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Parental obesity and risk factors for cardiovascular disease among
their offspring in mid-life: findings from the 1958 British Birth
Cohort Study
R Cooper1, SM Pinto Pereira2, C Power2 and E Hyppönen2

BACKGROUND: Few studies have investigated whether parental adiposity is associated with offspring cardiovascular health or the
underlying pathways. Studying these associations may help to illuminate the paradox of increasing prevalence of obesity and
declining trends in cardiovascular disease (CVD) mortality, which may be partially explained by beneficial adaptations to an
obesogenic environment among people exposed to such environments from younger ages.
OBJECTIVE: To investigate associations between parental body mass index (BMI) and risk factors for CVD among their offspring in
mid-life and to test whether associations of offspring BMI with CVD risk factors were modified by parental BMI.
METHODS: Data from parents and offspring in the 1958 British birth cohort were used (N¼ 9328). Parental BMI was assessed when
offspring were aged 11 years; offspring BMI, waist circumference and CVD risk factors (lipid levels, blood pressure, glycosylated
haemoglobin (HbA1c) and inflammatory and haemostatic markers) were measured at 44–45 years.
RESULTS: Higher parental BMI was associated with less favourable levels of offspring risk factors for CVD. Most associations were
maintained after adjustment for offspring lifestyle and socioeconomic factors but were largely abolished or reversed after
adjustment for offspring adiposity. For some CVD risk factors, there was evidence of effect modification; the association between
higher BMI and an adverse lipid profile among offspring was weaker if maternal BMI had been higher. Conversely, offspring BMI
was more strongly associated with HbA1c if parental BMI had been higher.
CONCLUSIONS: Intergenerational influences may be important in conferring the effect of high BMI on CVD risk among offspring.
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INTRODUCTION
Associations between parental and offspring adiposity have
consistently been shown with recent evidence demonstrating
that these associations persist into mid-adulthood,1,2 when risk
factors for cardiovascular disease (CVD) are reaching clinically
significant levels and symptoms of CVD are beginning to manifest
in an increasing proportion of the population. Given the parental–
offspring adiposity associations that persist across life,1,2 the
strong link between obesity and CVD risk3,4 and the familial
aggregation of genetic and environmental risk factors for obesity
and CVD,5–9 parental adiposity may also influence offspring CVD
risk. However, few studies have investigated whether parental
adiposity is associated with offspring cardiovascular health or the
underlying pathways10–13 and mostly these do not examine
offspring beyond adolescence.11–13

Exploring the intergenerational associations between parental
adiposity and offspring CVD risk may help to illuminate the
paradox of increasing prevalence of obesity and declining trends
in CVD mortality.14 Despite increases in average body mass index
(BMI) and prevalence of obesity,15 CVD mortality rates and
population levels of related risk factors such as blood pressure
(BP) and cholesterol have declined over the same time period.15–20

Some studies have shown that the strength of the associations

between obesity and risk factors for CVD is weaker in birth cohorts
born more recently than in cohorts born earlier in the twentieth
century.18,19,21 Opposing trends for BMI and CVD risk, and the
weakening of obesity–CVD associations may be largely explained
by increases in medication use and favourable changes in
lifestyles.14,18–21 Another possibility is that, because of exposure
from earlier ages, fetal programming or other transgenerational
effects, more recent generations could be better adapted to an
obesogenic environment than older generations.19 Potentially,
such adaptations might lead to lower risk of CVD in later life. It
could also be expected that, if such adaptations are occurring,
then among a particular generation the association between BMI
and risk factors for CVD in adulthood would be weaker among
those whose parents were obese during their childhood than
those whose parents were not obese.

Using intergenerational data from the 1958 British Birth Cohort
Study, we aimed to establish: (1) associations between parental
BMI and a comprehensive range of risk factors for CVD among
their offspring in mid-life; (2) whether associations were explained
(that is, mediated or confounded) by lifestyle and socioeconomic
factors or by the parental–offspring adiposity association;
(3) whether parental BMI modifies the associations between
offspring BMI and risk factors for CVD, specifically whether
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associations are weaker among individuals whose parents had a
higher BMI than among those whose parents had a lower BMI.

