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It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major

pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC,

is characterized by high morbidity and mortality in young livestock. However, the

transcriptomic basis underlying E. coli F17 infection has not been fully understood. In

the present study, RNA sequencing was conducted to explore the expression profiles of

mRNAs and long non-coding RNAs (lncRNAs) in the jejunum of lambswhowere identified

as resistant or sensitive to E. coli F17 that was obtained in a challenge experiment. A total

of 772 differentially expressed (DE) mRNAs and 190 DE lncRNAs were detected between

the E. coli F17—resistance and E. coli F17-sensitive lambs (i.e., TFF2, LOC105606142,

OLFM4, LYPD8, REG4, APOA4, TCONS_00223467, and TCONS_00241897). Then, a

two-step machine learning approach (RX) combination Random Forest and Extreme

Gradient Boosting were performed, which identified 16 mRNAs and 17 lncRNAs as

potential biomarkers, within which PPP2R3A and TCONS_00182693 were prioritized

as key biomarkers involved in E. coli F17 infection. Furthermore, functional enrichment

analysis showed that peroxisome proliferator-activated receptor (PPAR) pathway was

significantly enriched in response to E. coli F17 infection. Our finding will help to improve

the knowledge of the mechanisms underlying E. coli F17 infection and may provide novel

targets for future treatment of E. coli F17 infection.
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INTRODUCTION

Diarrhea is the most commonly reported disease associated with infection by a complex mixture
of bacteria in young animals. Among them, Escherichia coli (E. coli) is the major pathogenic
bacterium responsible for diarrhea (1). Pathogenic E. coli have been divided into five pathotypes
based on the virulence properties and clinical signs of the host: enterotoxigenic E. coli (ETEC),
enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC),
and diffusely enteroadherent E. coli [DAEC, (2)].

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.819917
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.819917&domain=pdf&date_stamp=2022-04-12
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dkxmsunwei@163.com
https://doi.org/10.3389/fvets.2022.819917
https://www.frontiersin.org/articles/10.3389/fvets.2022.819917/full


Chen et al. Lambs Challenged With Escherichia coli F17

Among these pathotypes, ETEC has been identified as the
major agent of E. coli-related diarrhea (3–6). Mechanistically,
ETEC adheres to intestinal epithelial cells (IECs), leading to the
production and replication of enterotoxins (7). Clinical reports
revealed that ETEC infection exhibits enteropathogenicity and
enterotoxigenicity, causing increased mortality and clinical signs
such as severe vomiting and diarrhea (8). The fimbrial adhesins,
F5 (9), F17 (10), F18 (11), and F41 (12) are associated with ETEC,
mainly in young animals. E. coli F17, one of the main subtypes of
ETEC, has been reported as the major pathogen associated with
ETEC-related diarrhea worldwide and is responsible for high
morbidity and mortality (13–15). The growing prevalence of E.
coli F17 has renewed the sense of urgency for E. coli F17 research.

Over 100,000 long non-coding RNAs (lncRNAs) have now
been identified, and although the roles of most of them are still
unknown, lncRNAs have been shown to play key roles in gene
regulation and cellular functions (16). Increasing evidence has
shown that lncRNAs contribute to immune activity at multiple
levels during E. coli infection. For example, lncRNA-TUB was
shown to mediate E. coli-induced inflammatory factor secretion
and Staphylococcus aureus adhesion to epithelial cells (17), and
lncRNA-XIST was found to mediate E. col-induced inflammatory
response in bovine mastitis (18). These data indicate that
how specific lncRNAs can regulate E. coli infection. However,
remarkably few comparative studies of the roles of lncRNAs
and mRNAs in E. coli infections, especially E. coli F17, have
been conducted.

For this study, lambs that were resistant or sensitive to E. coli
F17 were obtained in a challenge experiment. RNA sequencing
(RNA-Seq) was performed to obtain the transcriptomic profiles.
Then, differential expression analysis, machine learning analysis,
integrative network, and functional enrichment analyses were
performed for a deep insight into lncRNA andmRNA in response
to E. coli F17 infection. Our results will help to improve the
knowledge of the mechanisms underlying E. coli F17 infection
and may provide novel targets for future treatment of E. coli
F17 infection.

MATERIALS AND METHODS

Ethics Approval
All the lamb experimental procedures used in the study were
reviewed and approved by the Experimental Animal Welfare and
Ethical of Institute of Animal Science, Yangzhou University (No:
NFNC2020-NFY-6), and were performed in accordance with
the Regulations for the Administration of Affairs Concerning
Experimental Animals approved by the State Council of the
People’s Republic of China.

