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Abstract: Longitudinal metagenomics has been widely studied in the recent decade to provide
valuable insight for understanding microbial dynamics. The correlation within each subject can be
observed across repeated measurements. However, previous methods that assume independent
correlation may suffer from incorrect inferences. In addition, methods that do account for intra-
sample correlation may not be applicable for count data. We proposed a distribution-free approach,
namely CorrZIDF, which extends the current method to model correlated zero-inflated metagenomic
count data, offering a powerful and accurate solution for detecting significance features. This method
can handle different working correlation structures without specifying each margin distribution
of the count data. Through simulation studies, we have shown the robustness of CorrZIDF when
selecting a working correlation structure for repeated measures studies to enhance the efficiency of
estimation. We also compared four methods using two real datasets, and the new proposed method
identified more unique features that were reported previously on the relevant research.

Keywords: metagenomic; microbial; longitudinal; zero-inflated count model; correlation structure;
distribution-free

1. Introduction

With the advancement of high-throughput sequencing technologies, numerous time-
course/longitudinal studies on microbiomes have been conducted [1–5]. By recording
the temporal variation of microbial communities, this type of research can provide us
insights into the stability of microbial communities and relationships among microbes.
Detecting differentially abundant microbial features plays a critical role in population-based
longitudinal studies, serving as potential biomarkers in biomedical research.

In metagenomic studies, the abundance of microbial taxa is characterized as counts.
Due to the under-sampling of microbial samples, there may exist excess zeros for less
abundant species. Early analysis methods fail to consider the unique characteristics of
metagenomics data, which contain a large number of zeros due to the physical absence or
under-sampling of the microbes [6,7]. Moreover, observations across different sampling
points are correlated within each subject/patient. The independent correlation assumption
may suffer from incorrect inferences.

Poisson-based log-linear models are widely used for modeling count data. The main
property of those models is that the mean equals its variance. However, overdispersion
exists universally, especially for metagenomic count data, in which the variance of the
count is much larger than its mean. Thus, Poisson-based models yield a biased estimation
for the parameters involved. The negative binomial (NB) method is more appropriate

Genes 2022, 13, 1183. https://doi.org/10.3390/genes13071183 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13071183
https://doi.org/10.3390/genes13071183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-8273-0776
https://doi.org/10.3390/genes13071183
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13071183?type=check_update&version=1


Genes 2022, 13, 1183 2 of 16

for modeling count data, since it allows an overdispersion estimation [8,9]. However,
neither the Poisson nor the NB model can handle excess zeroes in the data, which cause the
extra variability. The zero-inflated Poisson (ZIP) model and/or the zero-inflated negative
binomial (ZINB) model are quite popular for modeling such zero-inflated count data, and
assumes the data are from a mixture of a regular count distribution and a degenerate
distribution at zero. The resulting proportion of zeros is the mixing probability of the
two-component mixture distribution. However, the ZIP could still yield biased estimates
when the non-zero counts in the data are overdispersed. Compared with the ZIP, the ZINB
accounts for the overdispersion in the counts and can provide a more robust inference.
However, the ZINB also yields biased estimates when overdispersion does not follow the
negative binomial [10], since it is still based on a parametric model.

In the presence of overdispersion and excess zeros in the data, the generalized lin-
ear mixed-effect model (GLMM) can be used to describe random effects to account for
correlated responses from repeated measurements over time. However, this approach
lacks robustness when the data depart from the assumed distribution due to its parametric
assumptions about random effect and response for inference. As a popular semi-parametric
alternative, estimation equations only rely on the assumption of conditional mean response.
For longitudinal studies, generalized estimating equations (GEE) are commonly used to
address correlation among repeated response. However, either the ZIP or the ZINB is a
mixture of two distributions, and simply modeling the mean response cannot identify the
model parameters. Hall and Zhang [11] developed an approach for the ZIP and binomial
data by integrating the maximum likelihood with GEE to deal with correlated longitudinal
responses. However, this method still makes parametric assumptions for the response
marginal distribution; thus, when the data deviates from the assumed marginal distribu-
tion, the performance of this method is affected. Dobbie and Welsh [12] developed a GEE
approach for zero-inflated count data by modeling the mixture of zeros and truncated
Poisson but it does not distinguish the zero mixture.

