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Pesticides are used indiscriminately all over the world to protect crops from pests and
pathogens. If they are used in excess, they contaminate the soil and water bodies
and negatively affect human health and the environment. However, bioremediation is
the most viable option to deal with these pollutants, but it has certain limitations.
Therefore, harnessing the role of microbial biosurfactants in pesticide remediation
is a promising approach. Biosurfactants are the amphiphilic compounds that can
help to increase the bioavailability of pesticides, and speeds up the bioremediation
process. Biosurfactants lower the surface area and interfacial tension of immiscible
fluids and boost the solubility and sorption of hydrophobic pesticide contaminants.
They have the property of biodegradability, low toxicity, high selectivity, and broad
action spectrum under extreme pH, temperature, and salinity conditions, as well as
a low critical micelle concentration (CMC). All these factors can augment the process
of pesticide remediation. Application of metagenomic and in-silico tools would help
by rapidly characterizing pesticide degrading microorganisms at a taxonomic and
functional level. A comprehensive review of the literature shows that the role of
biosurfactants in the biological remediation of pesticides has received limited attention.
Therefore, this article is intended to provide a detailed overview of the role of various
biosurfactants in improving pesticide remediation as well as different methods used
for the detection of microbial biosurfactants. Additionally, this article covers the role of
advanced metagenomics tools in characterizing the biosurfactant producing pesticide
degrading microbes from different environments.

Keywords: pesticides, bioremediation, biosurfactants, hydrophobic, amphiphilic, metagenomics

INTRODUCTION

Soil pollution and land degradation are global problems originating from anthropological and
natural sources (Malla et al., 2018). Urbanization and industrialization are the major sources
of anthropological pollution while the use of chemical agents over the year for increasing
crop production has led to the spread and accumulation of pollutants in the environment
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(Prihandiani et al., 2021). The most common contaminants in the
soil are heavy metals, polycyclic aromatic hydrocarbons (PAHs),
or pesticides. Pesticides are the chemical compounds used to
kill unwanted pests such as bugs, flies, rodents, nematodes,
fungal pathogens, and unwanted herbs to maintain plant health
and increase agricultural production on limited land. Pesticides
play an essential part in fulfilling the world food demand,
though they are very hazardous, persistent, recalcitrant, and have
extended half-life properties (Wattanaphon et al., 2008; Damalas
and Eleftherohorinos, 2011; Odukkathil and Vasudevan, 2016;
Lamilla et al., 2021). The most common pesticides used in India
and the other countries are organophosphates like chlorpyrifos,
profenofos, and glyphosate, with a few being organochlorine
i.e., mirex, lindane, and chlordane (Lamilla et al., 2021). These
organophosphorus and organochlorine pesticides are not target-
specific and have high biological stability in the soil and water
bodies, polluting the ecosystem and making it pestilent for
humans and other organisms such as pollinators, cattle, microbes,
and aquatic organisms (Gennari et al., 2009; Sequinatto et al.,
2013). Most organophosphate pesticides are classified as class II
carcinogens with mutagenic, teratogenic, and carcinogenic effects
on humans and other organisms (Bhatt et al., 2021a).

Looking at the grave danger of these toxic pollutants, there
is an urgent need to deal with the harmful impacts of these
toxic pesticides. Most physical and chemical pesticide removal
methods have been in use for a long time. These methods
include aeration, oxidation, excavation, incineration, landfilling,
and storage, etc., which is labor-intensive, time-consuming,
inefficient, and are not considered a sustainable method of
remediation because they result in the generation of several
secondary pollutants (Yoshikawa et al., 2017; Bhatt et al., 2021a).
As a result, the implementation of bioremediation appears as
the only answer to the issue mentioned above since it uses the
ability of live indigenous microorganisms to clean the polluted
site (Singh et al., 2011). Researchers worldwide are now trying
to create the most cost-effective and long-term sustainable
method for pesticide bioremediation. Microbial biosurfactant-
based remediation is a natural, cost-effective, and environmental
friendly method of on-site degradation of pesticides and other
xenobiotics in which biosurfactants make pesticides bioavailable
and microbes use them as a source of carbon, nitrogen, and
phosphorous (Abouseoud et al., 2008; Luna et al., 2013; Chaprão
et al., 2015; Odukkathil and Vasudevan, 2016; Bhatt et al., 2021b;
Lamilla et al., 2021).

Biosurfactants are secondary metabolites produced by
microorganisms used in many commercial applications
due to their low toxicity, substantial biodegradability, and
environmentally benign nature (Thavasi et al., 2011; Chaprão
et al., 2015; Javee et al., 2020). Biosurfactants consist of both
hydrophilic and hydrophobic regions that are formed from
amino acids, as well as saturated and unsaturated fatty acids,
respectively (Sharma et al., 2015; Bhatt et al., 2021b), which
enables a reduction in surface tension and reaching out
between two solvate molecules, thus accelerates the solvation
of hydrophobic molecules in aqueous media for emulsion
formation (Banat, 1995; Lamilla et al., 2021). It has been
observed that hydrocarbon-contaminated areas are the best

places to isolate biosurfactant-producing microorganisms to
improve pesticide remediation (Singh et al., 2016; Tan and
Li, 2018; Bhatt et al., 2021a; Lamilla et al., 2021). Figure 1
depicted the entry of pesticides into the food chain and the fate
of pesticides and presented the mechanism of biosurfactant
mediated pesticides degradation. Several published reports are
available wherein biosurfactant producing potential of microbes
have been utilized for bioremediation of pesticides.

Although most of the studies on bioremediation are done
using single microbes (particularly culturable ones). Several
reports suggest the microbial consortia enhances the remediation
process compared to a single isolate (Pacwa-Płociniczak et al.,
2011; Rasheed et al., 2020; Madamwar et al., 2021). While
in several cases, the role of unculturable microbes is often
ignored, and the underlying mechanism of microbes-mediated
pesticides degradation is still unexplored (Singh and Gupta, 2018;
Singh et al., 2019). The use of metagenomics to understand
the underlying mechanisms of biodegradation in in-situ and
to forecast degradation potential has yet to be studied. So,
there is a lack of information about microbes’ functional genes
and genetic potential and their products like biosurfactants
involved in degradation (Datta et al., 2020; Femina Carolin
et al., 2020). Against this background, this article aims to
give a comprehensive overview of the function of microbial
biosurfactants in the remediation of pesticides. We also briefly
addressed how improved metagenomics techniques might assist
clean-up by providing access to uncultivable microbial species.