MATERIALS AND METHODS
The 1958 British birth cohort, who constitute the offspring in our study,
originally included all those born during 1 week in March 1958 across
England, Scotland and Wales (n¼ 17 638).22 Surviving cohort members
were followed up into adulthood, with additional recruitment of 920
immigrants with the same birth dates into the study up to age 16 years.
A target sample of 11 971 cohort members was invited to participate in
a biomedical survey at age 44–45 years, 9377 (78%) responded.
Respondents were broadly representative of the total surviving cohort.23

Ethical approval has been obtained for this study and study participants
have provided informed consent.

Offspring CVD risk factors
All risk factors for CVD among the offspring were measured at age 44–45
years. BP was measured three times after the participant had been seated
for 5 min using an Omron 705CP automated digital oscillometric
sphygmomanometer (Omron, Tokyo, Japan); a large cuff was used if the
mid-upper arm circumference was 432 cm. Mean diastolic and systolic BP
values were used.

Non-fasting venous blood samples were obtained by nurses using
standardized protocols during home visits and posted to central
laboratories. Glycosylated haemoglobin (HbA1c) levels were measured
using ion exchange high-performance liquid chromatography. Total and
high-density lipoprotein (HDL)-cholesterol and triglyceride levels were
measured by an autoanalyzer (Olympus AU640, Olympus, Tokyo, Japan)
using enzymatic methods. Low-density lipoprotein (LDL)-cholesterol levels
were calculated using the Friedewald formula24 except when triglyceride
level 44.5 mmol l–1. Fibrinogen levels were measured using the Clauss
method25 and C-reactive protein (CRP) assayed by nephelometry (Dade
Behring) on citrated plasma samples after one thaw cycle. von Willebrand
factor (vWF) antigen was measured by Decollates enzyme-linked
immunosorbent assay (ELISA) and tissue plasminogen activator (t-PA)
antigen by Biopool ELISA. Fibrin D-dimer was measured on stored samples
at the end of the data collection period by ELISA assay (Hyphen, Paris,
France) and standardized for inter-batch variation.

As ignoring or excluding participants using medication can bias
estimates of association,26 correction was made for medication use.
Nurses obtained information on currently prescribed medication through
direct observation of packaging from which lipid-lowering drugs (for
example, statins) and medications for hypertension and diabetes were
identified. A commonly used constant of 10 mm Hg, which has been
suggested on the basis of evidence from clinical trials, was added to the
measures of diastolic and systolic BP for those on treatment for
hypertension (n¼ 424).26 For those taking oral antidiabetic medication
for type 2 diabetes (n¼ 107), a correction was made to HbA1c levels on the
assumption that their medication reduced HbA1c levels by 1% in absolute
terms.27 Lipid levels of those on lipid-lowering drugs (n¼ 162) were
corrected to allow for effects of treatment assuming that lipid-lowering
drugs reduce total cholesterol by 20%, LDL-cholesterol by 35%,
triglycerides by 15% and increase HDL-cholesterol by 5%, based on
average efficacy of a statin, the most frequently prescribed lipid-lowering
drug in this study.28

Offspring BMI and waist circumference
BMI (kg m–2) was calculated using height and weight measurements, taken
using Leicester portable stadiometers and Tanita solar scales, respectively,
by nurses using standardized protocols while participants were lightly
clothed and unshod. Self-reported weights (n¼ 80) and heights (n¼ 68)
were used if measurements were inaccurate or consent for measurement
was not provided. Waist circumference (cm) was measured midway
between the lower ribs and iliac crest.

Parental BMI
Parents’ heights and weights were reported in 1969 when their offspring
were aged 11 years. Heights were reported in feet and inches to the
nearest inch. Weights were reported in pre-classified groups ranging from
6 stone 4 pounds (39.9 kg) to 19 stone 10 pounds (125.2 kg) in increments
of 6 pounds (2.7 kg). To calculate BMI, heights were converted into metres
and a weight in kg was assigned, which was equivalent to the midpoint of

the recorded weight category. For some analyses, maternal and paternal
BMI were categorized into four standard groups: o20 (underweight); 20–
25 (normal); 25–30 (overweight); and 430 kg m–2 (obese).