Sample Collection
All experimental lambs were supplied by the Xilaiyuan
Agriculture Co., Ltd. (Jiangsu Providence, China). E. coli F17-
resistant and E. coli F17-sensitive lambs were detected from a
challenge experiment of E. coli F17 (DN1401, fimbrial structural
subunit: F17b, fimbrial adhesin subunit: Subfamily II adhesins,
originally isolated from diarrheic calves) as described in our
previous report (19).

Briefly, 50 healthy newborn lambs were randomly selected
and reared on lamb milk replacer free of antimicrobial additives
and free of probiotics from when they were 1 day old to 3 days
old. At 3 days after birth, lambs were divided into high-dose
and low-dose challenge groups. Lambs in the high-dose and low-
dose challenge groups were orally gavaged with 50.0 and 1.0ml
of actively growing culture of E. coli F17 (1 × 109 CFU/ ml)
for 4 days, respectively. Then, 10 healthy lambs in the high-dose
challenge group (antagonism candidate group) and 10 lambs with
severe diarrhea in low-dose challenge group (sensitive candidate
group, evaluate via stool consistency scoring) were euthanized
by administering pentobarbital overdose. Histopathological
examination and bacteria plate counting of the intestinal
contents were conducted to evaluate the severity of the diarrhea.
Results showed that severe pathological intestinal tissues were
observed in E. coli F17-sensitive candidate lambs, while relatively
healthy intestinal tissue were observed in E. coli F17-antagonism
candidate lambs. Intestinal contents bacteria plate counting
demonstrated that bacteria in the intestinal contents of E.
coli F17-sensitive candidate lambs (1.22∗109 on average) were
significantly higher than that of E. coli F17-antagonism candidate
lambs (3.37∗107 on average). Detailed results of intestinal
histopathological detection and bacterial counting can be found
in in our previous report (19).

Finally, six healthy lambs with mild intestinal pathology in
the high-dose challenge group (antagonism group, AN) and six
lambs with severe diarrhea in the low-dose challenge group
(sensitive group, SE) with severe intestinal pathology were
selected. Proximal jejunum tissue was collected and snap-frozen
in liquid nitrogen for RNA isolation.

RNA Extraction and Sequencing
Ribonucleic acid was extracted from the jejunum tissue
using TRIzol R© per the manufacturer’s instructions (Invitrogen,
Carlsbad, CA, USA). The quality of the extracted RNA was
determined using an RNA Nano 6000 Assay Kit, and RNA
integrity number (RIN) was obtained using an Agilent 2100
Bioanalyzer with RIN≥ 8.0 as the threshold.

The mRNA and lncRNA libraries were constructed using a
NEB Next R© UltraTM RNA Library Prep Kit for Illumina R© per the
manufacturer’s instructions (NEB, Ipswich, MA, USA). The RNA
libraries were sequenced on an Illumina HiSeqTM 2500 platform
with PE150 strategy (paired-end 150 bp) by Beijing Novogene
Technology Co., Ltd (Beijing, China).

Sequencing Data Analysis
The raw reads were obtained in FASTQ format. Low-quality
reads, namely, reads with adapters, reads that contained N
(wherein the proportion of unidentified bases > 0.2%), and low-
quality reads (quality scores < Q20; i.e., bases with sQ ≤ 5
more than 50% of all reads) were removed. Clean reads were
generated and then mapped to the Ovis aries reference genome
(Oar_v4.0) using Hisat2 (20). StringTie (21) was used to assemble
the mRNA transcripts. Then, coding and non-coding RNA
candidates from the transcripts were distinguished using Coding-
Non-Coding-Index [CNCI, (22)], Coded Potential Calculator-2
[CPC2, (23)], and Pfam-scan [PFAM, (24)] software. Non-coding
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RNA candidates with lengths > 200 nt, and with exon numbers
≥ 2 were identified as candidate lncRNAs.

The expected number of Fragments Per Kilobase of transcript
sequence per Million fragments sequenced [FPKM, (25)] was
used to estimate the expression levels of candidate lncRNA and
mRNA transcripts. Differentially expressed (DE) lncRNAs and
DE mRNAs were identified between AN and SE groups using
edgeR R library (26). lncRNAs and mRNAs were considered
significantly DE as the threshold of padj (p-values adjusted by
Benjamini and Hochberg’s approach) < 0.01.

Identification of mRNA/lncRNA Biomarkers
Using Machine Learning Method
To identify potential lncRNA and mRNA biomarkers for E. coli
F17 infection, one two-step machine learning approach (RX)
combination Random Forest [RF, (27)] and Extreme Gradient
Boosting [XGBoost, (28)] were performed. The randomForest
library and XGBoost library in R software was applied for the
analysis. The detailed strategy for RX were described in our
previous research (29).