EMERGING PESTICIDE POLLUTION: A
GLOBAL CONCERN

The tremendous demand to produce food at reasonable prices has
forced farmers/growers to use chemical fertilizers and pesticides
(Sarath Chandran et al., 2019). Organochlorine pesticides such as
DDT (dichlorodiphenyltrichloroethane) and Gammaxene were
used extensively during the second world war, but they proved
to be an ecological disaster for the world and was banned by
the United States in 1972 due to their toxic effects on the
peripheral nervous system and its non-biodegradable nature.
Several developed and developing nations banned the use
of most organochlorine pesticides, including DDT (Mansouri
et al., 2017; Peng et al., 2020). This led to increased demand
for organophosphate pesticides such as malathion, parathion,
monocrotophos, etc., due to their wide action spectrum and
moderate toxicity (Narenderan et al., 2020; Parks et al., 2021).
However, feeding the exponentially growing population on
declining land area forced farmers to use these pesticides more
than the recommended dose i.e., 1 U.S liquid pints per acre
of land or 0.473 liters per acre of land area (Tchounwou
et al., 2015; As per U.S. Environmental Protection Agency
| US EPA, 2021). Insecticides, herbicides, rodenticides, and
fungicides are among the most regularly used pesticides (Malla
et al., 2018) and were used excessively during the green
revolution to increase productivity and reduce crop loss (Sarath
Chandran et al., 2019). Pesticide use is rising and negatively
influencing the environment, particularly the soil quality and
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FIGURE 1 | (A) Shows the pesticide application in the field and its fate in the environment leading to contamination of air, water, and soil along with screening and
isolation of microbes residing at the contaminated site for biosurfactant production (B) presented the mechanism of biosurfactant mediated pesticides degradation.

health (Rawat et al., 2020), as only 1% of sprayed pesticides kill
target species; the rest pollute the ecosystem by interacting with
soil and generating more complex metabolites. For example,
chlorpyrifos produces 3,5,6-trichloro-2-pyridinon (TCP), an
antimicrobial metabolite that kills beneficial soil microorganisms
and due to its eco-toxicity, the United nation banned this
pesticide in the year 2020. However, chlorpyrifos is extensively
used in developing countries like India, Bangladesh, and Pakistan
(John and Shaike, 2015; Shabbir et al., 2018; Kalyani et al.,
2021). Pesticides strongly adsorb the soil’s organic matter, which
restricts its desorption. Most of the pesticides are non-polar
compounds having hydrophobic properties and are insoluble in
water (Bhatt et al., 2021b; Kalyani et al., 2021). Pesticides are
highly recalcitrant on exposure to humans; they lead to several
disorders related to the central nervous system as most of these
chemicals inhibit acetylcholinesterase receptor activity, causing
nerve damage. Apart from it, inhalation of pesticides leads

to several respiratory disorders and these chemicals also have
mutagenic and carcinogenic potential causing disorders related
to fertility, excretory system, skin, and eye defects (Figure 1;
Foong et al., 2020; Giri et al., 2020). According to reports on
poisoning and the impact of synthetic chemicals on human
health, numerous cases of intoxication of farmers, rural workers,
and their families have occurred during pesticide applications.
Unintentional poisonings kill an estimated 3,55,000 people
annually and are related to excessive exposure and improper use
of hazardous substances (Nayak et al., 2020).

Pesticide Defilement Status: Indian
Context
Agriculture and allied sectors provide a living for most of India’s
population (57%) (Hobbs et al., 2009). India stands second in
pesticide consumption (0.29 kg/ha) among all Asian continents
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(Sharma et al., 2020; FAOSTAT, 2021). Crop production in India
fell short of the country’s demand in the post-independent period
(Sebby, 2010). The implementation of the green revolution
revolutionized India’s conventional comestible farming into
capital intensive, modernized, surplus-producing agriculture,
resulting in a 10-fold increase in overall food grains production
between 1960 and 2000 (Davies, 2003; Kannuri and Jadhav, 2018).
High yielding varieties (HYVs) were deployed as a part of the
green revolution and these HYVs relied on enormous amounts of
nitrogenous fertilizers to provide the desired crop outputs to feed
the ever-expanding India’s population (Kannuri and Jadhav, 2018;
Sharma et al., 2019; Mishra et al., 2020). Narrow heritable traits of
high yielding varieties of rice and wheat, as well as monocropping
and tropical Indian climate, resulted in significant susceptibility
to pests and diseases, but persistent pesticide application resulted
in pest resistance. This lead to an over-reliance on pesticides
to reduce crop loss, leading to a dramatic increase in pesticide
use in India i.e., from 154 metric tons in 1954 to 88,000 metric
tons in 2000, a 570 per cent higher in less than a half-century
(Kumar et al., 2016; Bonvoisin et al., 2020). However, strict

action was taken by the Indian government lead to a decline
in pesticide consumption by the year 2015–16 to about 58,634
metric tons from 88,000 metric tons in 2000, but this figure is
steadily increasing and has reached about 62,193 metric tons in
the year 2020–21 (Figure 2) which is a real cause of concern
(Gunnell and Eddleston, 2003; Statistical Database | Directorate
of Plant Protection, Quarantine, and Storage | GOI, 2021).

An investigation carried out by a group of researchers on
the Thamirabarani river system of southern India reported the
bioaccumulation of organochlorine pesticides such as aldrin,
dieldrin, endosulfan, endrin, and heptachlor in surface water,
sediments and fishes and other aquatic flora and fauna.
Organochlorines were detected with the help of GC-MS following
QuEChERS protocol extraction and were in a concentration
ranging from 0.001 to 34.44 µg/l−1 in surface waters to as
high as 40.46–65.14 µg kg−1 in different organs of fishes
(Arisekar et al., 2018). Not only vegetables or crop plants
are detected with pesticide residues. Even milk samples have
been detected with traces of pesticides such as DDT, HCH,
endosulfan, and pyrethroids in the Kolkata and Nadia region

FIGURE 2 | Pesticide use in India (2020–21), [Unit: Metric tons (M.T)]. Pie-chart representing the average usage of pesticide by different Indian states in the year
2020–21. Highest usage among the states for which the pie-chart is made has been noted for Maharashtra with average usage of 13,243 M.T. while lowest for
Andaman and Nicobar island with 1 M.T. Data were taken from statistical database of government of India, directorate of plant protection, quarantine and storage
(Statistical Database | Directorate of Plant Protection, Quarantine and Storage | GOI, 2021).
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of West Bengal, India (Kumar et al., 2016; Anand et al., 2021;
Ravula and Yenugu, 2021).

The Punjab region of India is highly affected by pesticide
poisoning (Figure 2). In a study, out of 111 samples of human
blood, 35% of the samples were detected with traces of pesticides
like DDT, HCH, profenofos, monocrotophos etc. some samples
were detected with a high level of 34.90 ng ml−1 (Sharma et al.,
2020). Looking at the pesticide contamination status in India,
there is an urgent need to develop techniques to deal with these
toxic pollutants. Microbial biosurfactant based bioremediation
seems to be the most sustainable way to eliminate these toxic
compounds from soil and water bodies and to regain soil health.

BIOSURFACTANTS: THE NEXT AGE
COMPOUNDS IN PESTICIDE
REMEDIATION AND THEIR TYPES

Biosurfactants which are surface-active molecules produced
naturally by microbial metabolism have gained popularity
in recent times. In recent years, there has been a steady
increase in the number of research papers focused on the
isolation, characterization, and optimization of biosurfactants
producing microbes (Das and Kumar, 2018; Olasanmi and
Thring, 2018; Khanna and Pattnaik, 2019; Rawat et al., 2020).
Biosurfactants are the type of “glycoconjugates (combination of
glycoprotein and glycolipids),” and the study of its structure,
function, and interaction with the living system is called
“glycobiotechnology” (Messner et al., 2013; Enaime et al.,
2019). Microbes produce some extracellular biosurfactants such
as rhamnolipids, sophorolipids and exopeptidases, and glycol-
lipopeptides. A wide variety of anionic and non-ionic synthetic
surfactants (Triton X-100, tween-80, tergitol NP10, brij35,
sodium dodecyl sulfate etc.) are in use for a long time to accelerate
microbial activity whether in the area of xenobiotic remediation
or biofuel production (da Rocha et al., 2010).