Covariates
Key variables that could mediate or confound the main associations of
interest were selected a priori. Some covariates, notably lifestyle factors,
had been assessed at different adult ages and so, to take into account the
potential cumulative effects or changes in these factors across adulthood,
we included information from two ages (one in earlier and one later in
adulthood) in analyses. A detailed description of covariates is reported
elsewhere1 and so a brief description follows. Parental ages were recorded
at the time of their offspring’s birth. At ages 33 and 42 years, offspring
reported their frequency of consumption of different food groups. Using
this information, variables were created to identify the amount of fried
food and fruit consumed as indicators of overall diet. Physical activity was
ascertained by self-report of frequency of participation in sports or other
regular physical activity at ages 23 and 42 years and sedentary behaviour
was based on self-reports of hours per day spent watching television at
ages 23 and 44–45 years. Smoking status was self-reported at ages 23 and
42 years (or at 33 years if missing). Alcohol consumption at age 23 years
was assessed from self-reports of alcoholic beverages consumed within the
previous week and a quantity-frequency index of alcohol use at age 44–45
years was derived from the Alcohol Use Disorders Identification Test
questionnaire.29

Lifetime socioeconomic position (SEP) was indicated by father’s
occupational class at birth (or at 7 years if missing) and offspring’s
educational level and own occupational class ascertained at age 42 years
(or, for occupational class, at 33 years if missing). Both measures of
occupational class were categorized into four groups using a standard
method of categorizing occupations in the United Kingdom, the Registrar
General’s Social Classification: 1 I (professional) or II; 2 III non-manual; 3 III
manual; and 4 IV, V (unskilled), or single mother. Educational level was
categorized into five groups from no qualifications to degree or higher.

Statistical analyses
The normality of the CVD risk factors was assessed and in cases where they
were skewed (HbA1c, triglycerides, CRP and D-dimer) geometric mean
values are presented in the descriptive table. For ease of interpretation and
to maintain consistency across outcomes, all outcome variables were log-
transformed and multiplied by 100, whereby the regression coefficients
can be interpreted as the symmetric percentage difference in means.30

We assessed the associations of parental BMI with offspring risk factors
for CVD using linear regressions with three levels of adjustment. First, we
tested the direct associations between parental BMI and each offspring
CVD risk factor adjusting only for parental age and offspring’s gender
(model 1). Second, we examined whether the associations were explained
(mediated or confounded) by lifestyle or socioeconomic factors. This was
done by adjusting for the offspring’s lifestyle factors in adulthood (that is,
fried food and fruit consumption at 33 and 42 years, television viewing at
23 and 44–45 years, physical activity at 23 and 42 years, smoking status at
23 and 42 years and alcohol consumption at 23 and 44–45 years) and
lifetime SEP (model 2). Third, we examined the extent to which tracking of
BMI across generations explained parental influences on offspring CVD risk
by adjusting for offspring’s own BMI and waist circumference (model 3). To
evaluate whether there were gender specific effects, we carried out formal
tests of gender interaction (adjustments as in model 1). If evidence for
interaction was found all subsequent analyses were stratified by gender. In
all models, parental BMI was initially included as a categorical variable.
Tests of deviation from linearity were performed and where there was no
evidence of this, parental BMI was included in a second set of models as a
continuous term.

