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Angiopoietin-2, an important contributor to angiogenesis and vascular remodeling, is increasingly

recognized in kidney research. This review explores clinical insights and experimental perspectives on

angiopoietin-2 in kidney diseases. Traditionally seen as an antagonist of the Tie-2, which is a receptor

tyrosine kinase of endothelial cells and some hematopoietic stem cells, angiopoietin-2 exerts both

proangiogenic and antiangiogenic effects, making it a versatile and context-dependent player in kidney

pathophysiology. Elevated circulating angiopoietin-2 levels in clinical scenarios are associated with sepsis

and acute kidney injury (AKI), emphasizing its role as a biomarker of disease severity. In diabetic kidney

disease, circulating angiopoietin-2 correlates with albuminuria, a crucial indicator of disease progression,

and may serve as a treatment target in protecting the endothelium. Angiopoietin-2 is implicated in chronic

kidney diseases (CKDs), where its elevated circulating levels correlate with kidney outcomes and cardio-

vascular complications, suggesting its potential impact on kidney function and overall health. In experi-

mental settings, angiopoietin-2 plays a pivotal role in angiogenesis and lymphangiogenesis, influencing

vascular stability and endothelial integrity. The context-dependent agonist and antagonist role of

angiopoietin-2 is regulated by a Tie-2 phosphatase, vascular endothelial protein tyrosine phosphatase

(VEPTP), further underscoring its complexity. Angiopoietin-2 is also involved in regulating cellular integ-

rity, inflammation, and endothelial permeability, making it a promising therapeutic target for conditions

characterized by disrupted endothelial junctions and vascular dysfunction. This review provides a

comprehensive overview of the diverse roles of angiopoietin-2 in kidney research, offering insights into

potential therapeutic targets and advancements in managing kidney diseases.
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K
idney diseases span from AKI and acute kidney
disease to CKD, posing significant global health

challenges. Although there are emerging mechanism-
specific therapies for immune-mediated glomerular dis-
eases and the application of sodium-glucose cotrans-
porter-2 inhibitors, nonsteroidal mineralocorticoid
receptor antagonists, and glucagon-like peptide-1 re-
ceptor agonist, fibrosis-targeting therapies remain
inconclusive in CKD.1 Moreover, the reversible nature
of AKI and acute kidney disease has attracted research
interest. Studies have delved into mechanisms and
investigated therapies targeting immune dysregulation,
oxidative injury, cell-cycle arrest, and impaired
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microcirculation from AKI to CKD. Microvascular
endothelial injury in septic and ischemic AKI leads to
compromised renal perfusion, increased vascular
permeability, exaggerated leukocyte recruitment, and
aggravated tubular injury, ultimately contributing to
CKD progression if repair mechanisms fail.2-5 Microvas-
cular rarefaction is extensively studied in CKD, where
patients commonly exhibit endothelial dysfunction
and disrupted vascular homeostasis. Animal models of
CKD have revealed significant decreases in vascular
density, a cardinal histologic feature closely associated
with disrupted angiogenesis.6

Angiogenesis, crucial in both physiological and
pathologic states, is regulated by angiopoietin-1 and
angiopoietin-2, ligands for the Tie-2 receptor tyrosine
kinase, expressed by endothelial cells and some he-
matopoietic stem cells. Physiologically, angiopoietin-1
and angiopoietin-2 collaboratively regulate vascular
system homeostasis in the embryonic vascular system
3375
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and the lymphatic system. Angiopoietin-1, an endog-
enous ligand of Tie-2 and secreted from pericytes,
maintains vascular permeability and stability, inhibits
inflammatory signaling, and maintains endothelial
junctions.7,8 In contrast, angiopoietin-2 functions as a
context-dependent Tie-2 antagonist or weak
agonist.9,10 Stored angiopoietin-2 can be rapidly
released from endothelial Weibel-Palade bodies upon
stimulation from hypoxia, vascular endothelial growth
factor (VEGF), basic fibroblast growth factor, thrombin,
and histamine, triggering new angiogenesis and some
inflammatory response.11,12

