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Abstract
Systematic mappings of the effects of protein mutations are becoming increasingly popular.

Unexpectedly, these experiments often find that proteins are tolerant to most amino acid

substitutions, including substitutions in positions that are highly conserved in nature. To

obtain a more realistic distribution of the effects of protein mutations, we applied a laboratory

drift comprising 17 rounds of random mutagenesis and selection of M.HaeIII, a DNAmethyl-

transferase. During this drift, multiple mutations gradually accumulated. Deep sequencing

of the drifted gene ensembles allowed determination of the relative effects of all possible

single nucleotide mutations. Despite being averaged across many different genetic back-

grounds, about 67% of all nonsynonymous, missense mutations were evidently deleterious,

and an additional 16% were likely to be deleterious. In the early generations, the frequency

of most deleterious mutations remained high. However, by the 17th generation, their fre-

quency was consistently reduced, and those remaining were accepted alongside compen-

satory mutations. The tolerance to mutations measured in this laboratory drift correlated

with sequence exchanges seen in M.HaeIII’s natural orthologs. The biophysical constraints

dictating purging in nature and in this laboratory drift also seemed to overlap. Our experi-

ment therefore provides an improved method for measuring the effects of protein mutations

that more closely replicates the natural evolutionary forces, and thereby a more realistic

view of the mutational space of proteins.

Author Summary

Understanding and predicting the effects of single nucleotide polymorphisms (SNPs) is of
fundamental importance in many fields. Systematic experimental mappings of the effects
of such mutations within a given gene/protein comprise an essential experimental tool for
determining protein function and for refining models of protein evolution, as well as an
important resource for improving prediction algorithms. Here, we present the results of a
laboratory system that mimics the manner by which protein sequences diverge in nature: a
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prolonged process of gradually accumulating randommutations that retain the protein’s
structure and function. The change in frequencies of mutations over generations, as
obtained by deep sequencing, enabled us to assess the relative effects of all possible SNPs
at the background of an accumulating number of mutations. Compared to previous
reports, we found that> 80% of all possible amino acid exchanges have potential deleteri-
ous effects, with 67% being clearly deleterious. Tolerance vs. purging of mutations in our
prolonged drift also showed better correlation with natural diversity. Overall, our experi-
mental setup provides a better understanding of how protein sequences diverge in nature,
plus a new basis for improving the prediction accuracy of the effects of protein mutations,
and specifically of SNPs.

Introduction
The ability to reliably measure and predict the effects of amino acid mutations in proteins is
of fundamental importance to protein engineering and design and for understanding protein
evolution and human genetic variation. Data regarding the effects of individual mutations orig-
inate from two major sources: sequence analysis of natural proteins, and laboratory experi-
ments. Phylogenetic analyses enable insights regarding how protein sequences diverge [1, 2]
and what dictates the purging of mutations [3, 4]. Protein phylogenies also allow us to predict
whether a given mutation might be deleterious or neutral, assuming that the fitness effects of
mutations correlate with their occurrence in orthologous sequences (reviewed in [5–7]). The
algorithms are relatively accurate in predicting disease-causing mutations [8, 9]. However,
many nonsynonymous SNPs predicted to have a deleterious effect are not clearly associated
with a disease phenotype [10], either because they are rare [11] or because a deleterious effect
in a single gene often results in no phenotype at the organismal level [12]. Indeed, the effects of
mutations at the isolated protein and organismal levels do not necessarily overlap. Predictors
may also fail in assigning deleterious effects to mutations in highly conserved sites that when
mutated experimentally appear to be neutral [13]. Exhaustive datasets listing the effects of all
mutations within a given gene/protein, independently of organismal effects, would therefore
greatly improve prediction [14]. Systematic experimental mappings of the effects of mutations
within one given gene/protein are therefore crucial for understanding protein evolution, as
well as an attractive resource for improving predictions [15, 16] and for refining protein design
algorithms [17].

Experiments that systematically map the effects of mutations in a given protein are generally
conducted through either saturation mutagenesis, using NNS codons to diversify individual
sites [18–21], or random mutagenesis along the entire gene using error-prone replication [22].
In both cases, the diversified gene repertoires are subjected to selection that purges deleterious
mutations, and then sequenced to identify which mutations are tolerated. Recently, advanced
gene synthesis technologies and deep sequencing have yielded exhaustive mappings (for exam-
ples see [23–38]; reviewed in [16]). However, although deep mutational scanning provides a
powerful means of studying protein structure-function, there remain challenges that are yet to
be tackled [16]. Foremost, the relevance of the results of laboratory experimental mappings our
understanding of natural protein evolution may be limited.

Specifically, there is a disagreement between the trends indicated by experimental mappings
versus natural protein diversity. In silico analyses of natural protein diversities suggest that the
vast majority of mutations are deleterious [39–43]. Given enough drift, mutations at other sites
enable the acceptance of certain deleterious substitutions. But at a background of a given
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sequence, most substitutions would result in the loss of configuration stability and/or function
[41, 43–45]. Experimental mappings, however, mostly portray a different picture–the majority
of mutations are tolerated (for examples, see [25–27, 33, 36, 46, 47]). Accordingly, a poor corre-
lation between the acceptance of mutations in the laboratory and the occurrence of the same
exchanges in natural orthologs of the studied protein has been noted [25–27, 33, 36]. For exam-
ple, positions that are 75–90% conserved in Hsp90 tolerated a range of amino acids some of
which are not seen in any ortholog [25]. However, at lower expression levels, these mutations
did reveal deleterious fitness effects, thus indicating that the sensitivity of the experimental sys-
tem is a key parameter [48].

The comparison of results from different experimental mappings is also problematic. The
experiments not only address different proteins, but also apply different mutagenesis strategies
and methods of determining the effects of mutations. In some cases the measured effects of
mutations relate to growth of the host organism (e.g., antibiotics resistance) and in others to
the biochemical function of the targeted protein in isolation (e.g. levels of fluorescence, or of
DNAmethylation, as applied here). Nonetheless, the disagreement between tolerance in the
laboratory and occurrence amongst natural sequence raises several questions. Does the absence
of a given exchange within natural orthologs indicate its deleterious fitness effect, or does the
sparse and sporadic sampling of natural sequences prevents reliable prediction? Do laboratory
experimental setups adequately reproduce the constraints that shape protein sequences in
nature, or do tolerance or acceptance of a mutation in the laboratory have limited relevance to
the evolutionary history/future of a protein. Finally, obtaining a realistic distribution of the fit-
ness effects (DFE) of protein mutations remains a worthy goal [36, 46, 49, 50].

To address the above questions, and obtain a more realistic distribution of fitness effects of
protein mutations, we have set up a laboratory system that better mimics the manner by which
protein sequences diverge in nature. To this end, we performed 17 iterative rounds of random
mutagenesis and purifying selection. This laboratory experiment does not address crucial ele-
ments of natural drifts (mutation rates, population sizes, and organismal fitness demands). It
does, nonetheless, mimic the process of prolonged accumulation of mutations under purifying
selection to maintain the protein’s structural and functional integrity (hence the term ‘neutral
drift’). As a model, we used a bacterial DNA methyltransferase, M.HaeIII, which can be readily
placed under purifying selection in the laboratory. At different rounds along this prolonged
drift, the ensembles of gene variants that survived the purifying selection were subjected to
deep sequencing. The naïve, unselected mutational repertoire was similarly sequenced. This
enabled us to determine the frequency of occurrence, and hence the relative fitness effects of all
single nucleotide mutations in M.HaeIII. As described in the following pages, our results dif-
fered from those of other experimental mappings in several key respects.

Results

Laboratory drift of M.HaeIII
M.HaeIII is a DNA methyltransferase isolated fromHaemophilus aegyptius. Being part of the
bacterial restriction-modification system, this enzyme selectively methylates GGCC DNA
sequences, and thereby protects DNA from digestion by the cognate endonuclease, HaeIII.
Sequence specific methylation-restriction offers a facile way of performing laboratory evolu-
tion. As described in earlier works [51, 52] (S1 Fig), M.HaeIII's open reading frame was ran-
domly mutated using PCR with an error-prone polymerase, cloned into an expression plasmid
and transformed to E. coli. In each bacterium, the encoding plasmid is methylated, or not,
depending on whether the M.HaeIII gene variant it encodes is properly folded and functional.
Following ‘expression’ of the plasmid encoded M.HaeIII variants in individual bacteria, the
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plasmids were pooled and digested with HaeIII, thus selecting for M.HaeIII’s native specificity
[51, 52]).

The starting point for these experiments was a variant of M.HaeIII optimized for soluble
and functional expression in E. coli. This variant carried four consensus substitutions replacing
the amino acid in M.HaeIII with the one that dominates in all M.HaeIII’s orthologs [50]. For
the sake of simplicity we refer to this variant as wild-type M.HaeIII. These consensus substitu-
tions are likely to have a stabilizing, compensatory effect, and spontaneously accumulate in
accelerated, laboratory drifts. They may thus allow a larger variety of deleterious mutations to
be accepted, especially during the first rounds of mutagenesis [53].