To establish whether parental BMI modified the association between
offspring BMI and CVD risk, in further analyses we tested the interactions
between offspring and parental BMI. In these analyses, both parental and
offspring BMI were modelled as continuous variables, in association with
the CVD risk factors of the offspring with adjustments for parental age and
gender and subsequently also for offspring lifestyle factors and lifetime
SEP. Where evidence of interaction was found we: (i) undertook stratified
analyses (by tertiles of parental BMI) to characterize the underlying effect
modification, and (ii) evaluated the possibility that offspring weight change
between childhood and adulthood accounted for the interaction between
parental and offspring BMI, by adjusting for offspring BMI at age 11 years.
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All models described above were performed for maternal BMI and
paternal BMI separately; that is, none of the models included both
maternal and paternal BMI together. Analyses were run on a sample of up
to 9328 offspring who had participated in the biomedical survey, were not
pregnant (exclusions because of pregnancy n¼ 2) and had valid data on at
least one risk factor for CVD. Offspring with type 1 diabetes (n¼ 55) were
excluded from analyses of HbA1c. The number included in any one set of
analyses varied between 7747 (for BP) and 6169 (for LDL-cholesterol)
because of variation in missing outcome, offspring BMI and parental BMI
data. To minimize the loss in numbers and potential bias introduced
because of missing information, missing values for parental BMI and
covariates were imputed using multiple imputation chained equations
implemented in Stata version 11.31 The multiple linear regression analyses
described above were run across 10 imputed data sets and results from
these models are presented. The main models were re-run on the
maximum available samples, leading to identical interpretation. Further
sensitivity analyses were performed to examine the potential impact of
postal delay of blood sample, month of examination, time of day, recent
food consumption, air temperature and assay batch on the main findings,
but as these factors had a negligible influence; related data are not shown.

RESULTS
At age 44–45 years, 25.4% of male and 23.8% of female offspring
were classified as obese (that is, BMI 430 kg m–2) whereas when
their offspring were aged 11 years, only 5.4% of fathers and 7.8%
of mothers were obese. The correlation between maternal and
paternal BMI was low (r¼ 0.11). Obese offspring were more likely

to have had an overweight or obese mother or father during their
childhood and to have a less favourable CVD risk factor profile at
age 44–45 years than offspring who were not obese (Table 1).

In models adjusted for maternal age and offspring gender,
higher maternal BMI was associated with lower levels of
HDL-cholesterol and higher levels of all other outcome measures
among offspring at age 44–45 years with the exception of total and
LDL-cholesterol where no association was seen (Figure 1). The
strongest association was between maternal BMI and CRP; per
1 kg m–2 increase in maternal BMI, CRP was higher by 3.8% (95%
confidence interval) 3.1–4.5) after adjustment for gender and
maternal age. There were no gender interactions for most
outcomes, however, higher maternal BMI was associated linearly
with higher vWF levels in female but not male offspring
(P-interactiono0.01). In men, the association between maternal
BMI and vWF levels was non-linear, with higher mean levels of vWF
among male offspring of underweight compared with normal
weight mothers (P¼ 0.03 for quadratic term), hence data in relation
to vWF for men are not presented in Figure 1. Most associations
were attenuated slightly after adjustment for offspring lifestyle
factors and indicators of lifetime SEP. After further adjustment for
offspring adiposity, most associations were no longer found.
However, for total and LDL-cholesterol, triglycerides and t-PA,
associations were negative after adjustment for offspring adiposity.

In models adjusted for paternal age and offspring gender,
higher paternal BMI was associated with lower levels of
HDL-cholesterol and higher HbA1c, CRP, fibrinogen and t-PA

Table 1. Characteristics of offspring at age 44–45 years stratified by their obesity status at this age (sample participating in the biomedical survey at
age 44–45 years who had a measure of BMI at this age, N¼ 4639 men and 4689 women)

Male offspring at 44–45 years Female offspring at 44–45 years

Na BMIp30 kg m–2

(Maximum N¼ 3463)
n (%) or mean (s.d.)

BMI430 kg m–2

(Maximum N¼ 1176)
n (%) or mean (s.d.)

Na BMIp30 kg m–2

(Maximum N¼ 3575)
n (%) or mean (s.d.)

BMI430 kg m–2

(Maximum N¼ 1114)
n (%) or mean (s.d.)

Maternal BMI (kg m–2) in 1969
o20 463 396 (11.4) 67 (5.7) 488 412 (11.5) 76 (6.8)
20–25 2070 1618 (46.7) 452 (38.4) 2182 1758 (49.2) 424 (38.1)
25–30 1016 689 (19.9) 327 (27.8) 956 652 (18.2) 304 (27.3)
430 309 183 (5.3) 126 (10.7) 301 169 (4.7) 132 (11.9)
Unknown 781 577 (16.7) 204 (17.4) 762 584 (16.3) 178 (16.0)

