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Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for
additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants
with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides
(CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a
targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five
independent cohorts (n = 5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p < 7 86 × 10−7) for
association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p < 5 00 × 10−5) association, of
which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint
analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous
GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of
novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5
regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-
SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore,
functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a
significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results
provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and
epigenetic mechanisms of complex disease.

1. Introduction

Osteoporosis is a complex disease mainly characterized by
low bone mineral density (BMD) and microarchitectural
deterioration of bone tissue, which results in an increased
risk of bone fragility and susceptibility to fracture [1]. It is
an increasingly serious public health issue in the aging
population; the prevalence of osteoporosis at lumbar spine
in the elderly is over 20% in the United States [2]. Genetic
studies have demonstrated that BMD is under strong genetic
control, with heritability ranging between 50 and 85% [3, 4].

Genome-wide association studies (GWAS) and meta-
analyses of these studies have successfully identified over
250 genetic loci associated with BMDs at different skeletal
sites [5–11]. However, these loci explained approximately
12% of BMD variation [11] and the specific functional
variants at these loci were generally unknown. To search
for additional genetic loci and to enhance our understanding
of the biological mechanisms underlying BMD variation, one
effective strategy is to focus on testing of specific variants
with high potential of functional effects, such as exonic/non-
synonymous variants [5, 12] or variants that may potentially
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affect regulatory factors [13–16]. Such strategy can alleviate
the multiple testing problem of the conventional GWAS
approach and consequently enhance the power to identify
novel functional variants associated with the phenotype of
interest. In addition, because the hypothesis testing is based
on SNPs with potential functions, false positive findings
may be minimized due to that the information on prior
functional evidence is used.

DNA methylation is an essential epigenetic mechanism
for the regulation of transcription. It has profound impacts
on chromatin structure, genomic imprinting, embryonic
development, X-chromosome inactivation, and the patho-
genesis of several human genetic disorders [17]. Although
epigenetic regulation by DNA methylation is generally
thought to be transcriptionally repressed in gene promoters
and transcriptionally activated when occurring in gene
bodies [18, 19], recent studies suggested a much more
complex relationship between DNA methylation and the
gene expression pattern. Both positive and negative associa-
tions between DNA methylation and gene expression have
been revealed across all genomic regions of a gene, and
DNA methylation can also modulate alternative RNA
splicing via regulation of the RNA Pol II elongation rate
[20–24], demonstrating that DNA methylation can have
diverse, chromatin cell type- and context-dependent regula-
tory effects of transcription.

Single nucleotide polymorphisms (SNPs) may introduce
or disrupt cytosine-phosphate-guanine dinucleotides (CpG
sites), the major substrate for methyl transfer reactions, and
therefore dramatically alter the methylation status at the
affected loci [25]. These so-called CpG-SNPs have been
suggested as an important mechanism through which genetic
variants can affect gene function via epigenetics [25, 26].
Shoemaker et al. performed genome-wide allele-specific
methylation analysis in 16 human cell lines and found that
a significant proportion (38–88%) of allele-specific methyla-
tion regions relied on the presence of CpG-SNP variations
[27]. Similarly, Zhi et al. conducted genome-wide correlation
analysis between genetic variants and DNA methylation
levels in human blood CD4+ T cells and found that over
80% of CpG-SNPs were local methylation quantitative trait
loci (cis-meQTLs) and CpG-SNPs accounted for over 2/3 of
the strongest meQTL signals [28]. The effect of CpG-SNPs
often extended beyond the directly affected CpG sites to sur-
rounding regions, likely via correlated proximal methylation
patterns and genetic linkage disequilibrium (LD) [25, 28, 29].
These evidences strongly suggested that CpG-SNPs are a
crucial type of cis-regulatory polymorphic variants connect-
ing genetic variation to the individual variability in epige-
nome. By focusing on CpG-SNPs in selected candidate
genes, several studies have identified significant associations
between CpG-SNPs with human complex disorders, such as
breast cancer [30], type 2 diabetes [29], alcohol dependence
[31], and suicide attempt in schizophrenia [32], implying
that focusing on CpG-SNPs is an efficient strategy to identify
novel functional variants underlying human complex
disorders/traits.