Microvasculature instability and inflammation are
intertwined features in both AKI and CKD, necessi-
tating therapeutic approaches targeting the microvas-
cular endothelium. Kidneys, being highly perfused
organs, rely on renal microvasculature to maintain
blood flow homeostasis, nutrients and oxygen delivery,
vascular integrity and permeability, coagulation bal-
ance, and leukocyte recruitment. In the setting of
kidney injury, activated and compromised vasculature
leads to leukocyte recruitment, tubular atrophy, and
kidney fibrosis.13 The delicate regulation of endothelial
Tie-2 signaling by angiopoietin-1 and angiopoietin-2
has drawn attention, with angiopoietin-2 acting as a
marker of activated endothelium and an effector
molecule in various pathologies, contributing to the
landscape of kidney diseases.14-16 This review outlines
the physiology and pathophysiology of angiopoietin-2
in clinical and experimental settings related to kidney
diseases (Figure 1), aiming to provide insights into
therapeutic opportunities and advancements.

Clinical Implication of Angiopoietin-2 in Kidney

Diseases

Although most clinical studies demonstrate only
disturbed circulating angiopoietin-2 levels across
different kidney diseases, the association between
angiopoietin-2 and clinical outcomes suggests possible
causality (Table 1). Emerging mechanism-specific
therapies and anti-angiopoietin-2 monoclonal anti-
body may exert protective effects by inhibiting
angiopoietin-2 both indirectly and directly (Figure 1).
We summarize the literature on disturbed angiopoietin-
2 in AKI, CKD, and albuminuria, and provide current
evidence about possible casual mechanisms through
preclinical models.

AKI: Implications for Disease Severity and Causal

Factor

Systemic angiopoietin-2 levels play a crucial role in the
development and severity of AKI across conditions,
such as acute myocardial infarction, post cardiac sur-
gery, COVID-19, and liver cirrhosis.23-27 In liver
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cirrhosis, vascular destabilization and endothelial
dysfunction reduce vasodilatory factors such as nitric
oxide, leading to increased hepatic vascular resistance
and portal hypertension.43,44 Conversely, systemic
vasodilation activates the renin-angiotensin-
aldosterone system and the sympathetic nervous sys-
tem, thereby decreasing renal blood flow.45 Elevated
serum angiopoietin-2 levels are linked to higher mor-
tality rates in patients with decompensated liver
cirrhosis and AKI.27 In a murine model of sepsis-
induced acute-on-chronic liver failure, an increased
angiopoietin-2-to-angiopoietin-1 ratio in liver sinusoi-
dal endothelial cells contributes to endothelial
dysfunction via the transcription factor CCAAT
enhancer binding protein b.46 The implications of
disturbed angiopoietin-s/Tie-2 signaling in the vascu-
lature of the cirrhotic livers remain unexplored but
present an intriguing area for future research.

AKI commonly complicates critical illnesses, with
dysregulated circulating angiopoietin-2 and
angiopoietin-1 levels indicating increased vascular
permeability, inflammation, and endothelial injury, all
of which are important in the onset and progression of
AKI. Studies reveal a strong association between
circulating angiopoietin-2 levels and angiopoietin-2-to-
angiopoietin-1 ratios with disease severity in patients
with sepsis and acute respiratory distress syn-
drome.47-50 Elevated plasma angiopoietin-2 levels and
angiopoietin-2-to-angiopoietin-1 ratios correlate with
AKI severity in sepsis and acute respiratory distress
syndrome, suggesting their potential as biomarkers
for assessing the degree of kidney injury.19-22 Genetic
variants near ANGPT2 have been linked to the risk of
acute respiratory distress syndrome and acute lung
injury, with evidence suggesting a causal relationship
between plasma angiopoietin-2 and AKI risk.51-53 In-
terventions targeting angiopoietin-2 in animal models
with sepsis demonstrate improvements in vascular
leakage, tissue inflammation, organ function, and
overall survival.54,55 Although a clinical trial evalu-
ating anti-angiopoietin-2 monoclonal antibody ther-
apy in patients with COVID-19 yielded suboptimal
results, personalized medicine focusing on the
disturbed angiopoietin-s/Tie-2 system among selected
patients with AKI may represent a promising direc-
tion for intervention.56