Furthermore, they are extensively used by pesticide
industries as an emulsifiable concentrate in the pesticide
formulation. However, synthetic surfactants are highly toxic,
non-biodegradable, have low selectivity, high CMC value,
and show antimicrobial activity (Bustamante et al., 2012;
Yañez-Ocampo et al., 2017). Therefore, another reason for
the popularity of biosurfactants is their advantages over their
chemically manufactured counterparts, such as having a simpler
structure than the synthetic equivalents, being environmentally
friendly, and lesser toxicity (Rawat et al., 2020). On the other
hand, biosurfactants can survive up to 10% salinity, but synthetic
surfactants cannot. Other than their essential role in pesticide
remediation (Tan and Li, 2018), they are also used in various
commercial products, including medications, cosmetics, cleaning
agents, and the food sector (Santos et al., 2016).

Most microbes produced biosurfactants on their cell
surface (amphiphilic molecules) as secondary metabolites
at their stationary phase of growth (Soberón-Chávez et al.,
2005; Moya Ramírez et al., 2015). These biosurfactants
include glycoproteins, glycolipids, glycopeptides, glycosides,
peptidoglycan, and lipopolysaccharides, which are the diverse

forms of glycoconjugate-based biosurfactants (Varjani and
Upasani, 2016; Bhatt et al., 2021b). One of the distinguishing
features of biosurfactants is the hydrophilic-lipophilic balance
(HLB), which determines the proportion of hydrophilic
and hydrophobic elements in surface-active substances
(Pacwa-Płociniczak et al., 2011). Biosurfactant activities are
dependent on the concentration of surface-active molecules
till the critical micelle concentration (CMC) is attained.
Biosurfactant compounds form micelles, bilayers and vesicles
at a concentration above CMC (Rasheed et al., 2020) and these
micelles can reduce surface and interfacial tension and increase
the solubility and bioavailability of hydrophobic pesticide
molecules (Bhatt et al., 2021b). Surfactant efficiency is frequently
measured using the CMC, as efficient biosurfactants have a
low CMC, and require less biosurfactant to reduce surface
tension (Pacwa-Płociniczak et al., 2011; Bhatt et al., 2021a,b).
Micro-organisms may synthesize biosurfactants from various
carbon sources, but Glycine max, Zea mays, Brassica napus, and
Olea europaea can be employed to increase output (Bhatt et al.,
2021b). Many researchers have tried producing biosurfactants
from unconventional and agricultural-based raw materials;
however, this approach has not yet been commercialized. These
lipopeptides may be made from low-cost raw materials such as
Saccharum officinarum, Zea mays, molasses, agricultural wastes,
and others that are easily accessible in large numbers to be
cost-effective (Hippolyte et al., 2018; Domínguez Rivera et al.,
2019; Rawat et al., 2020). The structure and composition of the
biosurfactant molecule and the role of biosurfactants in pesticide
remediation is shown in Figures 3, 4.

Types of Biosurfactants
The majority of biosurfactant is either neutral or anionic while
cationic biosurfactants are possessing amine groups. Long-
chain fatty acids make up the hydrophilic moiety, which
can be any amino acid, glycogen, cyclic peptide, alcohol, or
phosphate carboxyl acid, whereas monosaccharides, proteins,
polysaccharides, or peptides make up a hydrophobic portion
of the biosurfactant (Saharan et al., 2011; Bhati et al., 2019).
Biosurfactants typically have a molar mass of 500–1,500 Dalton
(Akbari et al., 2018). These are generally classified as per
their chemical structure and microbiological derivation and are
as follows:

The bulk of biosurfactants are glycolipids, carbohydrates with
an ester group that connects them to long-chained aliphatic
acids or hydroxyl aliphatic acids. Rhamnolipids, trehalolipids,
and sophorolipids are well-known glycolipids (Rawat et al., 2020).
Apart from glycolipids, lipopeptides, phospholipids, fatty acids,
polymeric, and particulate biosurfactants are the other common
types (Mnif and Ghribi, 2016; Kapoor et al., 2019). Figure 3 shows
the structure and composition of the biosurfactant molecule.

Rhamnolipid consists of one or two rhamnose molecules
linked to one or two hydroxyl decanoic acid molecules (de
Oliveira Schmidt et al., 2021; Figure 3). Pseudomonas aeruginosa
is said to produce the most rhamnolipids of any known
microbial species, followed by Burkholderia species (Chong and
Li, 2017; Ramirez et al., 2020). Recently, Marinobacter species
and Pseudomonas mendocina have been isolated from the marine
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FIGURE 3 | Structure of biosurfactant.

FIGURE 4 | In-vitro isolation of biosurfactant and its application at pesticide-contaminated sites. Further steps indicate the adsorption of biosurfactant with the
soil-pesticide complex leading to desorption of pesticides from the soil particles. Microbial surfactants precipitate from the pesticide-biosurfactant complex, making
pesticides bioavailable for the microbes for their further degradation.

environment and are an excellent producer of rhamnolipid
(Tripathi et al., 2019; Twigg et al., 2019). Trehalolipids are
extensively produced by Rhodococcus, Mycobacterium, Nocardia,
and Corynebacterium species (Williams and Trindade, 2017;

Rawat et al., 2020). Arthrobacter species and Rhodococcus
erythropolis are reported to produce trehalolipids that are non-
toxic, versatile, and can reduce surface and interfacial tension
in the culture broth. Trehalose lipids have been found to have
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enhanced surfactant activity in various situations and have been
studied extensively (Williams and Trindade, 2017; Rawat et al.,
2020). Sophorolipids are produced by non-pathogenic yeast
species and are produced in large quantities (400 g L−1). These
are made up of the glycosidic connection between sophorose,
a dimer form of glycogen joined by β-1,2 linkage and a long-
chain hydroxy fatty acid (Figure 3). Many applications prefer
the lactone form of sophorolipids, which comprises at least
6–9 different hydrophobic sophorolipids. Candida bombicola,
Pseudomonas aeruginosa M408, and Starmerella bombicola
are well-known sophorolipid producers (Rawat et al., 2020).
Lipopeptides are polypeptide chains with varying lengths of
β-hydroxy fatty acid and non-polar tails connected to them.
Bacillus and Pseudomonas species are the most investigated
lipopeptide producers, while Bacillus subtilis produces surfactin
(Janek et al., 2021), the most potent lipopeptide known (Kumar
et al., 2021a). Lipopeptides are the type of natural product
produced by non-ribosomal peptide synthases (NRPS) (De Giani
et al., 2021), which are huge multifunctional enzyme clusters
(Williams and Trindade, 2017; Lamilla et al., 2021). Surfactin is
considered one of the most potent biosurfactants (Meena et al.,
2021) composed of cyclic lipopeptides with seven amino acid
ringed structures linked to a fatty acid chain through lactone
linkage (Figure 3; Onaizi, 2018; Sarwar et al., 2018). Table 1
summarizes the type of biosurfactant as well as the microbes
that produce them and their roles in pesticide remediation.
Fatty acids, Phospholipids, and Neutral lipids may be formed
by a diverse group of microbial species that grow on various
substrates, including n-alkanes (Varjani et al., 2021). Thiobacillus
thioxidans is a well-known producer of phospholipids and
has been reported to reduce sulfur elements from the soil.
Corynebacterium lepus produces corynomycolic acid, which helps
lower surface and interfacial tension at varied pH (Kosaric et al.,
2018). Polymeric biosurfactants such as liposan, emulsan, alasan,
lipomanan are the most investigated polymeric biosurfactants.
Acinetobacter calcoaceticus RAG-1 produces an emulsan type of
polymeric surfactant, which helps in emulsifying hydrocarbons
in water (Uzoigwe et al., 2015). Liposan is synthesized by Candida
lipolytica (Panjiar et al., 2017).