In this study, we performed a targeted GWAS analysis for
BMD on CpG-SNPs. As DNA methylation profiles are often

cell-type specific [33], we further narrowed down to CpG-
SNPs that are also meQTLs in an osteoclast-lineage cell,
specifically, human peripheral blood monocytes (PBMs).
PBMs can act as precursors of osteoclasts, produce cytokines
important for osteoclast differentiation and function, serve
as a major target cell of sex hormones for bone metabolism
[34–38], and have been demonstrated as an excellent cell
model for studying osteoporosis-related gene/protein expres-
sion patterns and their regulatory mechanisms [39–50].
Therefore, our targeted potential functional CpG-SNPs
represent prominent candidates that can regulate BMD
variation by affecting gene activity via epigenetic mecha-
nisms in bone-related cells.

2. Materials and Methods

2.1. Study Cohorts. The discovery dataset incorporated a
total of 5905 subjects from five GWAS, of which three
studies were “in-house” studies: (1) Omaha Osteoporosis
Study (Caucasian ancestry, n = 987), (2) Kansas City Osteo-
porosis Study (Caucasian ancestry, n = 2250), and (3) China
Osteoporosis Study (Han Chinese ancestry, n = 1547), and
two studies were “external” studies obtained from the Data-
base on Genotypes and Phenotypes (dbGaP): (1) Women’s
Health Initiative Observational Study African-American
Substudy (African ancestry, n = 712) and (2) Women’s
Health Initiative Observational Study Hispanic Substudy
(Hispanic ancestry, n = 409). The basic characteristics of the
five study cohorts were shown in Supplementary Table 1.
All studies were reviewed and approved from respective
institutional review boards, and each eligible participant
provided written informed consent for enrolment. The
replication dataset included the summary statistics for the
association of approximately 10 million SNPs with BMD by
the Genetic Factors for Osteoporosis Consortium (GEFOS)
[5, 8]. To our knowledge, it is the largest GWAS meta-
analysis dataset for BMD association to date in the bone
field [5, 8].

2.2. Selecting Potential Functional CpG-SNPs. The CpG-
SNPs that are potentially functional in PBMs were selected
according to the following steps:

(1) We identified CpG-SNPs in the human genome by
interrogating the extensive catalog of common and
rare genetic variants from the 1000 Genomes refer-
ence panel [51] and our in-house whole-genome
high-coverage deep resequencing study [52]. A SNP
was defined as a CpG-SNP if it introduces or disrupts
a CpG site. A total of 3,363,517 CpG-SNPs was
identified throughout the human genome.

(2) We retrieved 39,859 PBM meQTLs at a stringent
significance threshold (FDR< 0.001) from the
previous study that assessed the association of over
7 million SNPs with methylome of PBMs in 200
unrelated individuals [53]. We then used SNiPA
[54] to identify proxy SNPs in strong LD with
retrieved PBM meQTLs. The search was depended
on genotype information from the 1000 Genomes
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Project with the European samples [51]. The
inclusion criteria for proxy SNPs were set as a pair-
wise r2 threshold> 0.9 and a distance limit of 10 kb
from the query meQTL. A total of 175,710 potential
PBM DNA methylation-associated SNPs (reported
meQTLs and proxy of meQTLs) were identified.

(3) By finding common SNPs between the CpG-SNPs
and PBM DNA methylation-associated SNPs, we
identified a total of 68,041 CpG-SNPs that are
potentially functional in PBMs.

2.3. BMD Measurements. The lumbar spine BMD was
determined by either the Hologic Inc. (Bedford, MA, USA)
or GE Lunar Corp. (Madison, WI, USA) dual-energy X-ray
absorptiometry (DXA) scanner following the respective
manufacturer’s scan protocols. For each GWAS, multiple
potential covariates such as scanner ID, sex, height, weight,
age, and age2 were screened using a forward stepwise linear
regression. The significant covariates were used to adjust
for raw BMDmeasurements. Correction of potential popula-
tion stratification was performed with principal component
analysis (PCA), and the top five PCs (i.e., PC1–PC5) were
also included as covariates. Residual scores of adjusted phe-
notypes were normalized by inverse quantile of the standard
normal distribution, which was analyzed subsequently.