In order to overcome such difficulties, Chen and Li [13] proposed a two-part mixed-
effect model (Zero-Inflated β Regression, ZIBR) for longitudinal microbiome compositional
data using a logistic regression component to model presence/absence of a microbe in
the samples. They then employed a β regression component with a random effect to
model non-zero microbial abundance to account for the correlations among the repeated
measurements on the same subject. However, this method is proposed for compositional
data and assumes a β distribution for the non-zero data.

The fast zero-inflated negative binomial mixed modeling (FZINBMM) approach was
propose by Zhang and Yi [14] to analyze and interpret the over-dispersed and zero-inflated
longitudinal metagenomic count data. The FZINBMM approach is based on zero-inflated
negative binomial mixed models (ZINBMMs) and employs a fast and stable EM-iterative
weighted least-squares algorithm to fit the ZINBMMs. This model-fitting algorithm uses
standard procedure of fitting linear mixed models, and can deal with many types of fixed
and random effects and within-subject correlation structures.

A distribution-free functional response model (FRM) was proposed by Chen et al. [15]
to model longitudinal zero-inflated count responses (noted as ZIDF in this paper) as a
linear function of non-zero count responses and an identity function of the zero-count
response. They extended the GEE model inference to general functions of FRM responses
and focused on a working independence model.

The working correlation is often selected as independent (assuming no correlation
across different observations/sampling points) or exchangeable (assuming all pairs of
observations on the same subject have a common correlation) for convenience. Even
so, the GEE estimation is consistent as the estimating equations are unbiased and the
estimators of the regression parameter remain consistent for incorrect working structures.
However, the exact form selected for a working correlation structure affects the efficiency.
The efficiency of estimation will be increased when the correct correlation form is specified,
particularly when the correlation within subjects is high [16–19]. However, misspecification
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of the working structure may result in a loss of efficiency in estimation of the regression
parameter [20]. Moreover, the GEE that uses sandwich standard errors may suffer a higher
type I error rate for small longitudinal designs with count outcomes [21].

Incorporating the working correlation structure into estimation can increase the rel-
ative efficiency of the estimation. In this paper, we extend the ZIDF to a longitudinal
setting by introducing the working correlation structure estimation. The proposed method,
shortened as CorrZIDF, is flexible such that it can handle different types of correlated
structure without specifying the marginal distribution. In Section 2, we introduce the FRM
for zero-inflated count responses and extend the model to account for correlation between
time points. The application of CorrZIDF is demonstrated by simulation studies and real
data analysis in Section 3. Finally, conclusions are drawn and discussed in Section 4.

2. Materials and Methods
2.1. Overview of Longitudinal Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial
(ZINB) Models

ZIP and ZINB models allow for overdispersion assuming two different types of
subjects in the data: (1) those containing zero counts with a probability of 1 (i.e., True
zero), and (2) those containing zero counts predicted by the standard Poisson/NB (i.e.,
structural zero). Observed zeros could be from either of these two types/groups; and
if the zero is from the True zero group, it indicates that the observation is free from the
probability of having a positive outcome [22]. Therefore, the overall model is a mixture of
the probabilities from the two groups, which allows for both the overdispersion and excess
zeros that cannot be predicted by the standard Poisson/NB model.

Let Yij denote the longitudinal count response for subject i = 1, . . . , N at time j where
j = 1, . . . , M. Under a longitudinal ZIP model, the distribution of Yij is:

Y ∼
{

0
Poisson

(
µij
) with probability ρij

with probability 1− ρij,

This is a degenerate distribution centered at 0 and a Poisson probability distribution
function with mean µij. Then the probability distribution function can be written as

P
(
Yij = 0

∣∣ xij
)
= ρij +

(
1− ρij

)
e−µij

P
(
Yij = yij

∣∣ xij
)
=
(
1− ρij

)µ
yij
ij e−µij

yij!
, where yij = 1, 2, . . .

where the Poisson probability at 0 is modified by ρij +
(
1− ρij

)
e−µij to account for excess

zeros, and xij is a covariate.
In order to address overdispersed count response well within a group, the Poisson

component can be replaced with the Negative Binomial distribution with parameters
(ρij, µij, τ) to form a ZINB model, where τ accounts for the dispersion (for simplicity,
assume a constant dispersion). Then under a ZINB model assumption the distribution
of Yij is