Paternal BMI (kg m–2) in 1969
o20 139 113 (3.3) 26 (2.2) 151 118 (3.3) 33 (3.0)
20–25 2059 1634 (47.2) 425 (36.1) 2063 1639 (45.9) 424 (38.1)
25–30 1383 983 (28.4) 400 (34.0) 1368 1003 (28.1) 365 (32.8)
430 201 103 (3.0) 98 (8.3) 205 136 (3.8) 69 (6.2)
Unknown 857 630 (18.2) 227 (19.3) 902 679 (19.0) 223 (20.0)

Offspring adiposity and risk factors for cardiovascular disease at age 44–45 years
BMI (kgm–2) 4639 25.9 (2.5) 33.6 (3.6) 4689 24.5 (2.8) 35.1 (4.7)
Waist circumference (cm) 4621 94.1 (7.7) 111.4 (9.9) 4661 80.4 (8.3) 102.4 (10.7)
Diastolic blood pressure (mmHg) 4627 80.9 (10.2) 85.6 (10.1) 4659 74.3 (10.0) 80.1 (9.8)
Systolic blood pressure (mmHg) 4627 131.3 (14.6) 137.6 (15.1) 4659 118.5 (15.0) 126.3 (16.0)
HbA1c (%)b,c 3935 5.2 (5.2, 5.2) 5.4 (5.4, 5.5) 3914 5.1 (5.1, 5.1) 5.4 (5.3, 5.4)
Total cholesterol (mmol l–1) 3916 6.0 (1.1) 6.2 (1.2) 3889 5.6 (1.0) 5.9 (1.1)
LDL-cholesterol (mmol l–1) 3555 3.5 (0.9) 3.6 (1.0) 3810 3.2 (0.9) 3.5 (0.9)
HDL-cholesterol (mmol l–1) 3903 1.5 (0.3) 1.3 (0.3) 3886 1.8 (0.4) 1.5 (0.3)
Triglycerides (mmol l–1)b 3901 1.9 (1.9, 2.0) 2.7 (2.6, 2.8) 3879 1.3 (1.2, 1.3) 1.8 (1.7, 1.9)
CRP (mg l–1)b 3845 0.8 (0.8, 0.9) 1.7 (1.6, 1.8) 3828 0.8 (0.7, 0.8) 2.9 (2.7, 3.1)
Fibrinogen (g l–1) 3834 2.8 (0.6) 3.0 (0.6) 3830 2.9 (0.6) 3.4 (0.7)
t-PA (ngml–1) 3834 5.5 (2.8) 7.1 (2.7) 3815 4.0 (2.4) 6.0 (2.8)
vWF (IU dl–1) 3845 121.4 (40.3) 131.0 (41.8) 3829 118.0 (39.7) 131.6 (43.3)
D-dimer (ngml–1)b 3824 133.8 (131.1, 136.6) 149.5 (144.6, 154.6) 3808 179.0 (175.5, 182.5) 231.9 (224.5, 239.5)