2.4. Genotyping and Quality Control. For each GWAS,
genome-wide genotyping was performed by either Affyme-
trix Inc. (Santa Clara, CA, USA) or Illumina Inc. (San Diego,
CA, USA) high-density SNP genotyping platforms following
respective manufacturer’s assay protocols. Quality control
was implemented by PLINK (http://pngu.mgh.harvard.edu/
~purcell/plink/) with the following criteria: individual
missingness< 5%, SNP with successful call rate> 95%,
and Hardy-Weinberg equilibrium p value> 1.0× 10−5. PCs
derived from genome-wide genotyping analysis were used
to monitor the population outliers.

2.5. Genotype Imputation. To allow for the merging of
datasets from different types of genotyping platform to
obtain higher depth of genome coverage, we performed
extensive genotype imputation analysis. Generally, haplotype
inference of each GWA study was initially phased by a
Markov Chain Haplotyping algorithm (MACH) [55] and
Minimac [56] was then used to impute genotypes at untyped
variants based on haplotype data from the 1000 Genomes
reference panel [51]. For each GWA study, the haplotype
reference panel of relevant population was used to impute
genotypes at untyped variants. SNPs with imputation quality
score (r2)> 0.3 and minor allele frequency (MAF)> 0.05 in
no less than 2 studies were retained in the subsequent
analyses. Imputation with the 1000 Genomes Project
reference panels generated genotype data for more than
11.2 million SNPs. Among the 68,041 potential functional
CpG-SNPs, 63,627 CpG-SNPs had qualified genotype data
(genotyped+ imputed) and thus were tested in the follow-
ing GWAS meta-analyses.

2.6. Association Tests and Meta-Analyses. For each GWAS,
we test the association between directly typed/imputed SNPs
and lumbar spine BMD using an additive genetic model. The
association of unrelated subjects in each GWAS was tested by
fitting a linear regression model with MACH2QTL [55] in
which allele dosage was considered as a phenotype predictor.
The genomic inflation factor (λGC) [57] was also estimated
for each individual GWAS. We performed meta-analysis
using software METAL [58] which based on weights propor-
tional to the square root of the number of subjects in each
sample, and between-study heterogeneity was estimated by
Cochran’s Q statistic and I2. Genome-wide significance
threshold was defined as a p value< 7.86× 10−7 (Bonferroni
correction for testing 63,627 selected CpG-SNPs).

2.7. Function Annotation of the CpG-SNPs. CpG-SNPs were
annotated with SNPnexus [59] based on reference genome
GRCh37 and assigned to candidate genes (±2 kb upstream
and downstream). In order to test the potential functional
importance of the identified CpG-SNPs, we applied Hap-
loReg [60] to annotate selected CpG-SNPs to enhancer
histone marks (H3K4me1/H3K27ac) across diverse tissue/
cell types from the Roadmap Epigenomics Projects and
test the effect of SNPs on changing the regulatory motifs
and the effect of SNPs on the regulation of gene expression
of target genes. We employed the software GOEAST [61] to
identify significant gene ontology terms among genes
associated with identified novel functional CpG-SNPs in
lumbar spine.

3. Results

In this study, we identified 68,041 potential functional
CpG-SNPs that may both affect DNA methylation by
introducing or disrupting CpG sites and influence DNA
methylation levels in human PBMs. Interestingly, although
over 50% of these potential functional CpG-SNPs were
mapped to introns, we observed a significant enrichment of
potential functional CpG-SNPs in 5′/3′-UTR regions (fold
change> 2) and underrepresentation in intergenic regions
(Supplementary Figure 1), when comparing to the overall
profile of CpG-SNPs in the human genome.