In Haemophilus aegyptius, M.HaeIII is under a strong and constitutive selection pressure
imposed by the presence of the cognate restriction enzyme HaeIII–a DNase that would cause
chromosomal breaks unless the genome is methylated at all HaeIII sites. The HaeIII restric-
tion-modification system is naturally encoded by single copy chromosomal genes [54, 55]. In
our experimental system, M.HaeIII was encoded by a multi-copy plasmid (~400 copies per
cell). To avoid unrealistic enzyme doses, expression was driven from a tightly controlled pro-
moter with no induction. Although M.HaeIII’s levels inHaemophilus aegyptius are unknown,
its expression level in the E. coli cells of our experimental setup is extremely low (a similar
plasmid showed no detectible GFP signal when inducer levels were�20 μg/ml [56], and we
used no inducer). This basal expression level was nonetheless sufficient to enable wild-type
M.HaeIII to methylate all GGCC sites, not only in the encoding plasmid, but also within the
E. coli host's chromosome, as is the case with natural methyltransferases [51].

M.HaeIII underwent 17 rounds of random mutagenesis, at an average mutational rate of
2.2±1.6 nucleotide mutations per gene per generation followed by purifying selection (i.e.,
digestion of the encoding plasmids with HaeIII nuclease). To avoid false positives due to muta-
tions in GGCC sites, the applied M.HaeIII’s coding sequence (ORF) contained no GGCC sites
whist the encoding plasmid contained 14 such sites including three sites within the antibiotic
selection marker. Each round, selection was repeated three times (i.e., repeated isolation of
plasmid DNA pool from the grown bacteria, digestion with HaeIII, and transformation into
E. coli). Subsequently, the drifted M.HaeIII’s ORF was mutagenized and recloned into a fresh
plasmid for the next round of selection. We ensured the same level of selection pressure and
the absence of bottlenecks throughout:�105 independent transformants were passed to the
next round (effective population size, Ne > 105). The drifting M.HaeIII thus met the conditions
that essentially eliminate the possibility of mutations fixing by chance (1/Ne <10−5). Mutations
that were enriched are therefore likely to have provided a selective advantage, most typically, as
shown below, a compensatory effect.

By the 17th round, the drifted genes carried on average of 18±1.6 mutations per gene in
total, and 9.6±0.7 nonsynonymous mutations per gene (determined in parallel by deep
sequencing and conventional Sanger sequencing of the full length ORFs of randomly chosen
genes; see ‘Dynamics of the laboratory drift‘ below).

Mapping M.HaeIII’s mutational space
The mutational spectrum of the unselected, naïve gene pool (dubbed G0), and of the pools
after three (G3), seven (G7) and seventeen (G17) rounds of selection, were analyzed by Illu-
mina high-throughput sequencing. Mutations were identified using a script that aligned all
codon triplets to the reference gene, wild-type M.HaeIII (S1 File). The background frequency
that stems from the Illumina sequencing PCRs and sequencing errors was determined using
the sequencing data for the region upstream of the randomly mutated ORF of M.HaeIII (the
N-terminal fused His tag that was part of the encoding vector and was hence not subjected to
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mutagenesis). In this manner, the frequencies of all single, double and triple nucleotide muta-
tions were determined by the fraction of sequence contigs that carry a mutation out of all con-
tigs that covered the respective position. The amino acid mutational frequencies were
subsequently determined by summing up the frequencies of all codon triplets that yield a given
amino acid (See S1, S2 and S3 Files).

In theory, M.HaeIII’s sequence space includes 6,580 possible amino acid mutations; i.e., 329
positions, each mutated to all other 19 different amino acids or to a stop codon (Table 1).
However, the immediate mutational space originates from single nucleotide mutations. Subse-
quent nucleotide mutations within the same codon were found (dubbed double and triple
mutations; Table 1), but at very low frequencies (in G17—an average of 0.052% and 0.003% of
nonsynonymous double and triple mutations). However, these double and triple mutations
only appeared at later stages, and after many other positions had changed due to single nucleo-
tide mutations. Single nucleotide missense mutations also dominate polymorphism, and thus,
our analysis focused on their effects. We thus examined all 1,957 possible missense single point
mutations, namely all amino acid exchanges accessible by single nucleotide mutations;
Table 1). The effects of stop codons were also examined as described in ‘Tolerance of nonsense
mutations’.

All possible single nucleotide mutations were detected in the unselected G0 library at the
raw data level– 329X9 = 2,961 possible single nucleotide mutated codons, that in turn yield
1,957 possible single nucleotide amino acid mutations (raw data provided as S2 File). However,
77 mutations at G0 were observed at lower than background frequencies. That a mutation is
observed under what we defined as the background frequency is not necessarily an indication
that it did not occur. The background frequency was derived from averaging the frequencies

Table 1. The theoretically possible vs. observedmutational space of M.HaeIII.

Nonsynonymous Synonymous Mutations

Missense mutations Nonsense Mutations (Stop
codons)

1 nt 2 nt 3 nt 1 nt 2 nt 3 nt 1 nt 2 nt 3 nt

All possible mutations 1,957 3,190 1,104 125 145 59 321 55 18

Before selection:

Observed G0 1,880* 8 0 125 0 0 321 0 0

After selection:

Observed G3 1,401 26 0 33 0 0 321 1 0

Observed G7 1,302 41 0 24 0 0 320 5 0

Observed G17 1,374 228 1 11 1 0 320 14 0

Total observed after selection 1,541 275 1 36 1 0 321 16 0

Total observed (including G0) 1,915 281 1 125 1 0 321 16 0

Coverage (drift) 100% 8.8% 0.1% 100% 0.7% 0.0% 100% 29.1% 0.0%

The number of 'all possible mutations’ is the number of all possible mutations derived from the DNA sequence of wild-type M.HaeIII (329 codons), either

nonsynonymous mutations (missense or nonsense) or synonymous mutations. The number of 'observed' mutations comprises the sum of all the

mutations identified with above background frequencies in each library. 'Coverage' relates to the percentage of the total observed mutations out of all

possible mutations.

* 1,880 mutations were observed at G0 with �0 ‘net’ frequencies, and 77 mutations were observed at lower than background frequencies. Out of these,

35 were detected in G3, G7 and/or G17. The remaining 42 mutations were also observed with under background frequencies in G3, G7 and G17, and

were assigned a ‘net’ frequency of 0 (i.e., as eliminated by selection, marked in red in S3 File).

‘1/2/3 nt’–all mutations accessible through single/double/triple nucleotide substitutions of a given codon.

doi:10.1371/journal.pcbi.1004421.t001
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for relatively few positions compared to the measured ones (20 positions versus 329) and thus
it is conceivable that a small fraction of the latter (<1%) will deviate from this average. Indeed,
out of the 77 mutations, 35 were detected in the later, selected rounds, and some were even
enriched. The remaining 42 mutations were also observed with under background frequencies
in later rounds. We therefore assume that they were strongly purged and assigned them as
eliminated mutations. Overall, our analysis related to the complete set of 1,957 single nucleo-
tide missense mutations with>98% (1,915/1,957) of these being covered with complete
confidence.

The spectrum and rate of mutagenesis
The spectrum of mutations covered by our experiment was dictated by the genetic code, M.
HaeIII’s DNA sequence, and by the nucleotide substitution matrix that underlined our muta-
genesis protocol. Although we used an engineered, error-prone DNA polymerase, the obtained
spectrum of mutations was similar to that naturally observed in E. coli. Specifically, a transi-
tion/transversion ratio of ~1.3 was observed in our naïve repertoire (G0) similar to what has
been observed in the comparison of closely related E. coli genomes (0.91 or 1.3, [57, 58], S1
Table).

The variability in mutation frequencies along M.HaeIII positions in the unselected G0
library was relatively high (1.07 ± 0.24% mutations/position). Thus, mutation frequencies var-
ied not only by the type of base substitution (e.g. transitions, transversion; S2A Fig), but also
according to the position of the mutated base along M.HaeIII’s gene. To verify that this vari-
ability is not the outcome of limited sampling in G0 (the naïve repertoire that underwent only
one round of mutagenesis) we compared the frequencies of synonymous mutations in the
unselected library, G0, and in the selected one, G3. As expected, synonymous mutations were
under relatively weak selection (detailed below) and thus their frequencies, certainly within the
early rounds, largely reflect the rate of mutagenesis. Indeed, the frequencies of synonymous
mutations in G0 and in G3 were highly correlated (R = 0.9, S2B and S2E Fig). By G17, the cor-
relation was still significant although weaker indicating some degree of selection on synony-
mous mutations (R = 0.6; S2C Fig).

The observed frequencies in the unselected library, f(G0), therefore appear to provide a reli-
able measure for the positional rates of occurrence of mutations in all 17 mutagenesis steps of
the drift. However, for the 77 mutations (out of 1,957) with lower than background frequencies
in G0 (Table 1), the rate of the occurrence, f(G0), was based on the base substitution table
derived from G0 (S2A Fig).