Y ∼
{

0
NegativeBinomial

(
µij, τ

) with probability ρij
with probability 1− ρij

Then the probability distribution function can be written as

P
(
Yij = 0

∣∣ xij
)
= ρij +

(
1− ρij

)(
1 + τµij

)(−1/τ)

P
(
Yij = yij

∣∣ xij
)
=
(
1− ρij

) Γ
(

yij +
1
τ

)
Γ
(
yij + 1

)
Γ
(

1
τ

) (
τµij

)yij(
1 + τµij

)(yij+
1
τ )

, where yij = 1, 2, . . .
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2.2. Functional Response Models (FRM) for Zero-Inflated Count Responses

Generally, for a cross-sectional study with N subjects at a specific point in time, we
can write any zero inflated count model as:

yi|xi ∼ Zero− inflated Distribution (ρi, µi)

where ρi, the proportion of zeros, can be estimated through a logit link in a regression
model, logit(ρi) = uT

i βu; and µi, the mean response, can be estimated through a log link in
a regression model log (µi) = vT

i βv, where ui and vi are two subsets of covariates xi, and
β = (βu, βv)

T. This equation can be extended to any zero-inflated count model, e.g., ZIP
and ZINB.

Under a cross-sectional setting, the conditional variance of the count response under
ZINB for the degenerate distribution centered at 0 is Var(yi|xi) = µi

(
1 + µi

τ

)
, which is

larger than the conditional mean, E(yi|xi) = µi. For the Moment-based model, the inference
is valid regardless of whether yi given xi follows Poisson, NB, or any other distribution as
long as log (µi) = xT

i β is a correct model for the conditional mean [23,24]. Unfortunately,
modeling the mean parameter alone in ZIP or ZINB is not able to estimate βu and βv, since
the mean alone is not sufficient to identify those parameters.

Tang et al. [25] proposed a nonparametric FRM approach to model the count responses
through two functions, f1i = I(yi = 0) and f2i = yi (where yi > 0), to describe the model
parameters. This method has been proved to be robust for a broader class of dispersion for
cross-sectional data, such as overdispersion under ZIP, ZINB, or normal random effects.
Under this approach, the expected value of yi can be decomposed as:

E (yi) = E( f1i, f2i)
T = (h1i, h2i)

T,

where h1i = logit−1(uT
i βu

)
+

exp(− exp(vT
i βv))

1+exp(uT
i βu)

, h2i =
exp(vT

i βv)
1+exp(uT

i βu)
.

Such distribution-free regression models are defined as functional response models (FRM).
Under the longitudinal setting with M observations/sampling points, we may use a

parametric modeling approach to model yij as a function of xij, for instance, generalized
linear mixed-effect models (GLMM), which can account for correlation from repeated
sampling. However, the parametric models suffer from interpretational and computational
issues when the observed data depart from the assumed distribution. Generalized esti-
mating equations (GEE) is a widely-used distribution-free alternative with inference based
on the GEE specified the conditional mean of yij given xij. For traditional longitudinal
data (i.e., without zero-inflation issues), GEE provides a robust estimation for addressing
overdispersed count responses. However, for zero-inflated longitudinal models that as-
sume a two-part mixture (i.e., zero and non-zero parts), GEE cannot work well as it does
not provide sufficient information for all parameters in a mixture model setting, since only
modeling the mean response provides insufficient information to estimate the parameters
in the two-part model.

Chen et al. [15] proposed a zero-inflated distribution-free approach (we term it ZIDF)
to extend the FRM model to the longitudinal setting by considering longitudinal responses
across M sampling/time points. Let yij, xij, uij and vij denote the respective variables at
time j (1 ≤ j ≤ M), the FRM can be written as:

fij = ( f1ij, f2ij)
T, hij = (h1ij, h2ij)

T, f1ij = I
(
yij = 0

)
, f2ij = yij,

h1ij = ρij +
(
1− ρij

)
exp

(
−µij

)
= logit−1

(
uT

ijβu

)
+

exp
(
− exp

(
vT

ijβv

))
1 + exp

(
uT

ijβu

) ,
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h2ij =
(
1− ρij

)
µij =

exp
(

vT
ijβv

)
1 + exp

(
uT

ijβu

) ,

Var
(

f1ij
)
= h1ij

(
1− h1ij

)
,

Var
(

f2ij
)
= µij

(
1 + ρijµij

)(
1− µij

)
, where 1 ≤ i ≤ N, 1 ≤ j ≤ M.