CKD: Implications for Kidney Function and

Cardiovascular Outcome

The relationship between angiopoietin-2 and CKD in-
volves its role in inflammation, endothelial dysfunction,
and vascular remodeling. This connection is of great
interest due to its potential impact on cardiovascular
complications. In patients with CKD, higher serum
Kidney International Reports (2024) 9, 3375–3385



Figure 1. Scheme of angiopoietin-2 signaling and potential therapeutic targets in kidney diseases. Dysregulated angiopoietin-2 signaling is
implicated in the pathogenesis of clinical scenarios, including acute kidney injury, acute kidney disease, chronic kidney disease, and other
systemic conditions, such as sepsis, acute respiratory distress syndrome, cardiovascular disease, hepatic failure, and diabetes mellitus. This
figure illustrates the relevant signaling pathways and potential therapeutic interventions targeting angiopoietin-2, vascular endothelial protein
tyrosine phosphatase (VEPTP), and b1 integrin in kidney diseases. (a) Angiopoietin-2 signaling in vascular endothelial cells. Tie-2 is a receptor
tyrosine kinase found in endothelial cells and some hematopoietic stem cells, consists of an extracellular domain for ligand binding, a
transmembrane domain, and a cytoplasmic carboxy-terminal tyrosine kinase domain.17,18 The ectodomain contains 3 Ig domains, 3 epidermal
growth factor (EGF) repeats, and 3 fibronectin type III repeats, mediating angiopoietins binding. In vascular endothelial cells, angiopoietin-1
induces Tie-2 phosphorylation, which is antagonized by angiopoietin-2. This antagonistic activity is regulated by the Tie-2 phosphatase,
VEPTP. In addition, angiopoietin-2 influences cell-cell junctions and endothelial cell integrity through Tie-2-independent mechanisms. Integrins
are ab heterodimeric receptors, and angiopoietin-2 has been shown to activate b1 integrin, leading to endothelial destabilization. (b)
Angiopoietin-2 signaling in lymphatic endothelial cells. In the absence of VEPTP, angiopoietin-2 functions as an agonist of the Tie-2 receptor in
lymphatic endothelial cells. (c) Endothelial cell activation and inflammation mediated by angiopoietin-2. The proinflammatory effects of
angiopoietin-2 depend on the presence of various cytokines, such as vascular endothelial growth factor and tumor necrosis factor-a. Under the
influence of these cytokines, angiopoietin-2 mediates the expression of adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and
vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells, promoting monocyte/macrophage infiltration. In addition, angiopoietin-2-
sensitized endothelial cells increase the expression of chemokines, such as chemokine C-C motif ligand 2 (CCL2), further facilitating mono-
cyte/macrophage infiltration. Clinical trials targeting angiopoietin-2, through direct inhibition of angiopoietin-2 or indirect inhibition of VEPTP or
b1 integrin, represent a promising approach for therapeutic intervention. VE-cadherin, vascular endothelial cadherin.
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angiopoietin-2 levels correlate with higher left ventric-
ular mass index and left ventricular hypertrophy, in-
dicators of cardiac dysfunction.31 Increased circulating
angiopoietin-2 levels are also associated with coronary
artery disease, peripheral arterial disease, and arterial
Kidney International Reports (2024) 9, 3375–3385
stiffness in patients with CKD and kidney failure.32,33,57

In addition, patients with kidney failure and concurrent
atrial fibrillation exhibit elevated plasma angiopoietin-2
levels, linked to underlying inflammation, oxidative
stress, thromboembolic events, and endothelial
3377



Table 1. Diseases associated with disturbed angiopoietins/Tie-2 signaling
angiopietin-1a angiopietin-2 angiopietin-2/1 ratio soluble Tie-2