The relative fitness effects of mutations
Mutations were retained, purged or enriched in each round of our experiment. The change in
frequency along the drift therefore reflects the effects of selection per each mutation or, as
defined here, their relative fitness effects (Wrel). The frequency of a given mutation in a given
round (f(Gn)) is dictated by its relative fitness (Wrel), and relates to the frequency of this muta-
tion in the previous round, f(Gn-1) plus the frequency of re-occurrence at round n. For exam-
ple, the frequencies of neutral mutations (Wrel = 1) are essentially equal to their cumulative
rate of occurrence (f(Gn) ~ n f(G0)). Conversely, the frequencies of deleterious mutations (Wrel

< 1) decrease from round to another, in an exponential manner, and their observed frequency
is lower than expected from their rate of occurrence (f(Gn)< n f(G0)). The opposite applies for
beneficial mutations (Wrel > 1).

However, since the genes in our drifting ensembles contained multiple mutations, and the
applied sequencing approach does not reveal the specific mutational composition of individual
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genes, theWrel values measured here relate to the effect of a given mutation at the background
of many different genetic compositions. For better and for worse, the measuredWrel values
therefore represent an average that ignores epistatic interactions between mutations. This aver-
aging has obvious drawbacks, and may cause biases due to hitchhiking and clonal interference
(e.g. a highly deleterious mutation would result in every other mutation on the same gene hav-
ing a lowWrel) However, under our experimental setup, new mutations are reintroduced in
each round of mutagenesis, allowing multiple resampling of the effects of each given mutation
at the background of many different mutations, and thus reducing the probability of hitchhik-
ing. Indeed, as indicated below, there are clear indications that hitchhiking and clonal interfer-
ence did not bias the observedWrel values. We also note that, in general, allele frequencies,
and thereby fitness effects of mutations, are measured in populations comprising individuals
with different genetic backgrounds with certain caveats [59–61]. Foremost, the number of
sequenced alleles needs to be in the order of thousands [59]–a demand that is amply met in our
experiment. Thus, if a mutation is on average purged (Wrel <<1), we can conclude that it has
deleterious effects on M.HaeIII’s structure and/or function independently of the specific
genetic background.

We used the following model to derive the relative fitness effect,Wrel, from the mutational
frequencies observed in the selected versus unselected libraries (see Methods for details).

Following the first round:

f ðG1Þ ¼ f ðG0Þ �Wrel;

For the subsequent rounds, the observed mutational frequency, f(Gn), is derived from the
mutations inherited from the previous round f(Gn-1) plus the mutations newly incorporated in
this round. The latter corresponds to the frequency of this mutation in the naïve, unselected
ensemble, f(G0), as discussed above:

f ðGnÞ ¼ ½f ðGn�1Þ þ f ðG0Þ� �Wrel ð1Þ

Eq (1) corresponds to a geometrical series that has no closed solution. Thus, to derive the

Wrel values of each mutation, we calculated the expected frequency ratio (f ðGnÞ
f ðG0Þ) for a series of

discreteWrel values from absolutely deleterious (Wrel = 0) to highly beneficial (Wrel = 3.5; see
Methods and S3 Fig). In this manner, each of the 1,957 amino acid mutations measured by the
deep sequencing (each derived from the respective single nucleotide mutation; Table 1), were
assigned aWrel value.

We used the variability in the relative fitness effects of synonymous mutations and nonsense
mutations to categorize the effects of nonsynonymous mutations [36]. The distribution of
synonymous mutations was consistent with their low impact on fitness relative to nonsynon-
ymous mutations (Fig 1A, ‘Syn’). The averageWrel value, and standard deviation, for synony-
mous mutations were found to be 0.82±0.12 for G3, 0.84±0.15 for G7, and 0.91±0.1 for G17
(Table 2). Given our hypothesis that other works overestimated the tolerance of mutations, we
preferred to under- rather than over-estimate the fraction of deleterious mutations. Accord-
ingly, for the assignment of a deleterious fitness effect, we chose a conservative threshold of
two standard deviations under the mean of the relative fitness effect of synonymous mutations
(�X � 2SD). The �X � 2SD values obtained were 0.58, 0.55 and 0.72 for G3, G7 and G17, respec-
tively (Table 2) yielding an average of 0.62 for all 3 ensembles. We therefore usedWrel � 0.6 as
the threshold for indicating purging and consequently a deleterious fitness effect of a mutation.
However, since, as detailed below, mutations withWrel values of 0.6–0.8 were found to be sys-
tematically purged as the drift progressed, suggesting that in effect they are not neutral. This
Wrel range was therefore classified as ‘nearly-neutral’ (Fig 1A).
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Fig 1. The distribution of fitness effects of mutations in M.HaeIII's drift. a. The distributions of fitness
effects of all mutations observed in the sequenced rounds of the drift (G3, G7 and G17) by their relative
fitness values,Wrel. Mutations were binned by unit interval values ofWrel = 0.1, ranging fromWrel = 0 to > 1.4
(missense: n = 1,957; nonsense: n = 125; synonymous: n = 321). b. Distribution of the frequencies of
mutations within each given range ofWrel values. The frequencies of all mutations within a givenWrel range
were summed up and divided by the sum of frequencies for all mutations within the same round. c. Log-
values of the fold changes in the frequencies per eachWrel range in G17 relative to G3.

doi:10.1371/journal.pcbi.1004421.g001
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The X�þ2SD threshold was similarly applied for categorizing beneficial mutations, thus
stetting the threshold for beneficial mutations asWrel > 1.1. Within this threshold, only 4 out
of 321 synonymous mutations were defined as beneficial relative to 33 nonsynonymous muta-
tions. Indeed, within the 0.6–1.1Wrel range defined here as neutral,>93% of the synonymous
mutations observed in the three selected ensembles (G3, G7, G17) were assigned as neutral
(Table 2). The potential deleterious or beneficial effects of the remaining 7% were not analyzed
here. The selection acting on synonymous mutations may, amongst other factors, relate to dif-
ferent codon usage in E. coli. Overall, given the applied thresholds, the likelihood of misassign-
ment of neutral mutations as deleterious or beneficial was< 4% (Table 2).

TheWrel threshold for defining ‘highly deleterious’mutations was derived from the distri-
butions of nonsense mutations that are, beyond doubt, deleterious (see also ‘Tolerance of non-
sense mutations‘ below). The averageWrel value, and standard deviation, for nonsense

Table 2. Distributions of the relative fitness effect values (Wrel) for all possible single nucleotidemutations along M.HaeIII gene.

G3 G7 G17

nonSense Syn nonSyn nonSense Syn nonSyn nonSense Syn nonSyn

counts (n) 125 321 1,957 125 321 1,957 125 321 1,957

X� (Wrel) 0.042 0.82 0.40 0.028 0.84 0.36 0.020 0.91 0.41

Standard Deviation 0.15 0.12 0.38 0.12 0.15 0.36 0.11 0.10 0.38

X��2SD 0.58 0.55 0.72

X��SD 0.70 0.70 0.82

X�þ2SD 0.34 1.06 0.27 1.13 0.24 1.11

Fraction of mutations (as in Fig 1A)

Deleterious (Wrel �0.6) 96.8% 2.5% 67.5% 98.4% 4.0% 70.3% 98.4% 0.3% 63.1%

Neutral (0.6<Wrel�1.1) 3.2% 95.6% 29.8% 1.6% 93.1% 27.6% 1.6% 98.4% 35.3%

Beneficial (Wrel>1.1) 0.0% 1.9% 2.7% 0.0% 2.8% 2.1% 0.0% 1.2% 1.7%

Fraction of the mutations by their frequencies (as in Fig 1B)

Deleterious (Wrel�0.6) 0.10% 0.2% 15.0% 0.05% 0.3% 8.7% 0.01% 0.0% 2.9%

Neutral (0.6<Wrel�1.1) 0.13% 41.7% 40.1% 0.04% 46.4% 37.5% 0.03% 48.0% 36.3%

Beneficial (Wrel>1.1) 0.00% 0.8% 2.0% 0.00% 2.6% 4.4% 0.00% 2.5% 10.3%

Total fraction 0.23% 42.7% 57.0% 0.09% 49.3% 50.6% 0.04% 50.5% 49.4%

N per position 0.003% 0.53% 0.71% 0.002% 1.11% 1.14% 0.002% 2.97% 2.91%

‘nonSense’—refers to the all possible stop codons that can be derived by single nucleotide mutations from the reference gene.

‘Syn’–refers to all the possible synonymous mutations giving the same amino acid as found in the reference gene and can be derived by single nucleotide

mutations. Note that 8 positions in the reference gene with Met and Trp that are encoded by one codon only were excluded.

‘nonSyn’–refers to all the possible nonsynonymous, missense mutations that can be derived by single nucleotide mutations from the reference gene.