The biosurfactants listed above are representative of the main
types of biosurfactants. Aside from that, many other kinds of
biosurfactants and their uses will be described in detail in the next
section concerning their application in pesticide remediation.

Methods for Detection of Microbial
Biosurfactants
The discovery of new surfactant-producing microbial strains
necessitates advanced microbial screening methods that should
be both fast and reliable. In practice, employing a single screening
approach for choosing biosurfactant-generating microorganisms
has proved to be challenging to get reliable and consistent
findings since biomolecules have a wide range of structural
and functional characteristics (Adetunji and Olaniran, 2021).
Therefore, several screening methods must be employed in
parallel to pick a large number of biosurfactant synthesizers from
a population of isolated bacteria to get the best results. These

techniques are based on the surface tension or emulsification
activity of the surfactant, and some of these methods are
described in detail in the following section.

Measurement of Surface Tension /Interfacial
Measurement
This is the most efficient and reliable method for screening
microorganisms for biosurfactant production (Adetunji and
Olaniran, 2021). Surface tension measures free energy per unit
area at an interface or surface (Walter et al., 2010). The
stalagometric method, Wilhelmy plate method, du-Nuong-ring
method, pendant drop shape method, and axisymmetric drop
shape analysis is used to measure the surface tension of culture
supernatants directly using a tensiometer (Dusane et al., 2010;
Satpute et al., 2010). Distilled water (DW) has a surface tension
of 72 mN/m. When biosurfactants are added to the DW, its
surface tension is reduced. The ability of biosurfactants to reduce
the surface tension of DW to less than 40 mN/m determines its
effectiveness. The surface tension of water was reduced to around
30 mN/m by adding a rhamnolipid biosurfactant released by
Pseudomonas aeruginosa (Dusane et al., 2010; Geetha et al., 2018;
Adetunji and Olaniran, 2021).

Drop Collapse Method
It is one of the fastest and most straightforward techniques to
conduct since it does not need specialized equipment and can
be completed with a small sample (Jain et al., 1991). In this
technique, surfactants are used to destabilize liquid droplets.
On an oil-coated solid surface, drops of culture supernatant or
cell suspension are dropped onto the surface. As long as the
liquid does not include any surfactants, the polar water molecules
are repelled from the hydrophobic surface, and the droplets do
not become unstable (Walter et al., 2010). The spread or even
collapse of the liquid drop occurs due to the reduction in force or
interfacial tension between the liquid drop and the hydrophobic
surface when the liquid includes surfactants. The surfactant
concentration affects the stability of drops, which is linked to
the surface and interfacial tension (Adetunji and Olaniran, 2021).
However, despite its speed and simple procedure, this method
has low sensitivity because a substantial concentration of surface-
active chemicals is required to cause the aqueous drops to collapse
on the oil or glass surface (Youssef et al., 2004; Batista et al., 2006;
Yu and Huang, 2011).

CTAB Agar Plate Method
Extracellular glycolipids or other anionic surfactants can be
detected using a CTAB (cetyltrimethylammonium bromide) agar
plate method, a semi-quantitative screening method (Hazra et al.,
2011). Siegmund and Wagner were the ones who developed
this CTAB agar method for the detection of biosurfactant
synthesizing microbes (Siegmund and Wagner, 1991). The
microorganisms of interest are grown on light blue mineral
salt, agar plate containing the cationic surfactant CTAB and the
basic dye methylene blue. When the microbes release anionic
surfactants on the plate, they combine with CTAB and methylene
blue to generate a dark blue, insoluble ion pair (Rajesh et al.,
2017). As a result, dark blue halos surround surfactant-producing
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TABLE 1 | Microbial biosurfactants and their role in pesticides degradation.

Microorganism Biosurfactant
Produced

Substrate for
Production

Pesticide Degraded Concentration of
Pesticide

Degradation (%) Identification
technique

References

Pseudomonas,
Rhodococcus

Rhamnolipid Vegetable oil waste,
Zea mays waste

Cypermethrin,
Chlorpyrifos

2%w/v 8–63%, 39–56% Emulsification, FTIR,
TLC, MALDI-TOF

Nitschke and Pastore,
2006; Aguila-Torres
et al., 2020; Lamilla
et al., 2021

Pseudomonas sp. Rhamnolipid Animal waste Chlorpyrifos 0.01 g l−1 98% Gas
chromatography-mass
spectrometry (GC-MS/
HPLC)

Singh et al., 2009; Lima
et al., 2011

Pseudomonas
aeruginosa CH7

Rhamnolipid Cassava flour wheat β- cypermethrin 25–900 µg L−1 90% Mass spectrometry Zhang et al., 2011; de
Andrade et al., 2016

Arthrobacter
globiformis

Rhamnolipid Agro-industrial waste DDT 0.04 mg/L 65% − Bai et al., 2017;
García-Reyes et al.,
2018

Pseudomonas
aeruginosa

Rhamnolipid Canola oil,
Agro-industrial waste

Endosulfan, Quinalphos 320 mg/L, 10,000
mg/L

90%, 94% FTIR/TLC
Spectrophotometer

Abbasi et al., 2012;
Nair et al., 2015;
Pérez-Armendáriz
et al., 2019; Briceño
et al., 2020; Bhatt
et al., 2021b

Pseudomonas sp.
chlD

Rhamnolipid Sunflower oil waste Chlorpyrifos 10 mg/L 99% FTIR spectra analysis Kaskatepe and Yildiz,
2016; Singh et al.,
2016; Shabbir et al.,
2018

Lysinibacillus
sphaericus IITR51

Rhamnolipid Soybean waste oil Endosulfan and HCH 50 and 100 mg/L >solubility − Bhatt et al., 2019; Gaur
et al., 2019; Lamilla
et al., 2021

Pseudomonas
aeruginosa and
Sphingomonas sp.