Abbreviations: BMI, body mass index; CI, confidence interval; CRP, C-reactive protein; HbA1c, glycosylated haemoglobin; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; t-PA, tissue plasminogen activator; vWF, von Willebrand factor. aTotal N varies because of variation in the amount of missing data.
bGeometric means and 95% CIs. cIn all, 55 type 1 diabetics excluded.
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Figure 1. Percent differences in mean levels of offspring risk factors for CVD at age 44–45 years per 1 kgm–2 increase in maternal BMI
(N¼ 7747 (for BP) to 6169 (for LDL-cholesterol)). Model 1: adjusted for maternal age and gender (unless models are gender-stratified). Model 2:
model 1 plus offspring lifestyle factors (fried food and fruit consumption at 33 and 42 years, television viewing at 23 and 44–45 years, physical
activity at 23 and 42 years, smoking status at 23 and 42 years and alcohol consumption at 23 and 44–45 years) and lifetime SEP (father’s and
own occupational class and education level). Model 3: model 2 plus offspring BMI and waist circumference. The association between maternal
BMI and vWF in men is not presented because of evidence of non-linearity (P-value for quadratic term in model 1¼ 0.03, overall test of
association P¼ 0.11). *Percent increase in mean CRP levels of offspring at age 44–45 years per 0.5 kgm–2 increase in maternal BMI.
Corresponding values per 1 kgm–2 increase in maternal BMI are: 3.79% (3.05%, 4.54%), 2.69% (1.95%, 3.42%) and 0.19% (� 0.49%, 0.86%) for
models 1, 2 and 3, respectively. DBP, diastolic BP; SBP, systolic BP.
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Figure 2. Percent differences in mean levels of offspring risk factors for CVD at age 44–45 years per 1 kgm–2 increase in paternal BMI (N¼ 7533
(for BP) to 5979 (for LDL-cholesterol)). Model 1: adjusted for paternal age and gender. Model 2: model 1 plus offspring lifestyle factors (fried
food and fruit consumption at 33 and 42 years, television viewing at 23 and 44–45 years, physical activity at 23 and 42 years, smoking status at
23 and 42 years and alcohol consumption at 23 and 44–45 years) and lifetime SEP (father’s and own occupational class and education level).
Model 3: model 2 plus offspring BMI and waist circumference. *Percent increase in mean CRP levels of offspring at age 44–45 years per
0.5 kgm–2 increase in paternal BMI. Corresponding values per 1 kgm–2 increase in paternal BMI are: 1.97% (1.01%, 2.94%), 1.46% (0.52%,
2.41%) and � 0.84% (� 1.70%, 0.02%) for models 1, 2 and 3, respectively. The association between paternal BMI and D-dimer is not presented
because of evidence of non-linearity (P-value for quadratic term in model 1o0.01, overall test of association Po0.001). DBP, diastolic BP; SBP,
systolic BP.
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among offspring at age 44–45 years (Figure 2). As for maternal
BMI, the strongest association observed was between paternal
BMI and CRP; per 1 kg m–2 increase in paternal BMI, offspring CRP
was higher by 2.0% (95% confidence interval 1.0–2.9, adjusted for
gender and paternal age). Associations were attenuated after
adjustment for offspring lifestyle factors and lifetime SEP, and after
further adjustment for offspring adiposity the majority of
associations were no longer found, although negative associations
were seen with total and LDL-cholesterol, triglycerides and BP.
There was no evidence of association between paternal BMI and
vWF in any of the models. The association between paternal BMI
and D-dimer levels was non-linear, with higher mean levels of
D-dimer among offspring of underweight and overweight fathers
compared with normal weight fathers (Po0.01 for quadratic
term), hence this association is not presented in Figure 2.

In parental age and gender-adjusted models, maternal BMI was
found to modify the association between offspring BMI and total
cholesterol, LDL-cholesterol, triglycerides, HbA1c, systolic BP and
CRP (P-interaction 0.003, 0.01, 0.002, 0.02, 0.02 and 0.04,
respectively). In addition, there were interactions between
paternal and offspring BMI for HbA1c and t-PA (P-interaction
0.01 and 0.04, respectively). All interactions remained after
adjustment for lifestyle factors and lifetime SEP. When explored
further, it was found that for all interactions except HbA1C, the
positive associations of offspring BMI with the specified risk factors
for CVD were weaker among those whose mothers had a higher

BMI than among those whose mothers had a lower BMI. This is
illustrated in Figure 3 for total cholesterol. For LDL-cholesterol and
triglycerides, interactions appeared very similar to those for total
cholesterol, whereas for systolic BP and CRP the patterns were less
strong. In contrast, the positive association between BMI and
HbA1c was stronger for offspring to mothers (or fathers) with
higher compared with lower BMI (Figure 4). All interactions
remained after adjustment for offspring BMI at age 11 years.

DISCUSSION
In a large nationally representative British birth cohort, participants
whose parents had a higher BMI during their childhood generally
had a more adverse CVD risk profile in mid-life than those whose
parents had a lower BMI. Although the parental associations found
were largely maintained after adjustment for offspring lifestyle and
socioeconomic factors the majority were abolished or reversed
after adjustment for offspring adiposity. However, for several of the
risk factors for CVD, we found evidence for effect modification by
intergenerational factors. Most notably the association between
high BMI and adverse lipid profile, and to a lesser extent CRP and
systolic BP, appeared to be weaker among offspring of mothers
with higher BMI. In contrast, the association between BMI and
HbA1c was stronger for offspring with a heavier parent.