‘X� (Wrel)’–refers to the relative average Wrel value for all possible single nucleotide mutations.

‘X��2SD ‘ for the synonymous mutations (Wrel � 0.6, on average) was set as the upper threshold for ‘deleterious’ mutations.

‘X��SD ‘ for the synonymous mutations was used as sub-category of ‘neutral’ mutations, categorizing mutation with Wrel values in the range of 0.6–0.8 as

‘nearly-neutral’.

The ‘X�þ2SD ‘ of the synonymous mutations (~1.1 on average) was set as the upper threshold of neutral mutations, thus categorizing mutations with Wrel >1.1

as ‘beneficial’.

The ‘X�þ2SD ‘ of the nonsense mutations (Wrel � 0.3, on average) was set as the upper threshold defining ‘highly-deleterious’ mutations.

‘Neutral’, ‘Deleterious’ and ‘Beneficial’ show the fractions of mutations found within the defined thresholds of Wrel values for each category.

‘N per position’ is the average mutational frequency per position observed in each library for the cited type of mutation (nonsense, synonymous or

nonsynonymous).

The ‘Fraction’ is the fraction of the cited type of mutation out of all mutations observed in a given round.

doi:10.1371/journal.pcbi.1004421.t002
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mutations were found to be 0.042±0.15 for G3, 0.028±0.13 for G7, and 0.020±0.11 for G17
(Table 2). Thus, a threshold of �X þ 2SD, i.e.,Wrel � 0.3, was chosen for categorizing highly
deleterious mutations.

In summary, nonsynonymous mutations were categorized as ‘Deleterious’ if theirWrel val-
ues were� 0.6, and ‘Highly deleterious’ ifWrel � 0.3 (including eliminated mutations,Wrel =
0, i.e., when the net frequency of a mutation was zero). Mutations were assigned as ‘Nearly-
neutral’ if their frequencies in the selected populations were in the range ofWrel = 0.6–0.8
(�X � 2SD of the distribution of synonymous mutations) and ‘Neutral’ in the range ofWrel =
0.8–1.1. Finally, enrichment in the selected repertoires (Wrel >1.1, �X þ 2SD of the distribution
of synonymous mutations) indicated a ‘Beneficial’ fitness effect.

The distribution of fitness effects of mutations
As can be seen in Fig 1A, the distribution of relative fitness effects of synonymous mutations
centered near neutrality (Wrel ~1; see Table 2 for mean and standard deviation). In contrast,
the distribution of the nonsynonymous mutations encompasses primarily deleterious muta-
tions. Overall, ~67% out of all the possible nonsynonymous single nucleotide mutations
(~1,310/1,957) were found to be deleterious, even within the conservative threshold ofWrel

of� 0.6 (Table 2, ‘nonSyn’). Removal of the 42 mutations that were observed below back-
ground frequency in all repertoires, and assigned as eliminated, has almost no impact on the
fraction (~1,268/1,915 = ~66%). Note that Fig 1A shows the derived fitness effects of all possi-
ble single nucleotide mutations regardless of their frequencies in the drifting populations.
Indeed, a similar fraction was assigned as deleterious in all the three selected libraries (Fig 1A,
‘nonSyn’). The effect that selection had on purging deleterious mutations is clearly seen in the
distribution of their frequencies (Fig 1B). This distribution shifted during the drift: from ~15%
of all mutations denoted as deleterious in G3, to only ~3% in G17 (Fig 1C). Further, by our
conservatively chosen threshold, mutations with assignedWrel from 0.6 to 0.8 were considered
as ‘Nearly-neutral’. However, mutations within thisWrel range were systematically purged
throughout the drift, from ~22% in G3 to ~7% in G17 (Fig 1C), indicating small yet consistent
deleterious effects. Further, as discussed below, these mutations were accepted at the back-
ground of beneficial mutations, most likely owing to their compensatory effect (as discussed in
the section below). If all mutations withWrel � 0.8 are considered, then ~83% of all possible
mutations in M.HaeIII have a deleterious effect. In agreement with the reduction in the fre-
quency of deleterious mutations, the total frequency of beneficial mutations (Wrel > 1.1)
increased consistently, from ~2% in G3 to ~10% in G17.

Consistent with the distribution ofWrel values being the same along the drift (Fig 1A), we
also observed that theWrel values per given mutation remain largely the same along the drift,
i.e., when derived from the sequenced frequencies in G3, G7 or G17 (S3B and S3C Fig). This
was despite the fact that the average number of mutations per gene increased form 2.4 in G3 to
9.6 in G17. It therefore seems that hitchhiking and/or clonal interference did not significantly
bias our data, and that the derivedWrel values that average the effect of a given mutation over
different genetic background are relevant.

Dynamics of the laboratory drift
The discrepancy between our results and the results of other experimental mappings is likely
due to differences between measuring the effect of a single, or at most a few mutations, to mea-
suring the effect of accumulated mutations over a long mutational drift. To support this
hypothesis, we examined the rate of accumulation of mutations along the various rounds of the
drift. To this end, in addition to deep-sequencing of the gene ensembles of 3 rounds (G3, G17
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and G17), we also performed conventional Sanger sequencing of the full length ORFs of ran-
domly picked variants from each round.

As expected, the total number of mutations per gene (Nt) increased linearly throughout the
drift, certainly up to the 15th round, at the average of 1.16 mutations/gene/round (Fig 2A).
However, as the drift progressed, the intensity of purged nonsynonymous mutations increased
as indicated by the ratio of nonsynonymous to synonymous mutations (Na/Ns; whereby Na

denotes the average frequency of nonsynonymous mutations and Ns the average frequency of
synonymous mutations; Fig 2B). Specifically, the first round (G1) exhibited a Na/Ns ratio of
2.6, only mildly lower than 3.2 –the ratio in G0, the unselected repertoire. However, by the 5th

round, the Na/Ns ratio dropped to a value of ~1. By the 14
th round, the accumulation of nonsy-

nonymous mutations (Na) had slowed down, in addition to a slowdown in the total accumula-
tion of mutations (Nt; Fig 2A).

That the tolerance to mutations decreased as the drift progressed is also reflected in the con-
tinuous decline in frequency of deleterious mutations along the drift. About a third of all possi-
ble mutations were eliminated by the 3rd round (Wrel = 0, ‘Eliminated’) whereas deleterious
mutations (Wrel = 0.01–0.6) were observed in the drifting ensembles throughout the 17 rounds.
However, their frequency was small and remained constant throughout (~0.6 deleterious
mutations/gene; Fig 2C). Thus, as mutations gradually accumulated, the relative frequency of
deleterious mutations became increasingly lower–in G17 their fraction became 0.06 (0.6 out of
the ~9.6 nonsynonymous mutations/gene) relative to 0.26 in G3 (0.6 out of the ~2.4 nonsynon-
ymous mutations/gene). In effect, the majority of mutations that did accumulate beyond G3
were neutral (Figs 1B and 2C). This finding also indicates that hitchhiking and/or clonal inter-
ference does not significantly bias our data.

In addition to the accumulation of the neutral mutations (Wrel = 0.8–1.1) beyond G3, the
later rounds were accompanied by the enrichment of beneficial mutations (Fig 1C). The

Fig 2. Dynamics of the laboratory drift. a. Cumulative mutational loads (average number of mutations per gene) along the 17 rounds of the laboratory neutral
drift.Nt is the average number of total mutations per gene (shown as ‘diamonds),Na is the average number of nonsynonymousmutations per gene (shown as
‘squares’). Mutational loads were derived from deep-sequencing of G0, G3, G7 and G17 repertoires (full points) as well as by Sanger sequencing—standard,
full-length sequencing of randomly selected variants from each round (empty points). Error bars show the standard error for the calculated averages. The lines
illustrate the observed trends (not a fit for a specific equation). b.Na/Ns is ratios of nonsynonymous to synonymous mutations (shown as ‘triangles); and the
average number of compensatory mutations per gene (Wrel >1.1, shown as ‘circles’). Compensatory mutations are listed in S2 Table and were defined as
enrichedmutations, either by assigned beneficial fitness effect for individual mutations by (Wrel >1.1) or high positional fitness effect (the averagedWrel per
position as calculated in Fig 3A,Wrel (Positional) >1.1). The effect of compensatory mutations discussed in the section of “Dynamics of the laboratory drift”. c. The
cumulative mutational load for mutations with different fitness effects: ‘deleterious’ (Wrel�0.6), ‘Nearly-neutral’ (Wrel 0.61–0.8), ‘Neutral’ (Wrel 0.81–1.1) and
‘Beneficial’ (Wrel >1.1).

doi:10.1371/journal.pcbi.1004421.g002
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beneficial mutations (Wrel> 1.1) are likely to be compensatory mutations, increasing the global
stability of M.HaeIII, or locally interacting with a specific deleterious mutation. The applied
sequencing method does not reveal the specific mutational composition of individual genes,
and thus, there is no way of detecting enriched, beneficial mutations that have a specific, local
compensatory effect. However, as previously shown [53], mutations that were enriched in a
prolonged neutral drift were experimentally confirmed to have global, stabilizing effects that
compensate for a wide range of deleterious destabilizing mutations. The global compensatory
effect can also be deduced from the identification of most enriched mutations as consensus
mutations (S2 Table; see also Ref. [53]). Further, under selection for the acquisition of five dif-
ferent new DNA target specificities [51], the same mutations were rapidly fixed in all the
evolved lines irrespective of which new specificity was selected (S2 Table). Compensatory
mutations are essential for the acquisition of new functions because mutations that confer new
functions tend to severely undermine protein stability [62–64].