Briefly, we systematically examined a range of parameters
(Ntree and mtry values for RF, colsample and eta for XGBoost),
and out-of-bag (OOB) error rate was used for determining
the derive minimum hyperparameter values required for final
analysis. For biomarkers identification, firstly, RF was applied to
select the subset of lncRNAs and mRNAs with positive values
of variable important measures (VIMs). Then, these selected
lncRNAs andmRNAs fromRFwere further assessed by XGBoost.
Similarly, XGBoost produces a VIM rank for the genes named
“Gain.” In the current study, the VIM value of individual variable
(mRNA and lncRNA) denotes the relative contribution of the
variable for each tree in the model. The higher the “Gain” value,
the more important the variable is for generating a classification
between lambs AN and SE lambs. Hence, variable with a high
“Gain” were therefore prioritized as potential mRNA/lncRNA
biomarkers for E. coli F17 infection.

Integrative Network Analysis
To elucidate the interaction between the mRNAs and lncRNAs,
cis- and trans-target genes of lncRNA were predicted.
Coding genes located 100 kb upstream or downstream of
the corresponding lncRNAs were considered cis-target genes.
To identify candidate trans-target genes, Pearson correlation
coefficients were calculated between the expression level of
coding genes and corresponding lncRNAs. Coding genes were
considered trans-target genes for |correlation| ≥ 0.95.

Based on the target gene prediction, the interactions between
DE lncRNAs andDEmRNAs were used to construct the lncRNA-
mRNA integrative network using Cytoscape v3.7.2 software (30).

Functional Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed for the
DE mRNAs and target genes of the DE lncRNAs GOseq R library
(31) and KO-Based Annotation System (KOBAS) programs
(32), followed by a Fisher’s exact test with a false discovery

rate (FDR) multiple test correction to assess the statistical
significance (p < 0.05).

Real-Time QPCR
To validate the RNA-Seq data, five mRNAs and five lncRNAs
were randomly selected. The house-keeping gene GAPDH was
selected as the reference gene, and the primers were designed
using Primer Premier 5 software. The sequences of the selected
mRNAs and lncRNAs were shown in Supplementary Table S1.

Total RNA was extracted from the jejunum tissue of 12 lambs
(6 AN and 6 SE) processed for sequencing using TRIzol R© per
the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA).
The first strand of cDNA was prepared using FastKing gDNA
Dispelling RT per the manufacturer’s instructions (Vazyme
Biotech, Nanjing, Jiangsu, China).

The PCR thermocycler program procedure was as follows:
37◦C for 15min, followed by 85◦C for 5 s. The reaction mixture
contained 4.0 µl 5× FastKing-RT SuperMix 2.0 µl, 2.0 µg
Total RNA, and RNase-free ddH2O to a total volume to 20 µl.
The quality of the cDNA was evaluated by housekeeping gene
amplification and stored at−20◦C until use.

Real-time qPCR was performed in triplicate with cDNA to
validate the reliability of RNA-Seq data following the SYBRGreen
I method with 1 cycle at 95◦C for 15min, followed by 40 cycles
at 95◦C for 10 s, and 60◦C for 30 s. The dissociation curve was
analyzed after amplification.

The 2−11Ct method (33) was used to calculate expression
level of selected lncRNAs and mRNAs. The results were shown
as relative expression level (log2FoldChange mean ± standard
error) using GraphPad Prism 6 software.

RESULTS

Global RNA-Seq Data
The average numbers of raw reads were 85,523,999 (AN) and
84,450,970 (SE); the average numbers of clean reads were
84,384,636 (AN), and 83,112,267 (SE); and the average mapping
rates for the AN and SE were 98.67 and 98.41%, respectively.
Detailed characteristics of the two libraries are shown
in Table 1.

We identified a total of 20,601mRNAs and 12,426 lncRNAs, of
which 9,148 of the lncRNAs were novel and 3,278 were annotated
lncRNAs (Figure 1A). Among the novel lncRNAs, 53.2, 27.6, and
19.1% were identified as lncRNAs, sense-overlapping lncRNAs,
and antisense lncRNAs, respectively (Figure 1B). The 20,601
mRNAs and 12,426 lncRNAswere screened for in-depth analyses.

The mRNAs had an average of 5.76 exons, whereas most of
the lncRNAs had an average of 2.71 exons (Figure 1C). Most
of the mRNAs were 500-3,000 bp long with an average length
of 2285.65 bp, whereas most of the lncRNAs were 200-1,000
nt long with an average length of 1713.33 nt (Figure 1D). The
detailed information of mRNAs and lncRNAs can be found in
Supplementary Table S2.