Acute kidney injury in associated clinical conditions

Critical illness Lower19,20 Higher19-22 Higher19-21 Lower20

AMI No difference23 Higher23 No difference23

Post-cardiac surgery No difference24 Higher24,25 No difference24

COVID-19 No difference26 Higher26 No difference26

Liver cirrhosis Higher (mortality, AKIN stage, need for RRT)27

Chronic kidney disease and outcomes

Kidney outcome Higher13,28-30 Higher13

CV disease Lower31 Higher31-35 Higher31

mortality Higher13,35-37

Albuminuria

Higher38-42

AKIN, Acute Kidney Injury Network; AMI, acute myocardial infarction; COVID-19, coronavirus disease 2019; CV, cardiovascular; RRT, renal replacement therapy.
aPlasma or serum angiogenic growth factors were measured by enzyme-linked immunosorbent assay.
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dysfunction.34 In patients with CKD, especially those
with an estimated glomerular filtration rate< 60 ml/min
per 1.73 m2, cardiovascular disease is the leading cause
of morbidity and mortality.58 The multifactorial patho-
genesis of cardiovascular disease in CKD, with endo-
thelial dysfunction playing a cardinal role in the
mechanisms of atherosclerosis, inflammation, and pro-
teinuria, is well-established.59 Numerous studies pro-
pose an association between circulating angiopoietin-2
levels and angiopoietin-2-to-angiopoietin-1 ratios, and
their independent impact on CKD progression, cardio-
vascular outcomes, and mortality in CKD after adjusting
for kidney function, age, and other endothelial
biomarkers.13,28,29,33,35-37 In preclinical models,
angiopoietin-2 inhibition attenuates arterial stiffness
and kidney fibrosis, suggesting that clinical trials of
angiopoietin-2 neutralization should be the next step in
CKD.33,60
Albuminuria: Implications for Molecular

Mechanisms

Albuminuria is the primary clinical indicator of dia-
betic kidney disease and is pivotal in both its initiation
and progression. Notably, albuminuria also predicts
cardiovascular prognosis in the general population.38,61

Endothelial dysfunction leads to increased vascular
permeability and glomerular albumin leakage, defining
the clinical hallmark of albuminuria. Research links
circulating angiopoietin-2 with albuminuria and
inflammation in CKD, with elevated serum
angiopoietin-2 independently associated with new-
onset microalbuminuria in type 1 and type 2 dia-
betes.38-40 A murine model of immune-mediated
glomerulonephritis showed upregulation of glomer-
ular angiopoietin-2 and angiopoietin-2-to-angiopoietin-
1 ratios accompanying the loss of glomerular capil-
laries. In addition, podocyte-specific overexpression of
Angpt2 induces albuminuria and glomerular
3378
endothelial apoptosis.62,63 Diminished podocyte protein
nephrin and VEGF-A expression within this model
highlight the molecular mechanism in proteinuric dis-
eases, emphasizing the significance of angiopoietins/
Tie-2 signaling in maintaining the glomerular filtra-
tion barrier.

A post hoc analysis of the CREDENCE trial revealed
higher plasma angiopoietin-2 levels in diabetic kidney
disease associated with adverse outcomes, including
primary composite outcomes, kidney composite out-
comes, and all-cause mortality. Interestingly, treatment
with the sodium-glucose cotransporter-2 inhibitor,
canagliflozin, seemed to lower angiopoietin-2 levels,
contributing to the 10% protective effect on the pri-
mary composite outcome.41 Beyond activating tubulo-
glomerular feedback, proposed mechanisms
contributing to the protective effects of sodium-glucose
cotransporter-2 inhibitors include optimization of en-
ergy utilization, promotion of cellular renewal, atten-
uation of sympathetic tone, and improvement of
vascular function.64 Endothelial protection through
inhibition of angiopoietin-2 by canagliflozin may
explain the beneficial effects on endothelial dysfunc-
tion from sodium-glucose cotransporter-2 inhibitors,
suggesting that angiopoietin-2 might be a mediator and
reinforcing the promising potential of angiopoietin-2-
targeting therapy.
The Pathophysiological Roles of Angiopoietin-2

Learnt from the Laboratory
Angiopoietin-2 and Endothelial Activation

The vascular structure comprises diverse cell types,
including endothelial cells, perivascular pericytes, and
surrounding connective tissue. Endothelial cells serve
as a physical barrier that regulates vascular perme-
ability and angiogenesis. Angiopoietin-1 induces Tie-2
phosphorylation, activating downstream Akt/phos-
phoinositide 3-kinase and endothelial nitric oxide
Kidney International Reports (2024) 9, 3375–3385
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synthase, ensuring endothelial survival and vascular
stability. In addition, Tie-2 activation inhibits nuclear
factor kappa B signaling, thereby reducing leukocyte
recruitment and mitigating inflammation.