We successfully obtained genotype data for 63,627
potential functional CpG-SNPs and carried out targeted
association studies in five independent GWAS cohorts with
a total of 5905 subjects. The estimates of genomic inflation
factor λGC ranged from 0.97 to 1.02 in individual GWAS.
By performing meta-analysis combining the five GWAS
datasets, we identified 9 CpG-SNPs that were significantly
associated with lumbar spine BMD at a genome-wide
significance level (α = 7 86 × 10−7), including 5 novel SNPs
rs689179 (p value= 2.68× 10−7), rs576118 (p value = 2.70×
10−7), rs471966 (p value = 3.29× 10−7), rs640569 (p value=
4.04× 10−7), and rs667126 (p value= 7.80× 10−7) in LRP5
gene and one SNP rs9535889 in novel gene NEK3
(p value= 7.55× 10−7). We also confirmed 3 previously
reported loci (rs525592, rs1784235, and rs497261) in LRP5
gene (Figure 1 and Table 1). In addition, 15 CpG-SNPs
achieved a suggestive significance level (α = 5 00 × 10−5) for
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association with lumbar spine BMD (Figure 1 and Table 1).
We then performed in silico replication for the identified
24 significant/suggestive CpG-SNPs in the GEFOS cohort
[5, 8] and successfully replicated (p value< 0.05) 14 CpG-
SNPs (Table 1). Subsequently, a joint analysis of both the
discovery and replication studies identified 2 additional novel
CpG-SNPs associated with lumbar spine BMD at a genome-
wide significance level (Table 1) including the SNP
rs7455028 (p value= 1.18× 10−7) in ESR1 gene and the SNP
rs7231498 (p value = 7.18× 10−7) inNFATC1 gene. A number
of the significant/suggestive CpG-SNPs were clustered into
the genomic regions encompassing NEK3 and LRP5 genes
(Figure 2 and Supplementary Figure 2). These clustered
CpG-SNPs are in high LD and therefore, may represent the
same functional loci that synergistically mediate the DNA
methylation and/or gene expression of their target genes.

To further explore the potential functional significance of
the identified significant/suggestive CpG-SNPs, we anno-
tated these CpG-SNPs to various chromatin states and other
possible regulatory elements with data from Roadmap
Epigenomics and GTEx projects through the HaploReg pro-
gram [60]. The chromatin state and histone modification
data suggested the evidence of regulatory potential in the
identified CpG-SNPs. 20 CpG-SNPs altered the regulatory

motif, along with 14 CpG-SNPs involved enhancer histone
markers. Notably, the novel SNPs rs9535889, rs9526841,
and rs2408611 in NEK3 gene were all located in regions with
strong transcription and enhancer activities in PBMs as well
as various other tissues and cell types (Table 2), highlighting
strong regulatory potential of these CpG-SNPs. In addition,
many identified CpG-SNPs may affect binding of various
transcription factors and have numerous reported eQTL
evidences in various tissue/cell types (Table 2). We also
conducted gene ontology analysis for the genes related to
the identified CpG-SNPs and revealed significant enrichment
of biological processes which are closely associated to protein
localization and protein signal transduction (Table 3), such
as protein localization to plasma membrane/cell periphery
and regulation of Ras/Rho protein signal transduction gene
ontology terms.

4. Discussion

Our study represents the first targeted GWAS testing
CpG-SNPs that are potentially functional in bone-related
cells for association with BMD variation. As epigenomic
and transcriptomic profiles are often tissue-/cell-type spe-
cific, we speculated that only a subset of CpG-SNPs in the

Figure 1: Circular Manhattan plot picturing the −log10 (p values) of meta-analysis results for lumbar spine BMD. CpG-SNPs
were plotted according to the chromosomal location. The blue and red circular lines indicate the threshold for suggestive significant
(p value = 5.00× 10−5) and significant SNPs (p value = 7.86× 10−7), respectively.
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human genome will have functional impact on DNAmethyl-
ation levels in specific tissues/cells. Therefore, it is necessary
to select out those CpG-SNPs that are potentially functional
in disease-/trait-related tissues/cells when performing CpG-
SNP-focused association studies. One reasonable and effi-
cient filtering strategy is to leverage the enormous available
meQTL data in diverse tissues/cells. Unfortunately, meQTL
data in skeletal cells were scarce; therefore, we used
meQTL data from PBMs to select out 68,041 candidate
CpG-SNPs that may be functional in regulating bone mass,
considering the direct and close connections between PBMs
and bone metabolism. These potential functional CpG-
SNPs were enriched in 5′/3′-UTR regions but underrepre-
sented in intergenic regions (Supplementary Figure 1). This
result is largely in line with the recent findings in tissue-/
cell-type specific DNA methylation profiles, suggesting that
methylation-mediated regulatory effects often occur beyond
the promoter areas [18, 62].