Note that the mathematical notations in bold here represent corresponding vectors.
The inference for this model will be discussed in the next section.

2.3. FRM Model Inference

Following Chen et al. [15], let β =
(

βT
u, βT

v
)T and fi =

(
fT

i1, fT
i2, . . . , fT

iM

)T
,

hi =
(

hT
i1, hT

i2, . . . , hT
iM

)T
, and define the following function as Di =

∂
∂β hi, Si = fi − hi. β

can be estimated by solving the following GEE set:

UN(β) =
N

∑
i=1

UNi(β) =
N

∑
i=1

DiV−1
i Si = 0.

Vi, a matrix function of xij, reflects the correlation between the fij over time, where

Vi = A
1
2
i R(α)A

1
2
i , Ai = diagj

(
Aij
)
, Aij = Var

(
fij
∣∣xij
)
.

R(α) is the working correlation matrix parameterized by α among the components of fi.
By substituting an estimate α̂ in place of α, it can be solved for β. If α̂ is

√
n-consistent, the

GEE estimate β̂ obtained by solving above is consistent and asymptotically normal with√
n(β̂− β)→ dN

(
0, Σβ

)
, Σβ = B−1E

(
DiV−1

i SiST
i V−1

i DT
i

)
B−T, where B = E

(
DiV−1

i DT
i

)
→ d means that the distribution is converged [23]. Σβ is consistently estimated by substi-
tuting moment estimates with the following respective parameters:

Σ̂β = B̂−1

(
1
N

N

∑
i=1

D̂iV̂−1
i ŜiŜT

i V̂−1
i D̂T

i

)
B̂−T, where B̂ =

1
N

N

∑
i=1

D̂iV̂−1
i D̂T

i

The simplest choice for R(α) is the working independence model R(α) = I2M.
However, the GEE estimation may not be consistent when the data has time-varying
covariates that follow some working correlation structures. Moreover, such a simple
working independence model may incur loss of efficiency in parameter estimation.

The First-order linear autoregressive (AR (1)) is a common correlation structure for
longitudinal data, where the correlation between two adjacent time points is a constant. For
a longitudinal design that consists of N subjects, for each subject (i = 1, 2, . . . , N), there
are M observations (assume the number of observations for each subject remains the same)
and Yij denotes the jth response. The moment correlation between two observations can be
noted as:

Corr
(

Yij, Yi,j+h

)
= αh, h = 0, 1, 2, . . . , M− j

The correlation matrix is written as:
1 α · · · αM−1

α 1 · · ·
...

...
...

. . . α

αM−1 . . . α 1
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where α̂ = 1
(K−2) ∑N

i=1 ∑j≤M−1 eijei,j+1, where K = ∑N
i=1(M− 2), and Pearson residuals

eij can be estimated as
(
Yij − E(Yij

∣∣Xij
)
)/
√

Var
(
Yij
∣∣Xij

)
(here we only include the inter-

cept and treatment effect for covariate X).
Consider the AR (1) correlation structure for the zero-inflated data as following. In this

paper, for each subject, we propose a new method (CorrZIDF) to estimate the correlation α
using the modified bivariate Pearson residuals as:

R(α) =


I2 αJ2 · · · αM−1J2

αJ2 I2 · · ·
...

...
...

. . . αJ2
αM−1J2 . . . αJ2 I2


I2 =

(
1 0
0 1

)
, J2 =

(
1 1
1 1

)
, 0 < α < 1

eT
ijeij =

(
fij − hij(β)

)T(fij − hij(β)
)

Var
(
fij
) ,

where eij =
(
e1ij, e2ij

)T, then α̂ can be estimated as:

α̂ =
1

(K− 2)2

N

∑
i=1

∑
j≤M−1

(
e1ije1i,j+1 + e2ije2i,j+1

)
, where K = N(M− 2).