In situations of inflammation and hypoxia, activated
endothelial cells release angiopoietin-2, thereby medi-
ating endothelial cell migration, inflammation, and
increased cell permeability.16 In the presence of endo-
theliotropic cytokines such as VEGF and tumor ne-
crosis factor-a, activated endothelial cells proliferate
and migrate, initiating the angiogenic cascade.65,66 This
is demonstrated by increased placental angiopoietin-2
expression in the first trimester of normal pregnancy,
facilitating vascular remodeling to meet the heightened
metabolic demands of the placenta.67,68 Endothelial
activation and proliferation are also observed in the
early phase of kidney fibrosis, potentially mediated by
angiopoietin-2.69,70

In the absence of survival signals and endothelio-
tropic cytokines, angiopoietin-2-activated endothelial
cells undergo apoptosis and vascular disintegra-
tion.9,66,71 A previous study demonstrated that
angiopoietin-2 promotes apoptosis of hyaloid vascular
endothelial cells in the presence of Wnt ligands from
resident macrophages. Angiopoietin-2 stimulates
macrophage Wnt7b signaling, which induces cell cycle
entry of endothelial cells, while simultaneously inhib-
iting endothelial survival signals, leading to endothelial
apoptosis and vascular regression.72 In advanced kid-
ney fibrosis, activated Wnt and angiopoietin-2
signaling in fibrotic kidneys causes endothelial
apoptosis without the survival signal from angiopoie-
tin-1.13 Dysregulated angiopoietin-2 may autocrinally
drive endothelial phenotype from quiescent to acti-
vated, leading to the perspective of targeting activated
endothelium by angiopoietin-2 inhibition in kidney
diseases.

Context-Dependent Agonist and Antagonist Role of

Angiopoietin-2

Angiopoietin-2 plays a significant role in both angio-
genesis and lymphatic vascular development. During
the early stages of mouse fetal and neonatal develop-
ment, angiopoietin-2 is expressed in endothelial cells of
lymphatic sacs and vessels, which express lymphatic
vessel endothelial hyaluronan receptor 1 or prospero
homeobox 1. The absence of angiopoietin-2 results in
impaired embryonic lymphangiogenesis, leading to
conditions such as lymphedema and chylous ascites.73

Mice lacking angiopoietin-2 display dysfunction in
both large and small lymphatic vessels, which can be
rescued by angiopoietin-1 replacement. These findings
suggest that angiopoietin-2 acts as an agonist, rather
than an antagonist, of lymphatic endothelial Tie-2
Kidney International Reports (2024) 9, 3375–3385
receptors.74 This indicates a potential therapeutic
application for angiopoietin-2 inhibition in inflamma-
tory lymphangiogenesis, such as cancer metastases and
transplant rejection.75

The context-dependent role of angiopoietin-2 is also
influenced by the presence of a Tie-2 phosphatase,
VEPTP (also known as PTPRb), which downregulates
Tie-2 by dephosphorylating the intracellular domain
(Figure 1a). VEPTP is expressed in CD31þ cells but not
in prospero homeobox 1þ cells, indicating its absence
in the lymphatic endothelium. A strategy that com-
bines VEPTP inhibition with angiopoietin-2 stimula-
tion can restore the agonistic function of angiopoietin-2
on Tie-2 receptors in vascular endothelial cells.76 In the
presence of VEPTP, increased angiopoietin-2-to-angio-
poietin-1 ratios cause Tie-2 inactivation and vascular
destabilization, resulting in increased vascular perme-
ability and inflammation. Paradoxically, in the absence
of VEPTP in the lymphatic endothelium, angiopoietin-2
acts as a potent agonist of Tie-2 (Figure 1b). A ran-
domized trial in diabetic macular edema evaluating the
effects of AKB-9778, a small molecule inhibitor of
VEPTP, showed benefits when combined with VEGF
suppression, possibly through Tie-2 activation and
enhanced vascular stability.77 Although preclinical
models have shown renal protective effects from the
genetic deletion of VEPTP in ischemic and diabetic
injury, VEPTP inhibition provides another therapeutic
strategy by manipulating angiopoietins/Tie-2 signaling
in kidney diseases.78,79