Differentially Expressed mRNAs and
lncRNAs
We identified 772 DE mRNAs between the AN and SE libraries,
within which 367 were upregulated and 405 downregulated
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TABLE 1 | Summary of the sequencing data.

Sample name Raw reads Clean reads Clean bases Error rate (%) Q20 (%) Q30 (%) GC content (%)

AN1 86,448,964 85,310,470 12.97G 0.03 97.55 93.27 51.32

AN2 82,985,976 82,314,372 12.45G 0.03 97.00 91.76 46.32

AN3 81,095,934 79,701,960 12.16G 0.03 97.49 93.16 51.61

AN4 94,502,330 93,722,960 14.18G 0.03 97.25 92.49 48.07

AN5 84,496,940 83,246,004 12.67G 0.03 97.45 93.06 50.25

AN6 83,613,850 82,012,052 12.54G 0.03 97.49 93.19 54.43

SE1 82,325,980 81,420,394 12.21G 0.03 97.31 92.67 52.18

SE2 83,101,628 81,439,640 12.22G 0.03 97.39 93.00 48.07

SE3 83,731,304 82,241,834 12.34G 0.03 97.45 93.09 49.79

SE4 80,794,124 79,478,658 11.92G 0.03 96.90 91.99 56.07

SE5 92,174,900 90,902,860 13.64G 0.03 97.35 92.99 49.55

SE6 84,577,884 83,190,218 12.48G 0.03 96.54 91.14 49.89

AN and SE represent antagonism group and sensitive group, respectively. Error rate % represent average error rate of sequencing of the single base.

FIGURE 1 | lncRNA filter/classification and exon/length distribution of identified lncRNAs and mRNAs. (A) Filter of identified lncRNAs. (B) Classification of identified

lncRNAs. (C) Exon number distribution of identified lncRNAs and mRNAs. (D) Length distribution of identified lncRNAs and mRNAs.

(Figure 2A). One hundred ninety DE lncRNAs were identified
between the AN and SE libraries, within which 95 were
upregulated and 95 were downregulated (Figure 2B). Details are
provided in Supplementary Table S3.

Cluster analysis was performed and heat maps of the DE
lncRNAs (Figure 3A) and DE mRNAs (Figure 3B) revealed
a clear different expression pattern clearly between AN
and SE.

Identification of Potential mRNA and
lncRNA Biomarkers for E. Coli F17
Infection
The final parameters used for RF and XGBoost analyses of

mRNA and lncRNA datasets were chosen based on a systematic

evaluation of a range of values. Details can be seen in

Supplementary Table S3.
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FIGURE 2 | Volcano plot of differentially expressed (DE) mRNAs (A) and lncRNAs (B) in antagonism group (AN) vs. sensitive group (SE), where red and green

represent up or downregulation, respectively.

FIGURE 3 | Heat map of DE mRNAs (A) and DE lncRNAs (B).

For mRNA biomarkers identification, 4,424 mRNAs
with positive VIM value were identified by RF and 16
mRNAs were further selected by XGBoost, of which the
top three mRNAs with highest Gain value were PPP2R3A
(0.81), GPR158 (0.14), and RAB44 (0.01). For lncRNA
biomarkers identification, 2,700 lncRNAs with positive
VIM value were identified by RF and 17 lncRNAs were
further selected by XGBoost, of which the top three lncRNAs
with highest Gain value were TCONS_00182693 (0.63),
TCONS_00223088 (0.29), and XR_001434061.1 (0.04). Figure 4
illustrates the mRNAs (Figure 4A) and lncRNAs (Figure 4B)
selected by RX. The detailed results of RX can be found in
Supplementary Table S4.

Target Gene Prediction and Integrative
Network Analysis
Overall, 15,379 cis-target genes of 12,481 corresponding lncRNAs
and 5,756 trans-target genes of 5,171 corresponding lncRNAs
were predicted. Detailed prediction results are provided in
Supplementary Tables S5, S6. Based on the DE analysis, 48 DE
lncRNAs were found to cis-regulate 38 DE mRNAs, and 115 DE
lncRNAs were found to trans-regulate 264 DE mRNAs. A total
of 950 DE lncRNA-mRNA pairs were used for the subsequent
integrative network analysis.

The connection number of each candidate node in the
integrative network was calculated. The top threemost connected
DE lncRNAs were TCONS_00133120 (61), TCONS_00070741
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FIGURE 4 | Gain value of the mRNAs (A) and lncRNAs (B) selected by the two-step machine learning approach (RX).