Rhamnolipid Agro waste Hexachlorocyclohexane
(HCH)

40 mg/L 95% FTIR, Emulsification,
GC-MS

Manickam et al., 2012;
Das and Kumar, 2018;
Niu et al., 2019

Rhodococcus sp.
IITR03

Trehalolipid Soybean oil waste Dichlorodiphenyltri
chloroethane (DDT)

282 µM 60% LC-MS (Liquid
chromatography-MS)
and chemical analysis

Bages-Estopa et al.,
2018; Soares da Silva
et al., 2019; Bhatt
et al., 2021a

Burkholderia
cenocepacia BSP3

Glycolipid Frying oil waste Parathion 500 mg/L Enhanced solubility FTIR/chemical analysis Wattanaphon et al.,
2008; Schultz and
Rosado, 2020

Pseudomonas sp.
B0406

Glycolipid Soybean waste oil Methyl parathion − >solubility LC-MS, FTIR Cortés-Camargo et al.,
2016; Patowary et al.,
2017; García-Reyes
et al., 2018

(Continued)
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TABLE 1 | (Continued)

Microorganism Biosurfactant
Produced

Substrate for
Production

Pesticide Degraded Concentration of
Pesticide

Degradation (%) Identification
technique

References

Serratia
marcescens
UCP-1549

Lipoprotein Cassava wastewater Organic pollutants − − Mass spectrometry Casullo De Araújo
et al., 2010; de
Andrade et al., 2016

Paenibacillus sp.
D9

Lipopeptide Soybean oil waste HCH − 49–65% TLC/FTIR Thin-layer
chromatography/
Fourier transform
infrared spectroscopy,
Affinity chromatography

Li et al., 2016; Jimoh
and Lin, 2019b;
Marcelino et al., 2019

Bacillus subtilis
MTCC 1427

Lipopeptide Soybean oil waste Endosulfan 400 µg/ml 100% TLC/IR Bhatt et al., 2021b

Consortia of
Bordetella petrii IGV
34 and Bordetella
petrii II GV 36

Unidentified
biosurfactant

− Endosulfan 3,400 mg/L 100% − Odukkathil and
Vasudevan, 2016

Pseudomonas
aeruginosa B1,
P. fluorescens B5,
P. stutzeri B11 and
P. putida B15

Exopolysaccharides Saw dust 2,4-D 0.2% v/v 70% HPLC Onbasli and Aslim,
2009

Bacillus algicola,
Rhodococcus soli,
Isoptericola
chiayiensis

Rhamnolipids Potato process effluent,
corn steep liquor

Crude oil − 65% FTIR, LC-MS, GC-MS Sachdev and
Cameotra, 2013; Lee
et al., 2018

Actinomycetes,
Bacillus,
Pseudomonas,
Rhodococcus

Lipopeptide,
sophorolipid, glycolipid

Date molasses Organic pollutants − 63–84.6% Lyophilization, Pedant
drop method

Al-Bahry et al., 2013;
Jimoh and Lin, 2019a
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microbes (Adetunji and Olaniran, 2021). This method is simple,
selective for anionic surfactants, and can be performed on agar
plates or liquid broth with various substrates and temperatures.
Still and all, CTAB is toxic and prevents the growth of several
bacterial colonies (Walter et al., 2010).

Oil Spreading Assay
In the oil spreading method, crude oil (10 ml) is added to
distilled water (40 ml) in a Petri plate, resulting in a thin layer
of oil (Alyousif et al., 2021). Following that, culture supernatants
(10 ml) are introduced to the oil-water interface (Soltanighias
et al., 2019; Dayamrita et al., 2020). The presence of surfactant
in the culture supernatant is demonstrated by the displacement
of oil and the emergence of a clear zone. Surfactant activity
is proportional to the diameter of the clear zone on the oil
surface (Sarwar et al., 2018; Adetunji and Olaniran, 2021). The
oil spreading method is a quick, accurate and dependable way to
identify the synthesis of biosurfactants by a variety of microbes
(Walter et al., 2010; Hazra et al., 2011; Hasanizadeh et al., 2017).

Penetration Assay
This assay is based on the color shift that occurs when two
insoluble phases come into contact. For this experiment, the wells
of 96 well micro-plate are filled with 150 µl of a hydrophobic
paste made up of oil and silica gel. 10 µl of oil is poured over
the paste. The culture’s supernatant is then dyed by adding 10 µl
of a red staining solution to 90 µl of supernatant. The colored
supernatant is applied to the paste’s surface (Maczek et al., 2007).
The hydrophilic liquid will break through the oil film barrier into
the paste if a biosurfactant is present. Within 15 min, the silica
will shift from more apparent red to cloudy white as it enters
the hydrophilic phase. The described effect is based on the fact
that when biosurfactants are present, silica gel transitions from
hydrophobic to the hydrophilic phase faster. The supernatant
without biosurfactants will become hazy but remains red to
crimson red (Walter et al., 2010; Singh and Sedhuraman, 2015;
Touseef and Ahmad, 2018).

Apart from it, there exist several other methods for detection
of biosurfactants producing microbes such as microplate assay
(Walter et al., 2010), emulsification capacity assay (Cooper and
Goldenberg, 1987), BATH (bacterial adhesion to hydrocarbon)
assay (Rosenberg et al., 1980; Nayarisseri et al., 2019; Dayamrita
et al., 2020), salt aggregation assay (Ismail et al., 2018), and blood
hemolysis assay (Adetunji and Olaniran, 2021).

APPLICATION OF BIOSURFACTANTS
AND THEIR MECHANISM OF ACTION IN
PESTICIDE REMEDIATION

Pesticide contamination is a significant problem. The use
of biosurfactants for pesticide biodegradation has recently
gained popularity. According to ZION market research and
global market insights, the worldwide biosurfactant industry is
projected to reach $2.4 billion by 2025 (Lai et al., 2009; Sun
et al., 2015). The biosurfactant market is anticipated to grow
as the pesticide business grows and consumers become more

health-conscious (Rawat et al., 2020). The most crucial role
that biosurfactants play is the dissociation of toxic pesticide
molecules from the soil or water molecules, thus making it
bioavailable for the microbes to speed up the remediation process
(Figure 5; Inakollu et al., 2004; Whang et al., 2009; Rasheed
et al., 2020). Desorption from soil particles leads to a reduction
in surface tension, thus enhancing the mechanism of degradation
(Singh et al., 2007; Twigg et al., 2019). The probable interaction
used for pesticides bioremediation by biosurfactants includes
electrostatic interactions, counter-ion binding, ion exchange, and
precipitation-dissolution (Banat et al., 2010; Patowary et al., 2017;
Xu et al., 2018).

Biosurfactants enhance the surface area of hydrophobic
pesticides, increasing their solubility in soil and water by inducing
emulsification of pesticide molecules (Bhatt et al., 2021b). The
thumb rule of bioremediation is that the more the amount
of pesticide that is water-soluble, the greater the amount of
pesticide bioavailable to microorganisms. Surface-active apolar
flocculating molecules such as biosurfactants, which produce
emulsions at and above their critical micellar concentration,
may enhance the separation of hydrophobic pesticides from
the aqueous phase by creating emulsions at and above their
critical micellar concentration (CMC). When pesticides are
released into the environment, they become more bioavailable
to possible degraders, which may help alleviate the worry
about pesticide contamination of soil and water bodies (Zhou
et al., 2011; Moya Ramírez et al., 2015). As a result, the soil
becomes free of pollutants, productive, and suitable for crop
cultivation (Fenibo et al., 2019; Jimoh and Lin, 2019a). The
overall mechanism of soil, microbes and pesticide interaction is
shown in Figure 5.