CorrZIDF is also implemented with exchangeable correlation structure estimation,
which assumes all pairs of observations on the same subject share a common correlation.
For the zero-inflated data, the correlation structure can be written as:

R(α) =


I2 αJ2 · · · αJ2

αJ2 I2 · · ·
...

...
...

. . . αJ2
αJ2 . . . αJ2 I2


Then we propose the following estimation as

α̂ =
1

(K− 2)2

N

∑
i=1

∑
j 6=l

(
e1ije1il + e2ije2il

)
, where K = NM(M− 2).

Here we focus on testing the effect from the non-zero part. The significance for the
non-zero parameter βv for each feature is assessed using the Wald test and the p-values are
adjusted with the Benjamini–Hochberg (BH) procedure [26] to control the false discovery
rate (FDR).

2.4. Simulation Setting

A series of simulated metagenomic studies were conducted to evaluate the perfor-
mance of CorrZIDF, and to compare it to ZIDF, ZIBR, and FZINBMM by using the Copula
method. Copula is a joint cumulative distribution function of a multiple dimensional
vector [27]. Given the fact that, by its probability integral transformation, any continuous
random variable can be transformed to be uniformly distributed over the interval (0, 1),
copulas can be used to provide a multivariate dependence structure separately from the
marginal distribution [27,28]. Copula package in R is used to name the marginal distribu-
tion of each vector and set the correlation among the vectors. We used elliptical copulas in
this package due to its easy implementation. The copula has a dispersion matrix and after
standardization it becomes correlation matrix that determines the dependence structure.
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Commonly used dependence structures in this package include autoregressive of order 1
(AR (1)) and exchangeable.

The data were simulated under a zero-inflated Poisson distribution, where the zero
percentage was modeled to be negatively correlated to the means. That is, the zero-
percentage decreases as the mean count value increases.

Two groups/conditions (treatment vs. control) of data were simulated. For the
treatment group, we simulated a linear increasing pattern of microbial abundance for
differential abundant features (DAFs); for the control group, the features were assumed
to be static or stable over time. The rest of the features are assumed to have the same
patterns along time for both conditions. Two levels of correlation (ρ = 0.6 and ρ = 0.9) were
examined to evaluate the model performance under both correlation structures (i.e., AR (1)
and exchangeable). In addition, the counts within each time point were also generated to
mimic an exponential growth pattern for microbes.

For each combination of parameter settings (i.e., groups of microbes with a certain
correlation structure and a certain correlation level, under a certain microbial growth
pattern, and at a certain sample size), we simulated 20 datasets, each consisting of 1000
features/species over 10 sampling/time points; 200 features were assumed to have differ-
ential abundance, noted as differentially abundant features, and the remaining 800 features
were simulated to be stable over time, noted as non-differentially abundant features. Two
levels of sample size were also compared. The details of the simulation settings are shown
in Table 1. The data were simulated using the Copula method.

Table 1. Summary of parameter settings for the simulation studies. Two correlation structures, AR (1)
and exchangeable were generated.

Setting AR (1) Exchangeable

25 subjects per condition Moderately
Correlated

ρ = 0.6

Highly
Correlated

ρ = 0.9

Moderately
Correlated

ρ = 0.6

Highly
Correlated

ρ = 0.950 subjects per condition

3. Results
3.1. Simulation Results

The comparison of the CorrZIDF to the existing methods, ZIDF, ZIBR and FZINBMM,
was conducted on the simulated count data. The performance metrics include false positive
rate (FPR) or type I error, and true positive rate (TPR) or power. Figures 1–3 show the
results that each marginal follows the AR (1) correlation structure across different sampling
points. The results show that the CorrZIDF greatly outperforms the other methods under
all scenarios in terms of different comparisons.