(36), and TCONS_00009486 (36); and the top three most
connected DE mRNAs were CES3 (33), SLC5A12 (28),
and SOAT2 (20). The interaction network is in shown in
Supplementary Figure S1 and detailed information is provided
in Supplementary Table S7.

GO and KEGG Enrichment Analysis
To explore the mechanisms underlying E. coli F17 infection, GO
and KEGG enrichment analysis were conducted on the up and
downregulated DE mRNAs and DE lncRNAs identified in AN
vs. SE.

The upregulated DE mRNAs were significantly enriched
in 159 GO terms and 14 KEGG pathways. The top enriched
GO terms Figure 5A were multi-organism cellular process
(GO:0001071), extracellular region (GO:0005576), and
binding (GO:0005488) under the biological process (BP),
cellular component (CC), and molecular function (MF),
respectively. The top enriched KEGG pathways Figure 5B were
nitrogen metabolism (oas00910), amoebiasis (oas05146) and
peroxisome proliferator-activated receptor (PPAR) signaling
pathway (oas03320).

The cis-target genes of upregulated DE lncRNAs were
significantly enriched in 47 GO terms and 18 KEGG pathways.
The top enriched GO terms Figure 6A were regulation
of protein metabolic process (GO:0019538), ubiquitin ligase
complex (GO:0000151), and nickel cation binding (GO:0016151)
under the BP, CC, and MF categories, respectively. The top
enriched KEGG pathways Figure 6B were metabolic pathways
(oas01100), HTLV-I infection (oas05166), and steroid hormone
biosynthesis (oas00140).

The trans-target genes of the upregulated DE lncRNAs were
significantly enriched in 103 GO terms and 49 KEGG pathways.
The top enriched GO terms Figure 7A were single-organism
metabolic process (GO:0044710), nuclear part (GO:0044428),
and binding (GO:0005488) under the BP, CC, and MF categories,
respectively. The top enriched KEGG pathways Figure 7B were

metabolic pathways (oas01100), peroxisome (oas04146) and
PPAR signaling pathway (oas03320).

The downregulated DE mRNAs were significantly enriched in
109 GO terms and 33 KEGG pathways. The top enriched
GO terms Figure 8A were oxidation-reduction process
(GO:0055114), nuclear chromosome (GO:0000228), and
catalytic activity (GO:0003824) under the BP, CC, and MF
categories, respectively. The top enriched KEGG pathways
Figure 8Bwere metabolic pathways (oas01100), fat digestion and
absorption (oas04975), and PPAR signaling pathway (oas03320).

The cis-target genes of the downregulated DE lncRNAs were
significantly enriched in 78 GO terms and 6 KEGG pathways.
The top enriched GO terms Figure 9A were intracellular
transport (GO:0046907), chorion (GO:0042600), and binding
(GO:0005488) under the BP, CC, andMF categories, respectively.
The top enriched KEGG pathways Figure 9B were chemokine
signaling pathway (oas04062), leukocyte transendothelial
migration (oas04670), and glutathione metabolism (oas00480).

The trans-target genes of downregulated DE lncRNAs were
significantly enriched in 109 GO terms and 12 KEGG pathways.
The top enriched GO terms Figure 10A were biological
adhesion (GO:0022610), extracellular region (GO:0005576), and
binding (GO:0005488) under the BP, CC, and MF categories,
respectively. The top enriched KEGG pathways Figure 10B

were neuroactive ligand-receptor interaction (oas04080), calcium
signaling pathway (oas04020), and adrenergic signaling in
cardiomyocytes (oas04261).

Detailed results of GO and KEGG enrichment analysis are
provided in Supplementary Tables S8, S9.

Validation of the RNA-Seq Data
The expression level of selected lncRNAs and mRNAs obtained
by RT-qPCR were compared with those obtained by RNA-Seq
are shown in Figure 11. The expression patterns of selected
lncRNAs and mRNAs were similar between RNA-Seq and
RT-qPCR, indicating the reproducibility and reliability of our
sequencing data.
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FIGURE 5 | Top annotated gene ontology (GO) terms (A) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (B) of upregulated DE mRNAs.

FIGURE 6 | Top annotated GO terms (A) and KEGG pathways (B) of cis-target genes of upregulated DE lncRNAs.

FIGURE 7 | Top annotated GO terms (A) and KEGG pathways (B) of trans-target genes of upregulated DE lncRNAs.

DISCUSSION

Considering the susceptibility of jejunum to E. coli F17 (19) and

globally high prevalence of E. coli F17 in young livestock, we

chose newborn lambs as the animal model of E. coli F17 infection

for this study. Challenge experiments were conducted and E.
coli F17-resistant (AN) and E. coli F17-sensitive (SE) lambs were
identified based on histopathological examinations and bacteria
plate counting of intestinal contents, and jejunum tissues were
chosen for the final sequencing.
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FIGURE 8 | Top annotated GO terms (A) and KEGG pathways (B) of downregulated DE mRNAs.

