic
Current Opinion in Immunology 2013, 25:551–555
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variation can shape innate and adaptive immune

responses will guide omics-driven population stratifica-

tion for vaccine delivery. If this framework is embraced, it

could lead to a substantial decrease in vaccine failure and

adverse events, providing a significant benefit to global

health.
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