The power plot for the cutoff of 0.05 is shown in Figure 1. The type I error plot on
adjusted p-value is shown in Figure 2. The ZIDF performs with higher power but with
a substantially inflated type I error rate. The ZIBR controls the type I error well but has
little power to detect changing features, which implies that the method is too conservative.
The FZINBMM also performs with higher power, but the type I error rate is the worst
among the four methods. Compared to the existing methods, the CorrZIDF presents both
a well-controlled type I error and a consistently higher power across different simulation
settings. When the correlation is higher, the CorrZIDF, ZIDF and FZINBMM show better
performance in terms of lowering the type I error, as the changing pattern is more consistent
due to the sampling points being more correlated. However, as the sample size increases,
ZIDF and FZINBMM will detect more false signals, resulting in an inflated type I error. By
contrast, ZIBR shows a lower type I error as the sample size increases; however, its power
remains quite low due to its conservative nature.
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Figure 3. Bar plots of the numbers of detected true and false positives under various settings with
1000 features and 20 replicated simulations. Each bar represents the total number of features that
are detected as statistically significant post BH adjustment, and the short error bars represent the
standard deviation from 20 replications. Note: the true number of DAFs in the simulation is 200.
Assume AR (1) correlation structure across different sampling points.

In Figure 3, it is clear that the CorrZIDF, ZIDF and FZINBMM have similar numbers of
true positive features, and the CorrZIDF is the one with the lowest number of false positive
features among these three methods. Even though the ZIBR has the lowest number of false
positive features overall, it has the worst performance detecting true positive features.

The results when each margin follows the exchangeable correlation structure across
different samples are shown in the Supplemental Figures S1–S3. Similarly, the CorrZIDF
greatly outperforms the other methods under all scenarios in terms of different comparisons.
In all settings in Figure S1, the CorrZIDF and ZIDF have similar performance in the power
and their performances are the best among the four methods. The FZINBMM performs
slightly worse than the above two methods. The ZIBR remains the lowest power due to its
conservative nature. The type I error plots in Figure S2 show that the ZIDF has the highest
type I error among the four methods. When the correlation is higher, the CorrZIDF, ZIDF
and FZINBMM show better performance. The ZIBR in n = 25 is the only one that performs a
little bit worse when the correlation increases. The FZINBMM is the method that improves
the performance greatly. As the sample size increases, the ZIDF and FZINBMM will detect
more false signals, resulting in an inflated type I error. In Figure S3, not surprisingly, the
ZIBR can only detect a small number of true positive features. The CorrZIDF, ZIDF and
FZINBMM can capture a similar number of true positives, while the CorrZIDF can remain
a small number of false positive features consistently across all settings.

An additional simulation study with a smaller correlation level (ρ = 0.3) and smaller
sample sizes (five and ten subjects per condition) in AR (1) correlation structure are ex-
amined as well, due to the fact of many real datasets are usually with small numbers of
subjects. The results are shown in Supplemental Figures S4–S6. For the power in Figure S4,
in all settings, the CorrZIDF and ZIDF have a similar performance in the power and their
performances are the best among the four methods. The FZINBMM has less power when
the correlation level or number of subject decreases. The ZIBR remains the lowest power in
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all settings due to its conservative nature. For the type I error in Figure S5, it is controlled
very well by the ZIBR, while it is inflated consistently across all settings in the ZIDF. The
FZINBMM sometimes inflates type I error, and the CorrZIDF controls the type I error in
almost all settings. In Figure S6, the ZIBR only can catch a few true positives, and the FZ-
INBMM misses true positives for some settings in smaller sample size. The CorrZIDF and
ZIDF perform similarly in terms of detecting true positives and they can capture almost all
true positives, but the CorrZIDF contains much smaller false positives consistently across
all settings.

We also compared the method’s performance with our previously proposed method,
the metaDprof, a spline-based method to detect differentially abundant features based on
permutation tests [29]. Based on the simulation results, the metaDprof controls type I error
well and shows comparable power (results not shown), but the metaDprof is substantially
computationally costly.

To complete testing each method on a simulation dataset with 1000 features across
10 sampling points with 25 samples using two CPUs, the CorrZIDF took 10 min, the
ZIDF took 5 min, the ZIBR used 2.5 h and the FZINBMM took about 8 min; however, the
metaDprof needed 2 h and 10 min with 168 CPUs.

3.2. Real Data Analysis

We applied all four methods to two real datasets, a pregnancy study and a humanized
gnotobiotic mouse gut study, and the results are shown in the following sections.