FIGURE 9 | Top annotated GO terms (A) and KEGG pathways (B) of cis-target genes of the downregulated DE lncRNAs.

FIGURE 10 | Top annotated GO terms (A) and KEGG pathways (B) of trans-target genes of the downregulated DE lncRNAs.
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FIGURE 11 | Comparisons of the results of the RNA-Seq and RT-qPCR

analyses of selected lncRNAs and mRNAs in AN vs. SE.

The average mapping rate of the clean reads was 98.54%, and
12,426 lncRNAs and 20,601 mRNAs were identified. According
to the average FPKM values, the mRNA with the highest
expression level was beta-2-microglobulin (B2M), a critical
component of the major histocompatibility complex (MHC)-I
antigen processing and presentation, which has important roles
in immune control. Association was revealed between B2M and
reaction to cancer immunotherapies in multiple organs (34, 35),
however, investigations of the role of B2M in pathogenic E. coli
infections are still limited. In our previous RNA-Seq research in
spleen of diarrhea sheep, we found that B2M was an adjacent
gene to DE circRNA (36). We consider that B2M may play
various roles in the immune response to diarrhea in multiple
organs. However, additional work is needed to confirm this
possibility. The lncRNA with the highest expression level was
TCONS_00211357, which was predicted to target several NF-
κB pathway-related genes such as TRIM38 [NF-κB activator,
(37)] and NFKBID [NF-κB inhibitor, (38)]. Numerous studies
have shown that the NF-κB pathway is involved in the host
inflammatory response to E. coli (39–41). Our results suggest
that there is a certain probability that TCONS_00211357 act as
a key regulator of NF-κB pathway in immune response to E. coli
F17 infection.

As anticipated, expression profiles of lncRNAs and mRNAs
vary between the AN and SE groups. Comparisons revealed 772
DE mRNAs and 190 DE lncRNAs, of which the number of
upregulated DE mRNAs and DE lncRNAs were relatively lower
than that of downregulated DEmRNAs and DE lncRNAs, similar
to the results reported previously for a variety E. coli challenged
experiments (42–44). Hence, an unstable transcriptional profile
may be the main reason for the serve diarrhea seen in SE lambs.

Many of the top-ranked upregulated DE mRNAs (by padj)
were reported to be involved in intestinal epithelial barrier
restitution, such as the trefoil factors (TFFs), LOC105606142
(mucin-2-like), OLFM4, REG4, and LYPD8. The intestine has
a double-layer physical barrier (mucus layer and IEC layer)
that separates intestinal bacteria from the underlying lamina
propria and deeper intestinal layers (45). Mucus, which is
composed of TFFs and mucin glycoprotein (46), separates the

pathogenic bacteria from direct contact with the IECs (47).
The TFFs are known to be involved in mucosal restitution,
protection, and proliferation, and are important stabilizers of
the intestinal mucus. Here, we concentrate on two members of
TFF family: TFF2 and TFF3. As previously documented, TFF3,
rather than TFF2, is more involved in mucosal restitution and
protection, especially in intestinal immunity (48). However, in
the present study, TFF2 expression was notably higher in AN
lambs than SE lambs (fold change = 204). TFF3 was highly
expressed level in all lambs, but no significant changes in its
expression were detected between the AN and SE lambs. Hence,
we speculated that although TFF3 functions are important in
mucosal restitution, the activation of TFF2 may be the key
antagonist for E. coli F17 infection. Another component of
mucus, mucin glycoprotein, is formed of densely glycosylated
MUC2 mucin (49). Similar to TFF2, LOC105606142 (mucin-2-
like) expression was significantly higher in AN lambs than it was
in the SE lambs. On the basis of these results, we hypothesized
that these two genes, separately or together, accelerate mucosal
restitution to protect the host against E. coli F17. Products of
E. coli F17 (lipopolysaccharides and enterotoxin) can lead to
the massive apoptosis of IECs, which forms another physical
barrier below the mucus layer, inducing IECs to proliferate. In
response to injury, intestinal stem cells give rise to daughter cells
with the potential to proliferate to prevent IEC damage (50). In
our present study, we identified 3 genes (OLFM4, LYPD8, and
REG4) that regulate the immune response of IECs, and these
genes were notably more highly expressed in AN lambs than
they were in SE lambs. Olfactomedin 4 (OLFM4) is generally
thought to be involved in the regulation of several important
signaling pathways underlying a number of imperative cellular
functions (51–53). For example, in individuals infected with
H. pylori, OLFM4 upregulation has been demonstrated as a
marker of the immune response through reducing or eliminating
H. pylori colonization (54). Given the likely cellular immune
function of OLFM4, OLFM4 upregulation in the AN lambs
may suggest a potential role for OLFM4 in the host immune
response against E. coli F17 infection by reducing E. coli F17
colonization. Plaur domain-containing 8 (LYPD8) is a highly N-
glycosylated glycosylphosphatidylinositol-anchored protein that
is highly expressed on IECs. Recent studies reported that
LYPD8 mediates segregation of pathogenic bacteria (including
pathogenic E. coli) and epithelial cells in the intestine to preserve
intestinal homeostasis (55). Considering the above evidence and
our result, we infer that upregulation of LYPD8 may contribute
to intestinal defense against E. coli F17 by reducing attachment
on IECs. However, whether LYPD8 prevents infection with E. coli
F17 still needs to be determined. REG4 was found to be strongly
upregulated during intestinal inflammation, andmay be involved
in enhancing intestinal metaplasia and growth of organoids (8).
We also found that REG4 strongly upregulated in the AN lambs,
implying that REG4may be essential to intestinal metaplasia of E.
coli F17-infected hosts. Taken together, our data highlight several
potential mechanisms that prevent E. coli F17 infection in AN
lambs, namely, protection from mucosal restitution (TFF2 and
LOC105606142) and cellular immune response (OLFM4, LYPD8,
and REG4).