By G17, each gene carried, on average, 1.99 beneficial mutations relative to 0.08 in G3
(Fig 2C). Conversely, the fraction of enriched, beneficial mutations in the drifting genes (out of
all nonsynonymous mutations) became 0.21 in G17 relative to 0.03 in G3 (Fig 1B and 1C).
Thus, not only was the mutational tolerance limited beyond G3, but also, the acceptance of
nearly-neutral mutations (Wrel = 0.61–0.8, Fig 1) was dependent on the co-accumulation of
compensatory mutations.

Tolerance of nonsense mutations
The ability to tolerate highly deleterious mutations at the onset of the drift, but not once muta-
tions further accumulate, is also vividly exemplified by the tolerance of nonsense mutations–
mutations leading to stop codons (S4 Fig) or frameshifing insertions/deletions (InDels). The
occurrence and tolerance of InDels in the selected G17 M.HaeIII library has been described
[52], indicating that certain nonsense mutations were tolerated to some degree due to transla-
tional slippage that results in a correctly translated protein despite a frame-shifted gene. How-
ever, the levels of full length, functional proteins translated from frame-shifted genes is
obviously much lower than for wild-type, in some cases as little as 1% [52].

The second form of nonsense mutations are stop codons. At the onset of the drift, at least
one stop codon mutation, in position 176, was moderately tolerated (Wrel in G3 = 0.74).
Stop codons in other positions were also found, although with lowerWrel values (S4A Fig).
However, once other mutations that reduce protein dose and/or function accumulated, non-
sense mutations were almost entirely purged (e.g.Wrel for position 176 in G7 = 0.47, and in
G17 = 0.24). By the later rounds, stop codons were found almost only after position 324– a
region that is not under functional selection (S4 Fig). The stronger purging effect of nonsense
mutations in later rounds was also manifested in an increasing fraction of nonsense mutations
being assigned aWrel value of 0 (Figs 1, ‘nonSense’, and S4B).

Correlation with the diversity in natural orthologs
Several laboratory mutational tolerance experiments indicated the acceptance of mutations in
positions that are highly conserved in natural orthologs [21, 25–27]. We therefore examined to
what degree M.HaeIII's orthologs predict acceptance in our experiment; namely, do the mea-
sured relative fitness effects of mutations (Wrel) correlate with the degree of divergence of the
corresponding position in M.HaeIII’s natural orthologs?

To address this question we first compared the experimentalWrel values to the natural evo-
lutionary rates of the respective positions (Fig 3A). We used Rate4Site whereby the calculated
rates relate to the degree of physico-chemical change exerted by sequence exchanges, and to
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the phylogenetic distances [65]. We found that positions that exhibit slow evolutionary rates (i.
e., are highly conserved in nature; log2μ� −2, or μ� 0.25 [44]) show no, or low acceptance to
mutations in the laboratory drift. Conversely, positions with high evolutionary rates tend to
show high experimental tolerance to mutations. This trend is seen along the primary sequence
(Fig 3A) as well as in the 3-dimensional structure (Fig 3B and 3C).

Given that we have mapped the effects of all possible single nucleotide mutations in M.
HaeIII, we further examined how well their effects could be predicted from an alignment of
orthologous sequences. There are many ways of predicting the effects of mutations from multi-
ple sequence alignments. Certain biases are inevitable; foremost, prediction is highly dependent
on sequence sampling–the number and the phylogenetic distribution of available sequences
that are evolutionary related to the protein in question. Other biases relate to phylogenetic
relatedness of the orthologs to the reference sequence and the manner by which the degree of
divergence is calculated. A meaningful measure uses profile scores (position-specific scoring
matrices) that take into account not only the frequency of sequences in which a given position
varies, but also the physico-chemical nature of exchanges (reviewed in [5, 66]).

Given the epistatic nature of sequence evolution, tolerance of mutations is largely not a mat-
ter of 'if' but of 'when'–namely, given enough drift, exchanges in even the most conserved sites
may be tolerated [2, 45, 67]. PROVEAN (Protein Variation Effect Analyzer, http://provean.
jcvi.org) is a predictor that takes into account phylogenetic distances [68]. Thus, the PRO-
VEAN score function considers the physiochemical impact of amino acid exchanges alongside
the evolutionary distance between the reference protein and the homolog(s) in which a given
exchange is observed. We submitted to PROVEAN the reference sequence (the wild-type M.
HaeIII gene) and a multiple sequence alignment of 105 orthologs (S5 Fig). The program com-
puted a score predicting how deleterious each possible amino acid exchange in M.HaeIII might
be. The algorithm’s default thresholds are: scores� -2.5 are predicted as deleterious, and scores
> -2.5 as neutral [68]. We then compared the predicted PROVEAN score to the measuredWrel

values for the 1,957 single nucleotide nonsynonymous mutations.
Overall, a clear-cut trend is seen (Fig 3D)–mutations found to be deleterious in the labora-

tory drift (Wrel � 0.6) tend to show low PROVEAN scores (� -2.5), whereas the accepted ones
show high scores (> -2.5). From PROVEAN’s point of view as a predictor of deleterious muta-
tions, true positives occurred at a rate of 83.3% (S3 Table). Namely, out of the 1,234 mutations
that were evidently deleterious in the laboratory drift (Wrel � 0.6), 1,028 were correctly
categorized by PROVEAN as deleterious (score� -2.5). True negatives–mutations predicted
by PROVEAN as neutral and found to be so in the drift, occurred at a rate of 63.5% (459 out
of the 723 accepted mutations in the laboratory drift,Wrel > 0.6, were scored with PROVEAN
values of> -2.5).

When excluding mutations with borderline effects (mutations categorized as nearly-neutral,
withWrel values 0.61–0.8), the effects of the remaining set of mutations (1,649 out of 1,957;
Wrel �0.6, or> 0.8) were, as expected, better predicted by PROVEAN (Fig 3E). Specifically,
the ability to predict the effect of neutral mutations (Wrel > 0.8) increased to 72%, (accuracy of
80.5%, S3 Table). Notably, SIFT, a predictor similar to PROVEAN but that with no phyloge-
netic correction, showed lower prediction accuracy than PROVEAN (75.3% accuracy, with
73% true positives for deleterious mutations, and 82.2% true negatives for neutral mutations,
Wrel > 0.8; S6 Fig and S3 Table). Furthermore, the effects of mutations are best described on a
continuum scale rather than a binary classification of deleterious versus neutral. The inclusion
of phylogenetic distances, as in PROVEAN, also generates a continuous score that in turn
seems to correlate well with the experimentalWrel values (S6C and S6D Fig).

Further support to the conclusion that phylogenetic distance is a crucial factor in prediction
is provided by the fact that neutral/beneficial drift mutations (Wrel > 0.8) are decreasingly
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observed in orthologs as their sequences further diverge fromM.HaeIII’s. In total, 39% of the
single nucleotide exchanges observed in orthologs were found as neutral/beneficial in the back-
ground of M.HaeIII (Wrel > 0.8, S7A Fig). Of these, 54% (i.e., 21% of all single nucleotide
ortholog-observed exchanges) appear in close orthologs (�35% divergence relative to M.
HaeIII, S7B Fig). Thus, sequence exchanges observed in orthologs with higher sequence iden-
tity are more indicative of a neutral fitness effect in the reference sequence (M.HaeIII in our
case) than when the very same exchanges appear in diverged orthologs (>50% divergence).

Biophysical constraints
Finally, we examined how the experimentally measured fitness effects correlate with predicted
structural and functional constrains, and to what degree these constraints apply to the sequence
diversity seen in orthologs of M.HaeIII. To this end, a multiple sequence alignment was derived
for M.HaeIII (S5 Fig). The alignment gave a set of 2,000 exchanges that are observed in at least
one ortholog–dubbed ‘ortholog-observed’ (845, single nucleotide exchanges, and the remaining
1,155 being double and triple exchanges). The complementary set of ‘ortholog-unobserved’ was
accordingly derived, and included 4,251 exchanges that are not observed in any known ortho-
log (of which 1,112 are single nucleotide exchanges). We then compared the experimental set
of ‘neutral mutations’ (Wrel � 0.8, i.e., excluding ‘nearly-neutral’) to ‘ortholog-observed’, and
the set of ‘deleterious mutation’Wrel � 0.6) to ‘ortholog-unobserved’. This comparison is a pri-
ori problematic. The background at which these two sets of mutations occurred differs funda-
mentally: the maximal divergence in the laboratory drifted G17 sequences was ~3% (an
average of 9.6 mutations per a length of 329 amino acids gene). Accordingly, whereas our
experimental set comprises only single nucleotide mutations, most natural amino acid
exchanges relate to two or three nucleotide exchanges within the same codon (1,155 out of
2,000 orthologs-observed, and 3,139 out of 4,251 orthologs-unobserved).