3.2.1. Pregnancy Study

In a case-control study of 40 pregnant women, 7 of them delivered preterm (before ges-
tational week 37), 5 marginal (gestational week 37) and 28 delivered at term (>37 gestational
weeks) [30]. From 40 of these women, a bacterial taxonomic composition of 3767 specimens
was collected prospectively and weekly during gestation and monthly after delivery from
the vagina, distal gut, saliva and tooth/gum. Five preterm women who had ten consec-
utive weeks of vaginal measurements before delivery were chosen for analysis. To have
a balanced design, we selected five women who had ten consecutive weeks of vaginal
measurements before delivery from the term group. The microbiome data was aggregated
to genus level and there were 45 genera left for downstream analysis.

Among 45 genera, there were 30 genera that showed significantly differentiated results
by the CorrZIDF, 17 genera by the ZIDF, 13 genera by the FZINBMM, and there were
no significantly differentiated genus by the ZIBR. The distribution of these significantly
differentiated genera in each method are shown in a Venn diagram in Figure 4. There were
four genera captured by all three methods. Each method also captured a certain number of
unique genera, i.e., 13 unique ones by the CorrZIDF, 2 by the ZIDF and 3 by the FZINBMM,
respectively. To compare the performance of the methods, we focus on the unique genera
listed in Table 2. All of them have been reported in the literature of preterm delivery-related
studies. The details of relevance can be found in Table 2.
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Table 2. List of unique genera by each method for the pregnancy data.

Method Genus Relevance Reference

CorrZIDF

Acinetobacter Acinetobacter infection in adverse pregnancy and perinatal outcomes [31,32]

Aerococcus Low abundance in preterms [33]

Atopobium High relative abundance of Atopobium vaginae at the midtrimester was
highly predictive of preterm birth [34]

Bacteroides Abundance reduction in Bacteroides in women who delivered preterm [35,36]

Brevibacterium Occasionally found in the placenta, considered as contaminants [37]

Campylobacter Associated with an increased risk of spontaneous abortion, stillbirth, and
preterm delivery [38]

Fusobacterium
Associated with preterm birth and has been isolated from the amniotic
fluid, placenta, and chorioamnionic membranes of women delivering
prematurely

[39]

Mobiluncus For women with a prior preterm delivery, high level of Mobiluncus
significantly indicate a spontaneous preterm delivery [40]

Oligella Mostly found as a commensal organism of the human genitourinary tract,
which is also the main infection site [41]

Peptostreptococcus
Pregnant women with Bacterial vaginosis including Peptostreptococcus and
other bacteria have increased risk of preterm labor and preterm premature
rupture of membranes.

[42]

Porphyromonas Significantly high abundance in preterms [43]

Sneathia Low abundance found in preterm [33]

Sutterella

Associated with metabolic/inflammatory variables across pregnancy in
Gestational diabetes mellitus patients;
hyperglycemia in the second and third trimester of pregnancy is an
independent risk factor and a better predictor of prematurity.

[44,45]
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Table 2. Cont.

Method Genus Relevance Reference

ZIDF
Facklamia More abundant in animals that failed to establish a pregnancy [46]

Ureaplasma High abundance of Ureaplasma is associated with preterm birth [30,47]

FZINBMM

Actinomyces Actinomyces infections in pregnancy are rare but, if they occur, have been
linked primarily with preterm deliveries. [48]

Anaerococcus The vaginal microbiota of Non-aboriginal women had higher relative
abundance of the taxa Anaerococcus [49]

Finegoldia Associated with bacterial vaginosis, which is linked to an increased risk of
preterm birth: [50]

3.2.2. Humanized Gnotobiotic Mouse Gut Study

Another real dataset we used to compare our proposed approach with other methods
was from a humanized gnotobiotic mouse gut study with two groups of six germ-free
adult male C57BL/6J mice feeding on a low-fat diet (plant polysaccharide-rich diet) and a
Western diet (high-fat and high-sugar diet) [51]. Each mouse’s fecal sample went through
PCR amplification of the bacterial 16S rRNA gene V2 weekly during an 8-week period.
After aggregating the OTU count data to the genus level and basic filtering, there were
30 genera left for downstream analysis.