Rhamnolipids are the most widely used biosurfactants
in industrial and environmental clean-up applications.
The potential of rhamnolipid in bioremediation has been
extensively studied in Pseudomonas and Burkholderia species
(Varjani and Upasani, 2016). Rhamnolipids obtained from
Pseudomonas aeruginosa enhance biodegradation of herbicide
trifluralin and insecticide chlorpyrifos in the contaminated
soil-water bodies (Singh et al., 2016; Tan and Li, 2018). It
has been reported that the presence of glycolipid type of
biosurfactant obtained from Pseudomonas species enhances
solubilization of methyl parathion and endosulfan (García-
Reyes et al., 2018). With around 100 gL−1, Pseudomonas
aeruginosa is regarded as the top rhamnolipid producer and
it produces two forms of rhamnolipids in liquid suspension
i.e., mono and di-rhamnolipid (Varjani and Upasani, 2016)
by rhamnosyl transfer enzymatic reaction with the help of
rhamnosyltransferase enzyme (Soberón-Chávez et al., 2005;
Varjani and Upasani, 2017). The hydrophobic and hydrophilic
components of the rhamnolipid are formed due to a series
of enzymatic processes that take place in microbes. After
synthesis, the two halves of the lipid are linked together
to form mono- and di-rhamnolipids, respectively (Bhatt
et al., 2019). A rhamnolipid was formed from an axenic
culture of Pseudomonas putida strain DOT-T1E, which aided
in the bioremediation of chlorinated phenols (Maia et al.,
2019). The trapping of the chlorophenol in the biosurfactant
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FIGURE 5 | Interaction of biosurfactant with pesticides and the microbes.

micelles, as well as the hydrophobic connection between
these two types of molecules, are at the heart of this action.
Likewise, actinobacteria-formed biosurfactant accelerates the
bioremediation of xenobiotics (Sponza and Gok, 2011). In
the bioremediation of carbendazim with Rhodococcus species
D-1, rhamnolipids were found efficient. With the highest
bioremediation efficiency, the rhamnolipid altered carbendazim
degradation in a concentration-dependent manner. It aided
carbendazim transesterification and favorable cell surface
modification, allowing it to enter Rhodococcus species D-1
cells, which were degraded (Bai et al., 2017). Glucolipid type
of biosurfactant produced by Burkholderia cenocepacia BSP3
complements the solubilization of pesticide (Bustamante et al.,
2012). Biosurfactants that spontaneously break down the

pesticides are good for the environment and are considered
environmentally benign (Jezierska et al., 2019).

Rhizospheric bacteria’s have been reported to play a key role
in the degradation of pesticides, accelerating the breakdown as
seen during biosurfactant biosynthesis (Bordoloi and Konwar,
2009; Singh, 2015; Dos Santos and Maranho, 2018). The amount
of biosurfactant is also vital for microbial development. High
quantities of these biosurfactants inhibit microbial growth and
breakdown. These findings may not apply to all microbial
strains. A study shows that biosurfactant addition increased
30% endosulfan degradation with the help of Bacillus subtilis
MTCC 1427 in the soil and aqueous solution (Zhou et al.,
2011). Endosulfan isomers were found to have more significant
mobilization and accessibility in the presence of biosurfactant,
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which could be due to pesticide solubilization or improved
attraction for micro-organism cells. Due to the formation
of rhamnolipids by P. aeruginosa, the soil adulterated with
endosulfan showed accelerated degradation after 7 days of the
experiment (Madamwar et al., 2021). The published article
indicated that the Pseudomonas strain BO406 produced a
raw extract of a biosurfactant (glycolipid) that aided in
the solubilization of endosulfan (García-Reyes et al., 2018).
The strain of Lysinibacillus sphaericus IITR51 was used by
researchers to develop a thermostable rhamnolipid biosurfactant
capable of increasing the solubility of the highly hydrophobic
pesticides such as endosulfan and HCH (hexachlorocyclohexane)
(Manickam et al., 2012; Gaur et al., 2019). A strain of
Pseudomonas SB can produce a biosurfactant that enhances
DDT breakdown. Rhamnolipid has been reported to increase
DDT degradation by 64% from 52% without rhamnolipid
(Bhatt et al., 2021b). Studies on mixed consortia of Pleurotus
ostreatus (white-rot fungus), Bacillus subtilis, and P. aeruginosa
have produced biosurfactants that improve DDT biodegradation
(Purnomo et al., 2017; Bhatt et al., 2021b). The hydrophobic
herbicide 2,4,5-trichlorophenoxy acetic acid was degraded with
the help of a biosurfactant produced from Pseudomonas
cepacian (Abdul Salam and Das, 2013; Pang et al., 2020;
Rawat et al., 2020). Similarly, introducing rhamnolipid to
Rhodococcus species-D1 resulted in increased carbendazim
biodegradation. The addition of rhamnolipid to the soil resulted
in around 24–35% biodegradation of trifluralin (Bai et al.,
2017). Under atrazine biodegradation, a marine strain of
Bacillus velezensis MHNK1 produced surfactin lipopeptide.
The atrazine was degraded entirely after using a combination
of B. velezensis MHNK1 (2%) and surfactin for 4 days
(Jakinala et al., 2019).

A very interesting example of the application of biosurfactant
in pesticide remediation is from the Patagonia region,
which is famous for salmon farming, and to protect
salmons from parasitic attack, cypermethrin (A pyrethroid
category of pesticide) is used extensively in marine water.
Scientists isolated microbial strains Rhodococcus species
MS13, Rhodococcus species MS16, Pseudomonas species
MS15a, and Pseudomonas species MS19 that could degrade
cypermethrin by the production of biosurfactant (Aguila-
Torres et al., 2020). A novel strain of Serratia species Tan
611 has been isolated from Algeria’s oil-contaminated waste-
water. Its further sequencing and annotation revealed that
it consists of genes that code for catechol 1,2-dioxygenase
and naphthalene 1,2-dioxygenase, which are primarily
responsible for aromatic derived hydrocarbon catabolism
(Clements et al., 2019). An alkane degrading gene Lad-A
that codes for monooxygenase have also been identified in
the same strain. The bacterially produced biosurfactant has
an emulsification index of about 43.47–65.22% and forms
biofilms in the presence of oil spills and petroleum. Further
studies revealed that Serratia species strain Tan611 proves
to be one of the best candidates in microbial remediation of
aromatic pesticides (Semai et al., 2021). Biosurfactants boost
the rate of pesticide degradation when a microbial consortium
is used for bioremediation due to the synergistic influence of

microbial communities (Purnomo et al., 2017; Bhatt et al., 2019;
Femina Carolin et al., 2020).