Despite the above caveat, we found that drift mutations with ‘neutral/beneficial’ effect
(Wrel > 0.8), and accordingly, orthologs-observed exchanges, share the same biophysical con-
straints with respect to M.HaeIII’s configurational stability and enzymatic function (Fig 4).
Specifically, mutations predicted using the FoldX force field to be highly destabilizing
(ΔΔG� 2 kcal/mol; [69, 70]) were purged in the laboratory drift (‘deleterious’Wrel �0.6) and
also in the natural diversity (‘orthologs-unobserved’, Fig 4A and 4B). Mutations in positions
close to M.HaeIII’s active-site followed the same trend (Fig 4C and 4D). The overlap between
the biophysical constrains acting in nature and in the laboratory constraints was also indicated
by ‘local closeness’–a structural measure of the degree of structural connectivity of a residue to
other residues [71, 72] (Fig 4E and 4F). Furthermore, exchanges found in close orthologs
appear to obey the above biophysical constraints to a larger extent than those in more diverged
ones [41] (S7B and S7C Fig).

Fig 3. Themutational effects in the laboratory drift correlate with sequence exchanges in M.HaeIII orthologs. a. The positional rates of evolution in M.
HaeIII’s natural orthologs (‘Rate4site’, μ; red line) were plotted alongside the positionalWrel values in M.HaeIII (blue line). The positionalWrel values
correspond to the averageWrel values for all mutations in this position (

X
i
fWi

rel � log2½1þ 10 � fðGi
17Þ�g, Where i refers to all the possible single nucleotide

mutations at a given residue position. Upper panel–positions 2 to 175; Lower panel–positions 176 to 330. Noted are M.HaeIII’s key functional residues,
those of the cofactor binding site, the catalytic residues including the enzyme’s reaction center (Cys71, black arrow), and the target DNA binding residues.
Also noted are positions of compensatory mutations that were enriched in the driftWrel > 1.1, listed in S2 Table). b.M.HaeIII’s three-dimensional structure
illustrated as a cartoon (PDB id 1dct). Residues are colored from blue to red according to their averagedWrel values (as in c). The cofactor, SAM, is in yellow,
and the enzyme’s catalytic residue (Cys71) is in green. c. The same as b for the positional diversity calculated by Rate4site (μ, as in c) [65]. d. The
distribution of PROVEAN scores for all possible single nucleotide missense mutations (n = 1,957). Shown are the distribution of mutations categorized as
‘deleterious’ (Wrel �0.6), and of mutations categorized as ‘nearly-neutral’, ‘neutral’ and ‘beneficial’ (Wrel >0.6). e. The same distribution while excluding
‘nearly-neutral’mutations.

doi:10.1371/journal.pcbi.1004421.g003
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Discussion
Our results illustrate the limitations inherent to the experimental methodologies used for mea-
suring the fitness effects of mutations in the laboratory, and in deducing from these experi-
ments how proteins evolve in nature. In general, the current state-of-the-art experimental
mappings artificially widen the threshold for acceptance of mutations, such that the early accu-
mulating mutations have no apparent effect on the protein’s fitness [73]. This wider experi-
mental threshold is driven by various factors, including: (i) higher protein stability (e.g., the
stabilizing mutations we included in, or fusion tags known to increase solubility (e.g. [26]); (ii)
Gene and protein copy numbers that are typically orders-of-magnitude higher than the natural
ones; (iii) Growth environments that are less demanding than the natural ones; (iv) Proteins

Fig 4. Structural and functional constraints dictate tolerance tomutations in M.HaeIII. The collections of
‘deleterious’ (Wrel� 0.6, n = 1,234) and ‘neutral/beneficial’ (Wrel� 0.8, n = 415) mutations were characterized by
different biophysical and functional constraints (left column). The same analysis was performed for all the
‘ortholog-observed’ exchanges (n = 2,000) and ‘ortholog-unobserved exchanges’ (n = 4,251) (right column). a
and b: The distribution of predictedΔΔG values computed by FoldX [69, 70]. c and d: The distribution of
distances of the residues in which themutations occurred fromM.HaeIII’s reaction center (the closest distance to
either the sulfur atom of Cys71 or to the carbon of SAM’s methyl-group). e and f: The distribution mutations
according to the residue predicted ‘local closeness’ [71, 72]. The distributions were analyzed using Kolmogorov–
Smirnov test. The red dashed lines indicate the calculated thresholds for defining highly-deleterious according to
the critical values with maximum difference between the two distributions, thus indicating P-Values <<0.001.

doi:10.1371/journal.pcbi.1004421.g004
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being under selection for one task out of several tasks they perform in nature under variable
conditions. Such wider thresholds result in a higher, if not unrealistic tolerance of mutations
relative to nature [74, 75].

Once this threshold is exhausted, the loading of additional mutations results in a rapid col-
lapse [47]. Indeed, the dynamics of our neutral drift experiment indicate that the very same del-
eterious mutations, including nonsense mutations, which are tolerated in the early rounds, are
completely purged as the drift progressed (Figs 1C and S4; see also [76]).

The continuous loading of mutations, as applied in our study, appears to portray a more
realistic picture with respect to the fraction of deleterious mutations. The distribution of fitness
effects of mutations (DFE) derived from this experiment is different from the distributions
derived from previous experiments, namely that ~30% of mutations are deleterious, and the
remaining largely neutral [25–27, 33, 46]. In contrast, this experiment indicates the anticipated
continuum, rather than the generally assumed bimodal distribution [49, 74, 77] (Fig 1A). Fur-
ther, even under the most conservative threshold, 67% of the mutations have evident deleteri-
ous effects (Wrel � 0.6). However, purging is also consistently seen for mutations we
categorized as ‘nearly-neutral’ (Wrel = 0.61–0.8, Fig 1B). Individually these mutations may be
close to neutrality, but collectively they impact fitness, analogously to a population’s drift load
[50, 78]. This is apparent by the acceptance of ‘nearly-neutral’mutations being accompanied
by the enrichment of compensatory mutations (Fig 1) [79]. If what we categorized as nearly-
neutral mutations are included, ~81% of all possible amino acid mutations that derived from
single nucleotide mutations are potentially deleterious.

The much higher fraction of nonsynonymous mutations with deleterious effects observed
in our experiment as compared to other experiments may relate to variations in the mutational
tolerance of one protein vs. another. However, M.HaeIII does not seem to be a particularly
slow evolving protein–the distribution of the positional evolutionary rates, and specifically the
relative histogram areas of the fast versus slow evolving positions, are in agreement with a fast
evolving protein [44]. Regardless, it is clear that, at present, comparing the DFEs obtained for
different proteins is problematic because the experimental methodologies used to obtain these
DFEs vary so much.

The sensitivity of detection of fitness effects is also limited in laboratory setups by high
noise levels as well as by the limited number of generations along which fitness is examined
[74]. We also note that in reality, protein sequences drift in a gradual manner and via single
nucleotide exchanges. Thus, the fitness effects measured for all 19 possible amino acids per
position often reflect leaps in sequence space that are not taken by natural evolution.

The results of our laboratory drift also support the hypothesis that natural protein drift is
punctuated by deleterious and compensatory mutations. The order of their accumulation may
differ, also in relation to the mutational rates. At high mutational rates, as applied here, com-
pensatory substitutions may follow the deleterious ones [80–83]. At low mutation rates, how-
ever, mutations that initially accumulated as neutral may enable the fixation of deleterious
ones [44, 83]. In any case, the DFE obtained here suggests that, whereas upon drifting in
nature, exchanges may be fixed by chance (the neutral theory), their fitness effects are rarely
neutral–they are nearly always deleterious or compensatory [41, 84] (Fig 1A).