By using the data from five independent GWAS cohorts
and the summary statistics from the GEFOS study, we
identified significant/suggestive associations for 24 CpG-

SNPs with lumbar spine BMD. These BMD-associated
CpG-SNPs were mapped to six genes; some of which have
not been reported for association with BMD in previous
GWAS, such as NEK3 and NFATC1 genes. Our finding
highlighted the enhanced power of targeted association
analysis for identification of novel associations that were
missed by traditional GWAS. Interestingly, several genomic
regions, such as LRP5 and NEK3 regions, contained multiple
significant/suggestive CpG-SNPs, suggesting that multiple
neighboring CpG-SNPs may synergistically mediate the
DNA methylation and gene expression of the target genes.
This is consistent with the fact that methylation signals
among neighboring CpG sites are often strongly correlated
and regulatory elements that were mediated by methylation
usually extend across various genomic regions [63]. LRP5
gene encodes a transmembrane protein which acts as a
receptor for low-density lipoprotein. This transmembrane
receptor initializes the process of receptor-mediated endocy-
tosis by binding and internalizing their corresponding
ligands [64]. It is well known for the critical role in bone
homeostasis and several skeletal disorders [65]. Several

Table 1: Significant/suggestive CpG-SNPs for lumbar spine BMD.

CpG-SNP Chr Position Alleles Nearest gene Feature Meta p value GEFOS p value Joint p value

rs2941741 6 152008982 G/A ESR1 Intronic 6.50E − 06 1.21E − 08 2.45E − 12

rs3020333 6 152010254 A/G ESR1 Intronic, 5′ upstream 7.17E − 06 1.57E − 09 3.73E − 13

rs7455028 6 152034386 C/T ESR1 Intronic 4.57E − 05 0.00013 1.18E − 07

rs13254554 8 120010805 T/C
COLEC10/
TNFRSF11B

Intronic 8.99E − 07 1.10E − 19 5.79E − 24

rs2220189 8 120007708 C/G
COLEC10/
TNFRSF11B

Intronic 1.53E − 06 4.25E − 20 3.84E − 24

rs525592 11 68195104 C/T LRP5 Intronic 1.86E − 07 8.69E − 11 6.41E − 16

rs689179 11 68179166 A/G LRP5 Intronic 2.68E − 07 NA NA

rs576118 11 68177708 G/A LRP5 Intronic 2.70E − 07 3.81E − 06∗ 2.95E − 11 ∗

rs471966 11 68173861 C/T LRP5 Intronic 3.29E − 07 NA NA

rs1784235 11 68185500 C/T LRP5 Intronic 3.92E − 07 2.95E − 08 3.82E − 13

rs640569 11 68184820 A/G LRP5 Intronic 4.04E − 07 2.17E − 08 2.92E − 13

rs667126 11 68177728 C/T LRP5 Intronic 7.80E − 07 NA NA

rs497261 11 68192244 T/C LRP5 Intronic 7.83E − 07 1.86E − 11 5.79E − 16

rs314751 11 68179560 C/T LRP5 Intronic 1.31E − 06 1.20E − 11 6.24E − 16

rs23691 11 68178668 G/A LRP5 Intronic 1.33E − 06 1.17E − 11 6.18E − 16

rs531163 11 68194496 A/G LRP5 Intronic 1.35E − 06 9.05E − 11 4.60E − 15

rs9535889 13 52733634 C/G NEK3 Intronic, 5′ upstream, 5′UTR 7.55E − 07 0.469098 5.61E − 06
rs3783242 13 52717950 C/T NEK3 Intronic, 3′ downstream 2.41E − 06 NA NA

rs9526841 13 52726476 A/G NEK3 Intronic, 3′ downstream 6.64E − 06 0.325285 3.03E − 05
rs2897976 13 52715944 G/A NEK3 Intronic 9.71E − 06 0.471396 6.08E − 05
rs9526843 13 52730056 C/T NEK3 Intronic 1.17E − 05 NA NA