METAGENOMICS: UNRAVELING THE
STRUCTURE AND COMPOSITION OF
BIOSURFACTANT PRODUCING
MICROBES AND THEIR ROLE IN
PESTICIDE REMEDIATION

Metagenomics analysis based on the sequence and function
of the unculturable microbial community will help to uncover
information in different ecological niches (Dubey et al., 2019;
Kumar et al., 2019; Malla et al., 2019; Kumar and Dubey, 2020).
The finding of novel microorganisms or their gene clusters
expressing biosurfactants is an example of its application (Datta
et al., 2020). Metagenomics provides access to the uncultured
microbial population along with their taxonomic and functional
composition based on targeted or shotgun sequencing of 16S
rRNA regions (Datta et al., 2020). The function-based approach
detects and discovers genes capable of forming wholly new
bioactive compounds that have never been identified before
(Shikha et al., 2021). From pesticide-contaminated materials
(soil, water), metagenomics helped create DNA libraries tested
for biosurfactant-producing clones. There are many techniques
for screening metagenomic libraries for biosurfactants, including
function-based approaches like SIGEX (substrate-induced gene
expression) and HTP (high-throughput) screening (Datta et al.,
2020; Femina Carolin et al., 2020). The investigation of
microbial metagenomes can also help researchers to gain a better
knowledge of microbes that can produce biosurfactants in a
variety of environments, particularly pesticides contaminated
soils (Shikha et al., 2021).

The use of function-based metagenomic strategies can be a
potent tool in helping to exploit the unique microbial diversity
of pesticide-contaminated environments, thereby assisting in
the ongoing search for novel biosurfactants with potentially
important bioremediation applications (Yadav et al., 2019;
Taş et al., 2021). Most research on biosurfactant producing
microbes has been limited to soil isolates, primarily from
the Pseudomonas and Bacillus species. However, with the
help of metagenomics, it has recently been discovered that
a diverse group of soil and marine microbes can produce
biosurfactants (Dhanjal and Sharma, 2018; Guerra et al., 2018;
Garg et al., 2021) and some of these biosurfactants have shown
potential in bioremediation of pesticides (Kennedy et al., 2011;
Ghosh and Das, 2018). These microbes include Azotobacter
chroococcum, Cobelia species, Myroides species, Nocardiopsis
alba MSA10, Alcanivorax species, Micrococcus luteus, Yarrowia
lipolytica. There is a variety of screening approaches for
detecting biosurfactant-producing microbes (as discussed in
section “Methods for Detection of Microbial Biosurfactants”),
some of which could be used for high-throughput (HTP)
metagenomic library screening (Domingos et al., 2015; Dhanjal
and Sharma, 2018; Guerra et al., 2018). Thus, in screening,
it is likely that novel gene clusters involved in biosurfactant
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FIGURE 6 | Metagenomics workflow of biosurfactant producing microbes.

production from soil and aquatic microbial assemblages will
be discovered, speeding up the development of bioremediation
technologies involving biosurfactants in pesticide-contaminated
environments (Hemmat-Jou et al., 2018; Taş et al., 2021). The
whole workflow of metagenomics investigation of biosurfactant
producing microbes is presented in Figure 6.

Metagenomics assists in the investigation of unique
biosurfactant-producing genes from the bacteria present in
diverse environments and distinct pathways and approaches for
improved biosurfactant production. These investigations helped
in finding two novel biosurfactants; palmitoyl putrescine and
N-acyl amino acids (Jackson et al., 2015; Williams and Trindade,
2017; Hu et al., 2019; Singh et al., 2020b). Given the amount
and diversity of biosurfactant synthesizing microbes found in
cultured isolates, it is believed that employing metagenomics
to investigate the even larger uncultured component of the
microbial community will lead to major novel biosurfactant
discoveries (Datta et al., 2020; Singh et al., 2020b). A group
of researchers identified a new gene involved in biosurfactant
synthesis and helps in hydrocarbon degradation. They named
it MBSP1 (Carla da Silva Araújo et al., 2020) (metagenomic
biosurfactant protein 1) (Araújo et al., 2020). Thies et al. (2016)
conducted a metagenomic study by collecting samples from
the drain of the slaughterhouse that was rich in microbes
belonging to flavobacteriaceae and, through NMR-spectroscopy
identified novel biosurfactant as N-acyltyrosines along with
N-myristoyl-tyrosine as the dominant species (Thies et al., 2016).
Metagenomics delivers an adequate metagenomic database that
will give a substantial stock of genes to develop novel microbial
strains for targeted application in biosurfactant production and
bioremediation (Malla et al., 2018; Datta et al., 2020; Douglas
et al., 2020; Kumar et al., 2021b). Metagenomics coupled with
bioinformatics removes all the obstacles faced in the process

of genomic studies such as phylogenetic analysis, taxonomic
profiling, molecular phylogeny, functional characterization
of metagenomes, and enzymes and system biology studies,
including genetic engineering through CRISPR or TALEN
(Singh et al., 2020b). Quite a few bioinformatic pipelines have
been developed (Table 2), such as QIIME (quantitative insights
into microbial ecology), PICRUSt (phylogenetic investigation of
communities by reconstruction of unobserved states), MG-RAST
(metagenomic rapid annotations using subsystems technology),
Mothur, CLARK, MetaPhlAn2 (metagenomic phylogenetic
analysis), MICCA, Metaphyler, MOCAT2, TIPP2, mOTUsv2,
Bracken, etc., for sequence classification and taxonomic profiling
of metagenomic data (Liu et al., 2010; Albanese et al., 2015;
Truong et al., 2015; Douglas et al., 2020; Singh et al., 2020b).
Metagenomics coupled with in-silico bioinformatic tools or
repositories such as KEGG (Kyoto encyclopedia of genes and
genomes), COG (clusters of orthologous groups), EAWAG-
BBD pathway prediction system, enviPath, BIOWIN, etc.,
helps in predictive degradation of pesticides along with the
metabolite/biosurfactant identification involved in degradation
mechanism (Awasthi et al., 2020; Rodríguez et al., 2020;
Shah et al., 2021; Singh et al., 2021). A repository named
BioSurfDB (biosurfactant degradation database) consists of
about 1,077 microbes, 3,763 genes, 3,430 proteins, and 47
detailed bioremediation pathways using biosurfactants (Araújo
et al., 2020; Meenatchi et al., 2020; Kumari and Kumar, 2021).

To date, only a few research employing genetic modification
methods for biosurfactant production have been published,
and one such research is genetic modification of wild Bacillus
strain for surfactin production (Tsuge et al., 2001). Bacillus
species are engineered to increase their production through
operon promoter transfer (SrfA) or upregulation of the exporter
(YerP). Due to intricate metabolic regulation and its long
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TABLE 2 | Bioinformatic pipelines for metagenomic data analysis.