Among these genera, there were a total of 21 genera showing significantly differen-
tiated results; among them, 16 were detected by the CorrZIDF. The distribution of these
significantly differentiated genera in each method were shown in a Venn diagram (Figure 5).
There were no overlapping genera captured by all four methods. Each method also cap-
tured the different number of unique genera, four unique genera by the CorrZIDF, two
genera by the ZIBR, and three genera by the FZINBMM. To compare the performance of the
methods, we focus on the unique genera, listed in Table 3. All of them have been reported
in the diet-related literature. The details of the relevance can be found in Table 3. As 16
out of 21 genera are detected by the CorrZIDF, the new method shows the most power in
analyzing the mouse gut dataset.

Table 3. List of unique genera by each method for the mouse diet data.

Method Genus Relevance Reference

CorrZIDF

Anaerofilum The relative abundances of Anaerofilum were significantly lower in the
obese group. [52]

Bilophila Increased abundance of Bilophila has been associated with fat feeding and
inflammation [53]

Clostridium

High fat diet lowers C. butyricum levels; C. butyricum maybe one of the
species that constitute a core microbiota involved in energy storage and
metabolism through mechanisms that are not yet known; Clostridium
XIVb is more abundant in high fat diet group than the control group.

[54,55]

Eggerthella It metabolized amino acids rather than sugar [55]

ZIBR

Akkermansia Akkermansia muciniphila abundance was strongly and negatively affected
by high-fat diet feeding [56]

ErysipelotrichaceaeIn-
certaeSedis

Aaccelerated postnatal growth suppressed the abundance of
Erysipelotrichaceae_incertae_sedi [55]

FZINBMM

Alistipes Were significantly different between the high-fat diet and low-fat diet
groups [57]

Bryantella Relatively high abundance in the gut in high protein fed mice [58]

Mogibacterium In overweight people, Mogibacterium is associated with PUFA-rich
(polyunsaturated fatty acid) diets [59]
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4. Discussion

With the advent of high throughput sequencing and analytical tools, longitudinal stud-
ies provide increased insights into the stability of microbial communities and relationships
among microbes. Most existing methods use either a parametric method by including a
random effect to account for the correlations among repeated measurements on the same
subject, or a nonparametric model without specifying the correlation structure. However,
modeling the count data through inappropriate statistical distributions or ignoring the
correlation across time would incur an incorrect estimation.

We extended the ZIDF, the nonparametric model, by accounting for the correlation
among repeated measurements. The ZIDF utilized a nonparametric zero-inflated count
model that does not need assumptions about each margin under a longitudinal setting.
However, the method assumes an independent correlation across different samples over
time. Even though their method has higher power to detect significant features, it incurs
a larger type I error. The ZIBR shows a well-controlled type I error across different sce-
narios; however, it shows the lowest power in detecting significant features. The ZIBR is
proposed to analyze compositional data, which may explain its loss in power when we
convert the count data to compositional data in order to apply this method. In addition, it
assumes that the compositional data follow a β distribution, which may not be true. Gen-
erally, the FZINBMM shows a higher type I error than the CorriZIDF, with a comparable
power. Our proposed method, the CorrZIDF, extending the ZIDF, shows a robust superior
performance under various scenarios (i.e., different margin distributions and different
correlation structures).

This project focused on testing the effect on non-zero counts from the mixture; the
method can also provide parametric estimation on the zero-count portion of the data,
especially when researchers are interested in estimating biomarkers’ effects for the always-
zero group. Currently, most of the association testing approach focuses on independent
subjects within each sampling community. However, in a real-world setting, some microbial
species are correlated under different environments or medical treatments. For a future
study, we will extend the CorrZIDF to account for such correlation between different
features within a sample to better understand and utilize information about the microbial
dynamic. With these potential biomarkers, scientists may utilize such information to target
screening in order to better understand the biological dynamics and its association with
treatments/covariates.
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//www.mdpi.com/article/10.3390/genes13071183/s1, Figure S1: Boxplots for the power under
exchangeable correlation structure, Figure S2: Boxplots of Type I error rates under exchangeable
correlation structure, Figure S3: Bar plots of the numbers of detected true and false positives under
exchangeable correlation structure. Figure S4: Boxplots of the power for small number of subjects.
Figure S5: Boxplots of Type I error rates for small number of subjects. Figure S6. Bar plots of the
numbers of detected true and false positives for small number of subjects.
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