rs2408609 13 52714043 C/T NEK3 Intronic 1.32E − 05 0.546887 9.26E − 05
rs2408611 13 52709742 G/A NEK3 Intronic, 5′ upstream 2.50E − 05 NA NA

rs7231498 18 77189387 A/G NFATC1 Intronic 4.22E − 05 0.000944 7.18E − 07

Note: CpG-SNPs reached a genome-wide significance level (p value ≤ 7.86 × 10−7) in discovery meta-analysis and/or joint analysis of discovery, and replication
studies are marked in bold. Gene/CpG-SNP reported in previous GWAS for BMD is marked in italics. NA: SNPs were not available in the GEFOS 2015 data
release. ∗This result was based on the GEFOS 2012 data release because this SNP is not available in the 2015 release.

5International Journal of Genomics



common genetic variants of LRP5 gene have been demon-
strated as potential risk factors in osteoporosis and fracture
by previous GWAS [66, 67]. For example, gain of functional
variations in LRP5 gene leads to extremely high BMD [64]
and loss of functional variations in LRP5 gene results in
osteoporosis-pseudoglioma syndrome [68]. Interestingly,
the recent study showed that the differentiation of monocytes
can be negatively regulated by LRP5 gene through abrogation
of the Wnt pathway which has an essential role in bone
remodeling in both physiological and pathological condi-
tions [69]. The other interesting gene is theNEK3, which also
contained several significant/suggestive CpG-SNPs and
enriched with strong transcription and enhancer histone
modification marks in PBMs and a variety of other tissue/cell
types. NEK3 gene encodes a member of the NimA-related
serine/threonine kinases [70]. These kinases have been impli-
cated as the significant regulators of cell migration [71]
and also regulate microtubule acetylation in neurons [72].
Although most of these CpG-SNPs were annotated to introns
of the NEK3 gene, the eQTL data from GTEx project
suggested that these CpG-SNPs were strongly associated with
the expression of NEK3 gene in diverse tissues. Notably, the

previous study [73] that assessed the association of over
675,000 SNPs with transcriptome of PBMs in 1490 unrelated
individuals showed that SNP rs2408611 in NEK3 gene has a
strong cis-eQTL effect in PBM. This evidence may support
that CpG-SNP-mediated epigenomic alterations may be an
important mechanism underlying the association between
NEK3 and BMD variation. However, its function in other
tissues, including bone, remains largely uncharacterized.
Another interesting gene is NFATC1. This gene encodes a
transcription factor involved in T cell maturation. Impor-
tantly, NFATC1 can also regulate activity of a number of
osteoclast-specific enzymes and/or other molecules, such as
osteoclast-associated receptor, TRAP, calcitonin receptor,
and cathepsin K through cooperation with MITF and c-Fos
[74–77]. The important role of this gene in differentiation
of osteoclast has been well established by several studies
performed on genetically modified mutant mice [78, 79].
For example, Winslow et al. [78] identified that the trans-
genic mice generated by crossing NFATC1-knockout mice
with mice that express Tie2 promoter-driven NFATC1
exhibit an osteopetrotic bone phenotype, which may result
from a severe defect in the osteoclastogenesis process.
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Therefore, understanding the molecular basis underlying the
functional regulation of NFATC1 in osteoclasts may provide
novel therapeutic strategies for bone diseases.

Several potential limitations of this study should be
concerned and addressed in the future. First, the selection
of an appropriate cell model is crucial. Due to the limited

meQTL studies in the bone cell models, here, we focused
on CpG-SNPs that are also meQTLs in an osteoclast-
lineage cell, specifically, human PBMs. Although PBMs act
as precursors of osteoclasts and act as the major target cells
of sex hormones for bone metabolism, the ideal model cells
for the osteoporosis study are bone cells, such as osteoblast,

Table 3: The top ten most significant GO terms enriched for BMD-associated CpG-SNPs.