Bioinformatic
pipeline

Description Link References

Squeeze MATA Squeeze Meta (A fully automated pipeline) provides multi-metagenome
assistance, which allows for the co-assembly of correlated metagenomes as
well as the retrieval of specific genomes via binning techniques.

https://github.com/
jtamames/SqueezeMeta

Tamames and
Puente-Sánchez, 2019

ANASTASIA ANASTASIA (automated nucleotide amino-acid sequences translational
platform for systemic interpretation and analysis) offers a diverse set of
bioinformatics toolkits, both publicly available and proprietary, that can be
integrated into a variety of algorithmic analytic workflows to perform a variety of
data processing applications on (meta)genomic sequence data—sets.

https://galaxyproject.org/
use/anastasia/

Koutsandreas et al., 2019

MetaWRAP MetaWRAP is a shotgun metagenomic data analysis pipeline that starts with
raw sequencing reads and ends with metagenomic bins and their analysis.

https://github.com/bxlab/
metaWRAP

Uritskiy et al., 2018

WebMGA It is a customized web server that includes over 20 regularly used functions
such as ORF calling, sequence grouping, raw read quality checking, removal of
sequencing artifacts and contaminations, taxonomic analysis, functional
annotation, and more.

http://weizhong-lab.ucsd.
edu/webMGA/ (accessed
December 02, 2021)

Wu et al., 2011; Piumini
et al., 2021

MetaSUB Large-Scale Metagenomic Analysis is Made Possible by the MetaSUB
Microbiome Core Analysis Pipeline.

https://github.com/
MetaSUB/CAP2

Danko and Mason, 2020

MetAMOS It’s a publicly available, modular metagenomic assembly and analysis pipeline
that can help reduce assembly errors, which are prevalent when putting
together metagenomic samples, and enhance taxonomic assignment accuracy
while lowering computational costs.

https://github.com/
treangen/MetAMOS

Treangen et al., 2013;
Nathani et al., 2020

SmashCommunity It is a stand-alone metagenomic annotation and analysis pipeline that works
with Sanger and 454 sequencing data. It includes tools for calculating the
quantitative phylogenetic and functional compositions of metagenomes,
comparing the compositions of several metagenomes, and creating
understandable visual representations of such studies.

http://www.bork.embl.de/
software/smash/

Arumugam et al., 2010;
Sharma et al., 2021

PALEOMIX PALEOMIX is a modular and user-friendly pipeline that automates the in-silico
studies behind whole-genome resequencing for modern and ancient genomes.

http://geogenetics.ku.dk/
publications/paleomix

Schubert et al., 2014

ARGs-OAP An integrated structured ARG database is used in an online analytic workflow
for detecting antibiotic resistance genes from metagenomic data.

http://smile.hku.hk/SARGs Yang et al., 2016

HOME-BIO HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities) is a
comprehensive pipeline for metagenomics data analysis that consists of three
distinct analytical modules that are meant to analyze big NGS datasets
comprehensively.

https://github.com/carlferr/
HOME-BIO

Ferravante et al., 2021

QIIME QIIME is a microbial community analysis software program that has been used
to examine and understand nucleic acid data sets from fungal, viral, bacterial,
and archaeal populations.

https://qiime2.org/ López-García et al., 2018

MICCA MICCA is a software pipeline that rapidly integrates quality filtering, clustering of
Operational Taxonomic Units (OTUs), taxonomic classification assignment, and
phylogenetic tree inference for amplicon metagenomic datasets. It produces
reliable findings while maintaining a reasonable balance of modularity and
usability.

https://micca.readthedocs.
io/en/latest/

Albanese et al., 2015

RIEMS RIEMS, assigns every individual read sequence inside a dataset taxonomically
by cascading different sequence analyses with decreasing stringency of the
assignments utilizing multiple software tools. Following the completion of the
analyses, the results are reported in a taxonomically ordered outcome
procedure.

https://github.com/EBI-
COMMUNITY/fli-RIEMS

Scheuch et al., 2015

MG-RAST MG-RAST is a data platform for processing, analyzing, sharing, and distributing
metagenomic datasets that accept open submissions.

https://www.mg-rast.org/ Keegan et al., 2016

PICRUSt PICRUSt predicts the functional potential of a bacterial community based on
marker gene sequencing profiles.

https://github.com/picrust/
picrust2

Douglas et al., 2020

MetaPhlAn MetaPhlAn (Metagenomic Phylogenetic Analysis) is a program that uses
metagenomic shotgun sequencing data to profile the makeup of microbial
communities. It depends on 17,000 reference genomes to identify unique
clade-specific marker genes.

https://huttenhower.sph.
harvard.edu/metaphlan2/

Truong et al., 2015

FMAP FMAP (Functional Mapping and Analysis Pipeline) is an open-sourced,
stand-alone functional analysis pipeline for analyzing whole metagenomic and
meta transcriptomic sequencing data.

https://github.com/
jiwoongbio/FMAP

Kim et al., 2016

TIPP2 It is a marker gene-based abundance profiling method that controls
classification precision and recall by combining phylogenetic placement with
statistical methodologies. Over the original TIPP technique, it includes an
updated set of reference packages and various algorithmic advancements.

https://github.com/
smirarab/sepp/blob/tipp2/
README.TIPP.md

Shah et al., 2021
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genomic sequence, this operon’s production is difficult (Hu
et al., 2019; Singh et al., 2020a). However, genetic engineering
methods only resulted in a few or single-gene alterations,
and commercial manufacturing of biosurfactants has yet to be
achieved. As a result, experimentation-based optimizations to
synthesize biosurfactants are still ongoing, and a new regulatory
aspects need to be investigated, and the latest CRISPR based
methods should be used to transfer biosurfactant producing
genes to indigenous microbes residing in contaminated sites
(Mulligan, 2009; Sekhon et al., 2011; Soares da Silva et al., 2019;
Kumar and Dubey, 2020).

CONCLUSION AND PROSPECTS

Pesticides are complex compounds that are hydrophobic.
When used in excess, pesticides pollute the air, soil, and water
bodies because they interact with soil particles and leach deep
into the soil and water bodies, making them inaccessible
for microbial activity to thrive. Microbial biosurfactants
serve an essential role in making these pesticides accessible
for microbial enzymatic breakdown. Biosurfactants dissolve
pesticides linked to soil particles and create emulsions at
and above their CMC, thus increasing the bioavailability
of the pesticide molecule in the soil. Different microbes
secrete different categories of biosurfactants, each of which
contributes more or less to enhancing the remediation process.
More emphasis should be placed on improving process
parameters to maximize the production of biosurfactants
and their application in pesticide remediation. Tapping the
potential of biosurfactant producing microbes by using
the latest omics platform and gene-editing tools may
offer a sustainable way to remediate these pesticides from
the environment.

Although, research is going on for the production of
biosurfactants from microbes. But still, many areas remain
unexplored and need further investigation, such as:

• Most of the microbial biosurfactants have anti-microbial
activities and are not suitable for remediation studies as this
may harm the remediation process instead of enhancing it.

• Pesticide manufacturers must switch to biosurfactants
instead of synthetic surfactants used as emulsifiers as they
are highly toxic and persistent in the environment.

• Metagenomics coupled with DNA-stable isotope probing
can be used in future studies to identify novel
microbes with biosurfactant producing potential as it
overcomes the impediment faced in functional screening
using metagenomics.

• Metagenomics studies and other omics and In-silico
studies need to enhance access to biosurfactants producing
microbes from highly contaminated habitats or high-stress
conditions such as high pH, temperature, and salinity, etc.

• More genetic and bioengineering studies need to be
conducted to identify genes involved in biosurfactant
production and the implementation of advanced CRISPR
(clustered regularly interspaced short palindromic repeats)
technology to enhance biosurfactants’ production.

• Identification of biosurfactant genes and their
incorporation into microbial species commonly found in
contaminated sites utilizing the CRISPR tool which will
enhance the process of pesticide remediation.
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