Angiopoietin-2, Integrin and Cellular Integrity

Endothelial barrier function relies on cell-cell junctions
and intracellular signaling pathways, with Tie-2
phosphorylation and activation being crucial elements
(Figure 1a). Dysfunction in these mechanisms can result
in vascular leakage, inflammatory diseases, and
abnormal angiogenesis. Notably, transgenic over-
expression of angiopoietin-2 disrupts vascular forma-
tion more significantly than Tie-2 or angiopoietin-1
inhibition, suggesting that angiopoietin-2 involves
additional signaling pathways.9 Angiopoietin-2 in-
fluences cell-cell junctions through both Tie-2-
dependent and Tie-2-independent mechanisms. Integ-
rins, ab heterodimeric receptors, anchor endothelial
cells to the extracellular matrix and are essential for
maintaining endothelial barrier function.80,81 Hetero-
dimers of integrin a5 and b1, abundant in activated
and angiogenic endothelial cells, serve as major re-
ceptors for fibronectin, regulating cell adhesion and
extracellular matrix deposition. Models of tumor me-
tastases have revealed that blocking angiopoietin-2
improves endothelial cell-cell junctions, enhances
endothelial integrity, and reduces metastatic
3379
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dissemination.82 Unlike angiopoietin-1, angiopoietin-2
activates b1 integrin, leading to cytoskeletal rear-
rangement and endothelial destabilization (Figure 1a
and c).83 Angiopoietin-2 can directly compromise
endothelial cell integrity by activating the b1 integrin
pathway independent of Tie-2 receptor signaling.
Inhibiting b1 integrin improves endothelial integrity
in lipopolysaccharide-induced endotoxemia through
angiopoietin-2-mediated b1 integrin activation.83,84

Nevertheless, in vitro studies showed that TIE-2
knockdown reduces endothelial CCL2 expression,
not integrin knockdown.13 Further research is neces-
sary to comprehensively elucidate the interplay be-
tween these pathways and explore their therapeutic
implications in kidney diseases characterized by dis-
rupted endothelial cell junctions and vascular
dysfunction.

Angiopoietin-2 and Inflammation

Angiopoietin-2 levels are elevated in several inflam-
matory diseases, including sepsis, diabetes mellitus,
atherosclerosis, metabolic syndrome, and autoimmune
vasculitis.22,32,38,49,85-88 The proinflammatory effect of
angiopoietin-2 is context-dependent, influenced by
cytokines, including VEGF, tumor necrosis factor-a,
histamine, and bradykinin.65,89 Under inflammatory
stimuli, angiopoietin-2 mediates the expression of
adhesion molecules such as intercellular adhesion
molecule-1 and vascular cell adhesion molecule-1 in
sensitized endothelial cells, highlighting its role in
modulating endothelial phenotype and responsiveness
(Figure 1c).66

In acute inflammation and chronic phase post
myocardial infarction, angiopoietin-2 elicits myeloid
cell infiltration through b2 and a5b1 integrins.90,91

Phosphorylation of the vascular endothelial (VE)-
cadherin/b-catenin complex, induced by VEGF/VEGF
receptor 2 and Src signaling, compromises endothelial
integrity, promotes vascular leakage, and facilitates
leukocyte migration and extravasation. Conversely,
angiopoietin-1 rescues VEGF-induced vascular
permeability and plasma leakage by reducing serine
665 phosphorylation of VE-cadherin, preventing Src
activation, and maintaining endothelial integrity.8,92-
95 In addition, the association between VEPTP and
the Tie-2 receptor stabilizes VE-cadherin and endo-
thelial barrier integrity in vascular endothelial cells.96

It is reasonable to speculate that angiopoietin-2 con-
tributes to increased vascular permeability and plasma
leakage by antagonizing angiopoietin-1 in vascular
endothelial cells. However, angiopoietin-2 inhibition
blocks tyrosine residue phosphorylation of VE-
cadherin and causes defective junctions in lymphatic
3380
endothelial cells.97 Investigating the mechanisms
involving angiopoietin-2 and endothelial adherens
junction VE-cadherin in vascular permeability and
inflammation is essential.