GOID Term Log odds ratio p value

GO:0072659 Protein localization to plasma membrane 5.42 4.06E − 16
GO:1990778 Protein localization to cell periphery 5.42 4.06E − 16
GO:0007009 Plasma membrane organization 4.96 3.08E − 14
GO:0035023 Regulation of Rho protein signal transduction 4.57 1.21E − 12
GO:0046578 Regulation of Ras protein signal transduction 4.01 1.96E − 10
GO:0072657 Protein localization to membrane 3.94 3.45E − 10
GO:0010256 Endomembrane system organization 3.93 3.75E − 10
GO:0000904 Cell morphogenesis involved in differentiation 2.92 4.50E − 08
GO:0051056 Regulation of small GTPase-mediated signal transduction 3.29 7.92E − 08
GO:0008295 Spermidine biosynthetic process 7.99 2.55E − 07
Note: GO enrichment analysis was performed in candidate genes annotated to BMD-associated CpG-SNPs (p value < 1.0 × 10−4).

Table 2: Functional annotation of significant/suggestive CpG-SNPs.

CpG-SNPs Nearest gene
Chromatin state

in PBMs1
Tissues/cells with enhancer histone

marks (H3K4me1/H3K27ac)
Motifs changed eQTL hits

rs2941741 ESR1 Quiescent/low

rs3020333 ESR1 Quiescent/low Liver Pou2f2

rs7455028 ESR1 Quiescent/low 5 altered motifs

rs13254554 COLEC10/TNFRSF11B Quiescent/low TCF12, p53 3 hits

rs2220189 COLEC10/TNFRSF11B Quiescent/low 7 tissues 2 hits

rs525592 LRP5 Quiescent/low 4 altered motifs 2 hits

rs689179 LRP5 Quiescent/low 6 tissues 5 altered motifs 1 hit

rs576118 LRP5 Quiescent/low IPSC, muscle, heart TAL1 1 hit

rs471966 LRP5 Quiescent/low 8 tissues 8 altered motifs 2 hits

rs1784235 LRP5 Quiescent/low Blood AP-2, ELF1, Rad21 1 hit

rs640569 LRP5 Quiescent/low Blood Irf, Pax-4, Pou2f2 1 hit

rs667126 LRP5 Quiescent/low IPSC, muscle, heart 9 altered motifs 2 hits

rs497261 LRP5 Quiescent/low Muscle Pax-5, Smad 5 hits

rs314751 LRP5 Quiescent/low 6 tissues 4 altered motifs 4 hits

rs23691 LRP5 Quiescent/low 6 tissues 5 altered motifs 4 hits

rs531163 LRP5 Quiescent/low 7 altered motifs 3 hits

rs9535889 NEK3 Active TSS 24 tissues2 Rad21, SP1, TATA 72 hits

rs3783242 NEK3 Quiescent/low CDP, Pou2f2 72 hits

rs9526841 NEK3 Strong transcription HIF1, RFX5, TCF11::MafG 62 hits

rs2897976 NEK3 Quiescent/low 79 hits

rs9526843 NEK3 Quiescent/low Intestine 73 hits

rs2408609 NEK3 Quiescent/low 6 altered motifs 78 hits

rs2408611 NEK3 Strong transcription 4 altered motifs 80 hits

rs7231498 NFATC1 Weak transcription Blood 7 altered motifs

Note: 1Chromatin state information was retrieved using a 15-state model from the Roadmap Epigenomics Project based on the 5 core histone marks. 2Tissues/
cells with promoter histone marks (H3K4me3/H3K9ac). Abbreviation: IPSC: induced pluripotent stem cells.
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osteoclast, and osteocyte. Second, the results of functional
annotation exclusively depend on computationally predicted
regulation features and further experimental validation
should be conducted to confirm the biological significance
of these potential functional CpG-SNPs.

In summary, we performed a targeted GWAS analysis
for potential functional CpG-SNPs and identified 2 novel
BMD-associated genes, NEK3 and NFATC1. Our results
highlighted the power of targeted analysis of potential
functional variants for the identification of novel disease
susceptibility loci that have been missed by a conventional
GWAS approach. More importantly, our findings suggested
that CpG-SNP-mediated DNA methylation changes may be
a crucial biological mechanism to be considered in the inter-
pretation of associations between common genetic variants,
epigenetic process, and phenotypes of human diseases.
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