Frontiers in Veterinary Science | www.frontiersin.org 9 April 2022 | Volume 9 | Article 819917

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Lambs Challenged With Escherichia coli F17

Based on top-ranked downregulated DE mRNAs, SE lambs
had higher expression of metabolism-related genes, such as
fatty acid-binding protein 2 (FABP2) and apolipoprotein genes
(APOA4, APOC3, and APOB). FABP2 encodes lipid chaperones
that mediates multiple lipid-mediated intestinal biological
function (56, 57). FABP2 can also serve as a biomarker of
intestinal inflammation, such as acute intestinal ischemia and
active ulcerative colitis (58). In the present study, we found
that the high expression level of FABP2 was positively corrected
with the severity of diarrhea in E. coli F17 hosts, indicating
that it may serve as a candidate biomarker for E. coli F17
infection. Apolipoprotein genes has been implicated in the
major functions of high-density lipoprotein, including lipid
binding and dissolution, and activation of lecithin (59). Our data
show that apolipoprotein genes were significantly more highly
expressed in SE lambs than AN lambs, especially APOA4 (fold
change > 1,800). Given the critical roles of these genes in lipid
metabolism, it is likely that the metabolic homeostasis of SE
lambs was severely disrupted. To our great interest, in addition
to lipid metabolism, APOA4 also plays a role in intestinal
anti-inflammatory processes, and over-expression of APOA4 in
IECs has been shown to promote differentiation and increase
junctional strength (60). Thus, we speculate that in SE lambs, the
proliferation and restitution of IECs were severely dysregulated,
resulting in activation ofAPOA4 for maintenance of junction and
interaction between IECs.

Advances in lncRNAs have led to their potential in
acting as gene silencers by interfering with the transcription
machinery to suppress gene expression (16). The top upregulated
lncRNA TCONS_00223467 was predicted to target APOA4
and APOC3, two top-ranked downregulated DE mRNAs.
Therefore, in the AN lambs, TCONS_00223467 may function
as APOA4/APOC3-silencing factors, thereby maintaining the
stability of IECs differentiation. The top downregulated lncRNA
were TCONS_00241897. Interestingly, TCONS_00241897 was
also predicted to target LOC101110777 (WAP four-disulfide core
domain protein 18-like, WFDC18-like), one of the top-ranked
upregulated DE mRNAs. WFDC genes have putative roles in
immunity, such as anti-HIV, anti-microbial, and cell migration
activities (61). TCONS_00241897 may function as a silencer of
LOC101110777 and may be therapeutically relevant in E. coli F17
infection, especially the intestinal anti-inflammatory response.
Taken together, our data suggests that TCONS_00223467 and
TCONS_00241897 may play important roles in E. coli F17
infection as a gene silencer, making the prime candidates for
future research.