Compared to previous reports (for example see [25–27, 33, 36]), tolerance vs. purging of
mutations in our prolonged drift shows much better correlation to the positional evolutionary
rates, and to specific exchanges observed in the natural diversity, i.e., in M.HaeIII’s orthologs
(Fig 4). Such a correlation is a priori problematic. The representation of natural sequences is
sporadic, especially with horizontally transferred genes that encode specialized functions such
as M.HaeIII. Thus, that a certain exchange is not observed, or rarely observed in the currently
known sequence does not necessarily mean it is deleterious. Nonetheless, our data seems to
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coincide with what had been deduced from other analyses of orthologous sequences, namely
that at a given background, the vast majority of mutations are deleterious [39–41, 43] (Fig 1).
Our data also support the notion that the exchanges found in close orthologs are more likely to
be neutral than those in more diverged ones [41] (S7 Fig). Exchanges in highly diverged ortho-
logs are tolerated by virtue of being compensated by exchanges at other positions [41, 45, 67] and
therefore tend to be context-specific. However, despite the above caveats, it seems that the effects
of mutations can be predicted from the natural diversity of orthologs with relatively high accu-
racy, particularly when ‘nearly-neutral’mutations with borderline effects are excluded (Fig 3E).
A systematic exploration of the performances of various predictors and prediction parameters is
beyond the scope of this work. Nonetheless, it appears that the prediction seems improved when
the phylogenetic distance of orthologs is taken into account [85, 86] (S6 and S7 Figs). Likewise,
comparing the results of different experimental mappings of mutational effects is inherently
problematic. These mapping experiments used different proteins, different mutagenesis and
screening, or selection, strategies, and different ways of assigning the ‘fitness’ values to mutations.
As experimental approaches of systematic mapping develop further, standard experimental and
data analysis procedures may develop that will enable more meaningful comparisons.

Further, the biophysical constraints acting to limit drift both in the laboratory and in nature
overlap, indicating universal constraints that dictate purging of sequence exchanges [87] (Fig
4). Thus, including structural considerations, possibly ‘local closeness’ as an integrated parame-
ter [71], may greatly improve prediction of the effect of mutations [88, 89], as already shown
for certain predictors [8, 89–93].

Overall, the application of the experimental setup described here provides a better under-
standing of how protein sequences diverge in nature, as well as a new dataset that can be used
for improving the prediction accuracy of the effects of protein mutations, and specifically of
single nucleotide polymorphisms.

Methods

Plasmids and strains
Amodified M.HaeIII wild-type gene, carrying four stabilizing mutations [51], and no GGCC
sites in its open reading frame, was cloned with an N-terminal His-tag into pASK-IBA3+ vector
(IBA, using NcoI and NotI; the vector also carried 14 GGCC sites, 3 of which were located
within the ampicillin resistance gene (See supplementary Fig 3 in [51]). Plasmids were trans-
formed into E. coli ER2267 (EcoK r- m- McrA- McrBC-Mrr-) in which GGCC DNAmethyla-
tion is not toxic [94]. Transformants were selected by growth on ampicillin.

Mutagenesis and selection
Random mutagenesis was performed as described previously [52]. Briefly, M.HaeIII's ORF
(open reading frame) was amplified by PCR with an error-prone polymerase (GeneMorphII
Mutazyme, Stratagene). The mutagenic PCR was optimized to an average of 2.2 mutations per
gene. Each round of evolution, or generation (noted as 'G'), included the following steps (S1
Fig): (i) The pool of M.HaeIII genes from the previous round was randomly mutated, recloned
using the NcoI and NotI sites, transformed into E. coli and plated on agar plates containing
ampicillin. About 106 individual transformants were obtained in each round. (ii) Colonies
grown at 37°C overnight were combined, plasmid DNA was extracted and digested with
HaeIII (10–20 units, in 50 μl of NEB buffer 2, for 2 hours at 37°C), and re-purified (PCR purifi-
cation kit, QIAGEN). (iii) The recovered plasmid DNA was re-transformed for another round
of enrichment. Each round of drift included one cycle of mutagenesis and three cycles of
enrichment (transformation, growth, plasmid extraction and digestion). The naive library, G0,
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relates to the transformed plasmid DNA derived from cloning of a repertoire of ~105 individual
M.HaeIII genes after the first round of mutagenesis and prior to selection by HaeIII digestion.

High-throughput sequencing
The samples of the naive (G0) and the selected libraries from Rounds 3, 7 and 17 (assigned as
G3, G7 and G17) were prepared as described previously [52]. Briefly, the pools of M.HaeIII's
open reading frame were PCR-amplified, purified, and concatenated by self-ligation (using
XhoI restriction sites at both ends of the PCR [51]). Sequencing libraries were prepared and
sequenced according to manufacturer's protocol at the Weizmann Institute's high throughput-
sequencing core facility. The obtained sequencing reads (~40 nts) were mapped to the refer-
ence sequence of wild-type M.HaeIII with two methods: (i) Using NCBI blastn v2.2.20 [95]
with parameters: e-value cutoff 0.0001, word size 7, and allowing up to 6 mismatches and
requiring a minimal alignment length of 24 consecutive nts, as previously described [96, 97];
and (ii) Using Novoalign v2.07.00 with parameters: c 4 Hash step-size 6 [96]. Point mutations,
insertions and deletions were assigned based on the mapping of the sequencing reads to the ref-
erence sequence as previously described [97, 98]. Every mismatch or gap in the reads alignment
relative to the wild-type reference was recorded per each nucleotide position, and further ana-
lyzed using custom Perl scripts (available at: https://github.com/tawfiklab/HTS_codon_
analyzer). Only codons that were intact within the 40 nt reads were included.

Primary data analysis and relative fitness values
Processing of the observed mutation counts per codon was done primarily with Excel (see S1
File). All possible single nucleotide mutations were detected in the raw data of the unselected
G0 library (329X9 = 2,961 possible single nucleotide mutated codons that in turn comprise the
1,957 possible single nucleotide amino acid mutations; S2 File and S8 Fig). However, Illumina
sequencing exhibits a considerable background level of mutagenesis due to PCR amplifications
as well as sequencing errors. Potential sequencing artifacts, specifically mutations that were
observed at the edges of reads (where sequencing errors are more frequent), were filtered out
(S1 File). The background rate was determined using the region upstream of the randomly
mutated open reading frame of M.HaeIII (the N-terminal fused His tag that was not subjected
to mutagenesis, S2 File, S8 Fig and S4 Table). Thus, the average background frequency was
subtracted from the mutational frequencies to give the net positional frequencies that were
used to calculate theWrel value of each amino acid mutation (the final analyzed data can be
found in S3 File, including for double and triple mutations that were not analyzed here).

Mutational frequencies were determined for every possible codon mutation (63 including
single, double and triple nucleotide mutations) as the number of reads with a given mutation
(s) divided by the total number of reads that mapped the corresponding position. The frequen-
cies of all mutational events that led to the same amino acid were combined.

Wrel calculations
Eq (1) (see Results section) can be written as:

f ðGnÞ ¼ ½f ðGn�1Þ þ f ðG0Þ� �Wrel ¼

f ðG0Þ �
n
Wn

rel þWn�1
rel þWn�2

rel . . .þWrel

o
¼ f ðG0Þ �

Xn

n¼1

Wn
rel
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Thus, per given mutation, at a given round, Gn, the ratio of frequency of this mutation rela-
tive to its frequency of occurrence (f(G0)) is given by:

f ðGnÞ
f ðG0Þ

¼
Xn

n¼1

Wn
rel ð2Þ

The sum of a geometrical series with n>5 has no closed solution (i.e., a finite number of
Wrel values, let alone one value). We therefore derived numerical solutions for Eq (2), using a
series ofWrel values from absolutely deleterious (Wrel = 0) to highly enriched (Wrel = 3.5), thus

deriving the expected ratios of mutational frequencies per each round (f ðGnÞ
f ðG0Þ) as a function of

Wrel (S3 Fig).

Phylogenetic analysis and evolutionary rates
Orthologous sequences to M.HaeIII were collected using BLASTP search within the REBASE
database [99]. Within the range of 25–75% identity, 105 non-redundant family members were
aligned using MUSCLE [100] (S5 Fig). The maximum likelihood phylogenetic tree was calcu-
lated using PhyML with the LG matrix [101]. The position-specific evolutionary rates (μ) were
calculated by Rate4Site [65]. The positional rate is calculated that indicates how fast this site
evolves relative to the average rate across all sites in the input alignment.

Mutation-specific scores were calculated using PROVEAN and SIFT programs using the
default parameters and M.HaeIII sequence as a reference. Both software are available on the
homepage of the J. Craig Venter Institute: the SIFT tool is at http://sift.jcvi.org [102], and the
PROVEAN tool is at http://provean.jcvi.org [68]. To ensure the consistency of this analysis, we
provided the set of orthologs sequences in FASTA format (S5 Fig) rather than using the
BLAST search in the PROVEAN webserver. The PROVEAN calculated scores were subse-
quently provided by Dr. Yongwook Choi.

Stability calculations and structure based measures
FoldX was used to predict the stability effects of mutations relative to wild-type M.HaeIII. The
crystal structure of M.HaeIII (PDB id 1dct) [103] was first optimized using the FoldX
RepairPDB function. Subsequently, all possible single mutants (19 different amino acids, at
each position) were calculated by the BuildModel mutation engine, and relative stability of
mutants was obtained (ΔΔG = ΔGWT-ΔGMUT). Distances of residues from the reaction center
were defined as the shortest distance between the closest residue atom and either the sulfur of
the catalytic cysteine or the methyl group of the SAM cofactor. These were calculated based on
M.HaeIII in complex with the DNA (PDB id 1dct) [103]. The coenzyme distances were derived
from a homology model based on M.HhaI in complex with SAM (PDB id 2hr1). Local close-
ness was calculated SPACER web server (available at http://allostery.bii.a-star.edu.sg/) [71]
using default parameters and M.HaeIII structure as a reference (PDB id 1dct) [103].