Comparison with other studies
Of the few studies to have investigated parental BMI and offspring
levels of risk factors for CVD, all found some evidence of
association.10–12 Furthermore, as in our study, associations with
parental BMI were not fully consistent across all outcomes
examined and, where tested, associations were attenuated after
adjustment for offspring adiposity. In the only previous study to
investigate parental obesity in relation to a range of outcomes
associated with increased risk of CVD in offspring in mid-life,
conducted in the USA, parental obesity was positively associated
with CRP but not BP or diabetes.10 This study is consistent with our
finding that the outcome most strongly associated with parental
BMI before adjustment for offspring adiposity was CRP, suggesting
an influence of obesity on low-grade inflammation. This American
study10 also found that the offspring of two non-obese parents
had higher total cholesterol levels than offspring with one or two
obese parents, which is consistent with our finding of stronger
associations between offspring BMI and lipid levels among those
whose parents had lower BMI.

Our findings of a stronger association between offspring
adiposity and HbA1c among those with heavier parents, is
consistent with evidence that the strength of associations
between obesity and diabetes risk have not reduced in younger
compared with older generations in contrast to the associations
between obesity and the majority of other CVD risk factors.19

Explanation of findings
In mid-life, a more adverse CVD risk factor profile among offspring
was found in association with greater adiposity of parents in basic
models yet these associations attenuated after adjustment for
offspring adiposity. This suggests that our findings are largely
explained by the links between parental and offspring adiposity,
which have been shown to be maintained into mid-life.1,2 It is
possible that some associations could be explained by greater
weight gain among offspring of leaner parents. Further analyses
conducted to explore this possibility (that is, adjustment for
offspring BMI at 11 years) altered our findings very little,
suggesting that maternal BMI—offspring CVD risk factor associa-
tions were not explained by offspring BMI gain. However, given
previous observations in this population suggesting a role for
offspring BMI gain on BP and HbA1c,32,33 we cannot fully discount
this possible explanation for observations reported.
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Figure 3. The association between offspring BMI (centred at
27 kgm–2) and percent difference in total cholesterol at age 44–45
years stratified by tertiles of maternal BMI. (N¼ 2168, 2196 and 2175
for lowest, middle and highest stratum of maternal BMI,
respectively).
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Figure 4. The association between offspring BMI (centred at
27 kgm–2) and percent difference in HbA1c at age 44–45 years
stratified by tertiles of maternal BMI (N¼ 2185, 2206 and 2188 for
lowest, middle and highest stratum of maternal BMI, respectively).
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It has also been proposed that maternal BMI could be
associated with offspring CVD risk in later life as a result of
programmed effects occurring in response to maternal nutrition in
utero.34 If programming as a result of maternal under or
overnutrition during pregnancy was a key explanation of our
findings it would be expected that associations would be
stronger for maternal adiposity assessed around the time of
pregnancy. However, when analyses were rerun using mother’s
pre-pregnancy BMI findings generally resembled or were weaker
than those presented (results not shown).

Our results showing weaker adult BMI and CVD risk factor
associations for offspring of heavier mothers is consistent with
beneficial adaptations occurring in response to exposure to an
obesogenic environment. Such interactions were observed for
several but not all CVD risk factors. Hence, the importance of
adaptations that appear to be dampening the adverse effect of
obesity on some pathways but not others and the mechanisms by
which they could be occurring need to be investigated further,
especially as such results could be due to chance. Interestingly,
findings from tests of interaction between parental and offspring BMI
suggest that the longer the exposure to an obesogenic environment
the more detrimental the effects on glucose metabolism.

Methodological considerations
There are a number of strengths to our study. These include the
availability of a large sample, followed up to an age when CVD is
beginning to manifest, that was selected to be nationally
representative at birth and remains broadly so in mid-life.23 We
were able to examine a wide range of outcomes all of which have
been shown to be strongly associated with CVD risk,35–41 and
adjust for several potential confounding and mediating factors
across life, which were assessed prospectively. Further, in
sensitivity analyses maternal smoking, which has been shown to
be associated with offspring BMI and CVD risk,42 was also included
and findings remained the same (results not shown). Including a
wide range of covariates increased the number of participants
with missing data on relevant measures but by running analyses
on imputed data sets, bias that may have been introduced was
minimized. Moreover, sensitivity analyses based on the maximum
available samples showed similar findings.