Machine learning (ML) methods have shown promising
results in identifying potential biomarkers when applied to
transcriptomic datasets (62–64). In our previous study, we
compared the performance of different ML methods and
differential gene expression analysis methods [RF, XGBoost,
RX, t-test, and edgeR; (29)]. Given that our previous results
demonstrated that RX identified the smallest subsets of genes
with the highest classification accuracy, RX was performed in
the present study to identify potential mRNAs and lncRNAs
biomarkers for E. coli F17 infection. Sixteen mRNAs and
17 lncRNAs were finally selected by RX, within which

the mRNA and lncRNA with highest Gain value were
PPP2R3A and TCONS_00182693. The protein phosphatase
2 regulatory subunit B”α (PPP2R3A) gene is a regulatory
subunit of protein phosphatase 2A (PP2A) which regulates
diverse cellular processes (65). TCONS_00182693 is the lncRNA
with highest Gain value. However, not much is known
about its roles in E. coli infection. The high Gain value
of PPP2R3A and TCONS_00182693 demonstrated that they
achieved a good performance in distinguishing AN and
SE lambs in our transcriptomic datasets. Furthermore, the
decision tree-based methods underlying RX (29) also indicated
that certain interactivity existing between them and other
mRNAs/lncRNAs was picked up by RX. Taken together, these
results demonstrated that PPP2R3A and TCONS_00182693 may
serve as reliable biomarkers for detection of E. coli F17 infection
and reflect an important regulatory role for the phenotype
under study.

The functional enrichment analyses of the DE mRNAs and
target genes of the DE lncRNAs showed that immune-related
terms were enriched for the upregulated DE mRNAs and
lncRNAs, and that metabolic-related terms were enriched for
the downregulated DE mRNAs and DE lncRNAs. Similar results
have been reported previously (66, 67), further verifying our
hypothesis that that the activity of immune-related genes was
increased in the AN lambs and that the metabolic homeostasis
was severely disrupted in the SE lambs during E. coli F17
infection. Notably, the PPAR signaling pathway was found
enriched in KEGG enrichment analysis based on both DE
lncRNAs and DE mRNAs. Mechanistically, the internalization
of E. coli leads to the activation of intestine and liver immune
system through the PPAR signaling pathway (68, 69), which
support our result that the PPAR signaling pathway was linked to
intestine inflammation. However, several known E. coli infection
pathways, such as the TLR4 and NF-κB pathways, were not
enriched in our study, which is inconsistent with the results
of the previous studies. One potential explanation for these
inconsistencies is that all experimental lambs were challenged
with E. coli F17 in our study, while these genes were initially
revealed between challenged and unchallenged individuals.

To further understand the interactions between the identified
DE lncRNAs/mRNAs and the underlying intestinal immune
mechanism, we constructed a DE lncRNA-mRNA integrative
network that contained 950 DE lncRNA-mRNA pairs. The DE
lncRNAs with the most connections were TCONS_00133120
(61), TCONS_00070741 (36), and TCONS_00009486 (36), and
they were predicted to be target members of SLC family (e.g.,
SLC2A5, SLC5A1, and SLC15A1). The solute carrier (SLCs)
family regulates the transport of molecules and have been
overwhelmingly confirmed to function in cell proliferation,
migration, and apoptosis (70–73). Therefore, we hypothesized
that these lncRNAs may similarly regulate certain biological
progress in the IECs. However, further in-depth studies are
clearly needed to prove this hypothesis. The DE mRNAs with
the most connections were CES3 (33), SLC5A12 (28), and SOAT2
(20). Carboxylesterase 3 (CES3) encodes an enzyme that has a
wide range of activities associated with the lipid-metabolism,
has a possible preventive role in cancer (74, 75). SLC5A12,
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(SMCT2), and was initially reported to mediate sodium-
dependent transport (76, 77), but the significance of its role in
the immune response is still unclear. Sterol O-acyltransferases
subtype 2 (SOAT2) encodes a microsomal protein and is
especially expressed in intestine and liver. SOAT2 was shown to
play a critical role in delaying the development of atherosclerosis
(78). It is uncertain whether these top connected lncRNAs and
mRNAs are sufficient to prevent E. coli F17 infection, but there
is a high probability that they interact closely and act as key
regulators of the host’s response to E. coli F17 infection.

CONCLUSION

Ribonucleic acid sequencing analysis identified 772 DE
mRNAs and 190 DE lncRNAs between E. coli F17-
resistant and E. coli F17-sensitive lambs. Several potential
candidate mRNAs (TFF2, LOC105606142, OLFM4, LYPD8,
REG4, and APOA4) and lncRNAs (TCONS_00223467
and TCONS_00241897) involved in intestinal immunity
were identified. The functional enrichment analysis
showed that the PPAR signaling pathway was significantly
enriched in response to E. coli F17 infection. Together,
our findings will increase the knowledge of the regulation
modalities of lncRNAs and mRNAs against E. coli
F17 infection.
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