Supporting Information
S1 File. Data processing to obtain the mutational frequencies.
(DOCX)

S2 File. The raw data frequencies from deep sequencing of the naïve (G0) and selected
libraries (G3, G7 and G17).
(XLSX)
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S3 File. Processed data and the net frequencies of mutations in G0 to G17.
(XLSX)

S1 Fig. A schematic description of the laboratory genetic drift (taken from [52]).M.HaeIII's
open reading frame was randomly mutated by error-prone PCR. The mutated genes were
cloned into the pASK vector, and the resulting plasmid library was transformed to E. coli.
Following the first round of mutagenesis and cloning, high-throughput sequencing was per-
formed to map the occurrence of mutations irrespective of selection (G0, or the naive reper-
toire). Subsequently, the plasmid library was subjected to a purifying selection. Within each
transformed cell, the expressed methyltransferase variant, if active, methylated its encoding
plasmid at GGCC sites and thereby protected it from digestion by the cognate, HaeIII restric-
tion enzyme. Following digestion with HaeIII, the surviving plasmids were retransformed, and
subjected again to restriction for further enrichment of plasmids encoding functional methyl-
ase variants. After two cycles of enrichment (digestion and transformation), the plasmid DNA
was extracted, and the surviving M.HaeIII genes were amplified and randomly mutagenized
(as a pool) for the next round. The plasmid library derived from the 3rd, 7th and 17th round of
mutagenesis and purifying selection was also subjected to high-throughput sequencing, thus
mapping the repertoire of tolerated mutations (G3, G7 and G17).
(PDF)

S2 Fig. The mutational patterns in the naïve, G0, and selected, G17, gene libraries. a. The
pattern of mutation types in the unselected library (G0). The distribution of mutational fre-
quencies in the G0 library was plotted for each type of transition or transversion mutation. The
"central box" represents the ranges for 50% of the frequencies, and its lower and upper bound-
ary lines are at the 25th and 75th percentiles of the data. The horizontal central line indicates
the median of the data. The two vertical lines extending from the central box indicate the
remaining frequencies outside the central, 50% box, except those frequencies regarded as outli-
ers (shown as circles). b. The observed mutation frequencies of synonymous mutations in G3
(a selected library) is strongly correlated with the observed frequencies in G0, the unselected
library. c. In G17, the correlation with G3 frequencies of nonsynonymous mutations is much
weaker, probably due to selection d. The expected rate of synonymous mutations as calculated
from the G0 substitution matrix (shown in panel a) shows a weak correlation with the observed
mutation frequencies in G3. e. The observed mutation frequencies of synonymous mutations
in G0 (left axis) and G3 (right axis) along the M.HaeIII amino acid residues.
(PDF)

S3 Fig. Determination of the relative fitness values (Wrel) of mutations. a. The calculated
ratios of mutational frequencies in the selected libraries (G3, G7, G17) relative to their fre-

quency of occurrence in G0 (fðGnÞ
fðG0Þ) as a function of their relative fitness effect (Wrel) using Eq (1)

(see main text). b-d. TheWrel values of mutations measured for G3, G7 or G17 are correlated
(Slopes: 0.93, 0.86 and 0.82; R2 = 0.46, 0.5 and 0.57 for the correlations measured in b-d,
respectively).
(PDF)

S4 Fig. The relative fitness effects of nonsense mutations. a. TheWrel values for nonsense,
stop codon, mutations observed in M.HaeIII along the 3 rounds of the drift (G3 –Green; G7 –
Red; G17 –Blue). The ‘Red arrows’ show positions 176-permissive position only at the onset of
the drift; and 324—after which, stop codon mutations seem not to be purged as indicated by
Wrel values close to 1. b. The total frequency of nonsense mutations along the drift. The purg-
ing is stronger when positions after 324 are not included (red bars) relative to the entire gene
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including positions 325–329 (blue bars).
(PDF)

S5 Fig. Multiple sequence alignment of M.HaeIII and its 105 orthologs. Orthologous
sequences to M.HaeIII were collected using BLASTP search within the REBASE database [99].
Within the range of 25–75% identity, 105 non-redundant family members were identified and
subsequently aligned using MUSCLE [100].
(PDF)

S6 Fig. The observed fitness effects of mutations in the laboratory drift compared to the
predicted effect by SIFT and PROVEAN. a. The distribution of SIFT scores for the single
nucleotide mutations observed in the selected ensembles of the laboratory drift, G17
(n = 1,957). The drift mutations were categorized according to their relative fitness effects
(Wrel; as in Fig 1). b. The same distribution after ‘nearly-neutral’mutations were excluded: for
the ‘deleterious’mutations (Wrel �0.6) and ‘neutral/beneficial’ (Wrel >0.8). c. The correlation
ofWrel values with the SIFT scores. d. The correlation ofWrel values with PROVEAN scores.
(PDF)

S7 Fig. Acceptance in the laboratory drift correlates with the phylogenetic distance. a.
The single nucleotide mutational space (n = 1,957) was categorized according to whether the
same mutation is seen in M.HaeIII orthologs (observed; n = 845), or not (unobserved;
n = 1,112). Within each category, the exchanges were assigned as ‘beneficial’ (Wrel > 1.1,
oxblood), ‘Neutral’ (Wrel > 0.8,�1.1, red), ‘Nearly-neutral’ (Wrel > 0.6,�0.8, grey) or ‘Delete-
rious’ (Wrel �0.6, blue) according to their relative fitness effects in the laboratory drift (Wrel

values in G17, as in Fig 1). b. The single nucleotide mutations were further divided according
to their appearance in orthologs with different levels of sequence divergence relative to M.
HaeIII (fraction of amino acids divergence of the closest ortholog in which a given mutation/
exchange was found). c. The distributions of biophysical and functional constraints (as in
Fig 4) and PROVEAN score (as in Fig 3) for the fractions of all the single nucleotide mutations
according to their relative fitness effects in the laboratory drift (Wrel values in G17, as in Fig 1).
d. The distributions of biophysical and functional constraints (as in Fig 4) and PROVEAN
score (as in Fig 3) for the fractions of all the ‘orthologs-observed’ exchanges (2,000 exchanges
in total) with varying degrees of divergence, and for ‘ortholog-unobserved’ exchanges (4,251
exchanges).
(PDF)

S8 Fig. Distribution of the observed mutational frequencies for M.HaeIII’s ORF and the
non-mutated region (background frequencies). ‘Data’ relates to the distributions of the mea-
sured, raw mutation frequencies (i.e. prior to background subtraction) in each library within
the coding region of M.HaeIII's (329 resides, in blue color, derived from S2 File). ‘Background’
relates to the distributions of the raw mutational frequencies in the region located upstream of
the cloning sites, a region that was not subjected to mutagenesis (20 residues including His-tag
and Thrombin cleavage site, residues -20 to -1, in red; S2 File). The average background fre-
quency was subtracted from all measured frequencies, thus eliminating the effect of mutations
that accumulated in the Illumina sequencing (S3 File and S4 Table).
(PDF)

S1 Table. Average mutational frequencies per types of base exchanges.
(PDF)

S2 Table. Compensatory mutations observed in the laboratory drift. Compensatory muta-
tions were defined as enriched mutations, either by assigned beneficial fitness effect for
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individual mutations by (Wrel >1.1) or high positional fitness effect (the averagedWrel per
position as calculated in Fig 3A,Wrel (Positional) >1.1). Shown are theWrel of mutations that
were enriched in the selected G17 library. Also noted are the sequence divergence and the fre-
quency of these exchanges in the natural diversity relative to M.HaeIII, and the frequency of
the mutation under the selection for new functions [51].
(PDF)

S3 Table. Prediction accuracy of PROVEAN and SIFT. ‘Sensitivity (TPR)’–True positives
rate; correctly identified as deleterious mutations, TP, out of the total deleterious mutations.
‘Specificity (TNR)’- True negatives rate; correctly identified as neutral mutations, TN, out of
the total neutral mutations. ‘FPR’–false positive rate; incorrectly identified as deleterious muta-
tions, FP, and are in fact neutral out of the total neural mutations. ‘FNR’—false negative rate;
incorrectly identified as neutral mutations, FN, and are in fact deleterious out of the total neu-
ral mutations. Accuracy = (TP + TN)/(TP + TN + FP + FN)
(PDF)

S4 Table. The raw data and above frequencies mutated codons in the different libraries.
'Threshold'—refers to the background frequencies observed in each library at the unmutated
region. "� Threshold"—refers to the number of codons in the mutated M.HaeIII's ORF in each
library with frequencies below the threshold that were excluded from the analysis. "> Thresh-
old"—refers to the number of codons in the mutated M.HaeIII's ORF in each library with fre-
quencies above the threshold, and thus were included in the analysis.
(PDF)
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