Non-fasted blood samples were used to measure risk factors for
CVD. Although total and HDL-cholesterol are not significantly
affected by fasting status, triglyceride levels are lower after
fasting43 and vary by duration of fasting and time of day.44

However, adjusting for time of blood collection and time since
consuming food did not alter our findings. This along with other
evidence including the positive correlation between fasting and
non-fasting triglyceride levels40,45,46 suggests that use of non-
fasting blood measures is likely to be acceptable for the purpose
of our analyses. It has also been shown that there are important
diurnal and seasonal variations in CRP, vWF, t-PA, fibrinogen and
D-dimer levels.47 In sensitivity analyses, adjustments were made to
allow for these variations and findings were unaltered.

Self-reported data on parental heights and weights may have
resulted in some misclassification of parental BMI. Parents with
higher weight might be expected to be more likely to under-
report their weight, potentially leading to bias in our estimates
towards the null. However, a key strength of our analyses was the
prospective ascertainment of these data and the measurements
for offspring. We have not compared findings for maternal and
paternal BMI despite this being a potentially useful tool for
discriminating between effects programmed in utero and other
pathways. Similarly, we did not use a single exposure variable,
which incorporates information on both parents’ adiposity. There
are a number of reasons for these decisions. First, paternal heights
and weights were usually reported by mothers and so there may
be more measurement error in father’s anthropometric data than

mother’s. Second, we were unable to assess levels of non-
paternity and third, combining information for both parents
resulted in some very small categories (for example, both parents
obese), which limited statistical power.

In our previous studies of intergenerational associations, we
noted that parents of the 1958 cohort had lower rates of mortality
than the general population.1,48 However, as mortality differentials
could be explained by lower mortality among parents than
nulliparous people it is likely that parents of the 1958 cohort are
representative of all parents in this generation. Our results do,
however, need to be interpreted in context. Parents of the 1958
cohort had relatively low average BMI and only a small proportion
were obese; with subsequent secular trends of increasing obesity,
cohorts born more recently are more likely to have been exposed
to obesogenic environments from younger ages. Thus, our
findings may not be fully generalizable to younger cohorts.
However, our finding that those who were obese but whose
parents were not had, on average, the most adverse lipid profile is
highly relevant and has important implications given that
generations born more recently are more likely to have higher
levels of adiposity than their parents.

Implications
Our demonstration of associations between parental adiposity and
offspring CVD risk adds to evidence suggesting that interventions to
reduce population levels of obesity and CVD aimed at family units
earlier in life are likely to be beneficial.8,9 Associations appear to
operate primarily through the tracking of obesity from one
generation to the next suggesting that interventions should focus
on weakening the link between parental and offspring adiposity. As
the number of children born to parents with high BMI increases
across the world it is of growing importance to elucidate the complex
interplay between shared genetic and environmental factors, which
underlie explanations of the associations between parental and
offspring adiposity. Such knowledge could then be used to identify
the most effective methods of intervention to weaken these links.
Our study highlights the importance of breaking intergenerational
links, not just to prevent the tracking of obesity from one generation
to the next but also to reduce the impact on other offspring health
outcomes including CVD. This is especially important for offspring
glucose levels, which were higher if intergenerational tracking of
obesity had occurred. There was, however, some suggestion that
beneficial adaptations to an obesogenic environment had occurred
in relation to lipid metabolism.

CONCLUSIONS
Associations between parental BMI and offspring CVD risk factors
in mid-life have been found and appear to be largely explained by
the maintenance into adulthood of positive associations between
parental and offspring adiposity. Some evidence of beneficial
adaptations to an obesogenic environment are suggested by our
findings and these appear to be specific to certain pathways.
These novel findings require further investigation. Interventions to
reduce population levels of overweight and obesity aimed at
family units earlier in life are likely to be beneficial for many
reasons including their impact on future CVD risk.
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