Our studies show that angiopoietin-2 stimulates
endothelial chemokines and adhesion molecules,
increasing macrophage infiltration in the aorta of mice
after subtotal nephrectomy (Figure 1c).33 Angiopoietin-
2 inhibition, through angiopoietin-1 overexpression or
a peptide-Fc fusion inhibitor L1-10, attenuates kidney
fibrosis in murine models of unilateral ureteral
obstruction and unilateral ischemia–reperfusion injury.
Angiopoietin-2 inhibition also leads to reduced
macrophage infiltration, microvascular rarefaction, and
vascular endothelial cell apoptosis in injured kidneys.
By inhibiting angiopoietin-2, the expression of che-
mokine C-C motif ligand 2 is reduced in kidney endo-
thelial cells, indicating a shift toward an
antiinflammatory endothelial phenotype (Figure 1c).13

Another factor is the involvement of Tie-2-expressing
monocytes/macrophages, a subpopulation of tumor-
associated macrophages critical in tumor-associated
inflammation. Endothelial angiopoietin-2 stimulates
proangiogenic growth factors from Tie-2-expressing
monocytes/macrophages, enhancing angiogenesis in
tumor progression.98 Research on Tie-2-expressing
monocytes/macrophages in kidney diseases and
inflammation is still lacking. These findings underscore
the therapeutic potential of angiopoietin-2 inhibition in
various inflammatory kidney diseases.

Angiopoietin-2 and Angiotensin II (Ang II)

Ang II, a primary effector of the renin-angiotensin-
aldosterone system, critically influences vascular
remodeling and angiogenesis. Acting through not only
its type 1 receptor but also through the type 2 receptor,
Ang II induces angiogenic growth factors, including
VEGF and angiopoietin-2, in various experimental
models.99-103 Ang II stimulates VEGF release from
glomeruli and retina, exacerbating conditions such as
diabetic nephropathy and diabetic retinopathy.104-108

In bovine retinal endothelial cells, Ang II induces
angiopoietin-2 expression independently of VEGF via
protein kinase C and mitogen-activated protein kinase
pathways, contributing to angiogenesis.100 These ef-
fects may lead to glomerular cell proliferation, poten-
tially playing a role in the progression of kidney
diseases. Aside from the widely used AT1 receptor
antagonists, the Reno protective effects of renin-
angiotensin-aldosterone system inhibition should
involve nonhemodynamic mechanisms, engaging
separate angiopoietin-2/Tie-2 and VEGF receptor
signaling pathways.
Kidney International Reports (2024) 9, 3375–3385
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Conclusions and Perspectives

Angiopoietin-2 has emerged as a significant biomarker
and therapeutic target in kidney diseases. Laboratory
experiments have elucidated its involvement in
angiogenesis, context-dependent agonist and antago-
nist functions, cellular integrity, and inflammation,
thereby highlighting its complexity in kidney pathol-
ogy. Understanding the interactions between
angiopoietin-2 and endothelial factors, including
integrins, VE-cadherin, and VEGF, is essential for
addressing vascular permeability and inflammation in
kidney diseases.

Elevated angiopoietin-2 levels are consistently
linked to endothelial dysfunction, inflammation, and
vascular instability, contributing to the progression
and severity of AKI, CKD, and albuminuria. The ther-
apeutic potential of angiopoietin-2 inhibition offers a
promising avenue for improving kidney health and
outcomes. Future research should focus on clinical
trials to validate the efficacy of anti–angiopoietin-2
therapies, explore personalized medicine approaches,
and further elucidate the molecular mechanisms un-
derlying angiopoietin-2’s role in kidney disease path-
ogenesis. These efforts could lead to innovative
treatments targeting the vascular dysfunction and in-
flammatory components of kidney diseases, ultimately
enhancing patient care and prognosis.
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