
RESEARCH ARTICLE

The emergent integrated network structure of

scientific research

Jordan D. DworkinID
1, Russell T. Shinohara1, Danielle S. Bassett2,3,4,5*

1 Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of

Pennsylvania, Philadelphia, PA, United States of America, 2 Department of Bioengineering, University of

Pennsylvania, Philadelphia, PA, United States of America, 3 Department of Physics & Astronomy, University

of Pennsylvania, Philadelphia, PA, United States of America, 4 Department of Electrical & Systems

Engineering, University of Pennsylvania, Philadelphia, PA, United States of America, 5 Department of

Neurology, University of Pennsylvania, Philadelphia, PA, United States of America

* dsb@seas.upenn.edu

Abstract

Scientific research is often thought of as being conducted by individuals and small teams

striving for disciplinary advances. Yet as a whole, this endeavor more closely resembles a

complex and integrated system of people, papers, and ideas. Studies of co-authorship and

citation networks have revealed important structural properties of researchers and articles,

but currently the structure of scientific ideas themselves is not well understood. In this study,

we posit that topic networks may be a useful framework for revealing the nature of concep-

tual relationships. Using this framework, we map the landscape of interconnected research

topics covered in the multidisciplinary journal PNAS since 2000, constructing networks in

which nodes represent topics of study and edges give the extent to which topics occur in

the same papers. The network displays small-world architecture, characterized by regions

of dense local connectivity with sparse connectivity between them. In this network, dense

local connectivity additionally gives rise to distinct clusters of related topics. Yet notably,

these clusters tend not to align with assigned article classifications, and instead contain

topics from various disciplines. Using a temporal graph, we find that small-worldness has

increased over time, suggesting growing efficiency and integration of ideas. Finally, we

define two measures of interdisciplinarity, one of which is found to be positively associated

with PNAS’s impact factor. Broadly, this work suggests that complex and dynamic patterns

of knowledge emerge from scientific research, and that structures reflecting intellectual inte-

gration may be beneficial for obtaining scientific insight.

Introduction

The practice of scientific research represents the collective effort of humans to acquire infor-

mation, generate insight, and disseminate knowledge. Although scientific inquiry has been

carried out for centuries, the recent expansion of meta-data collection has allowed a robust

body of literature to develop around the scientific study of science itself. This work has led to

advances in predicting the success of scientific papers and authors [1, 2], found that articles
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often do not fit into existing disciplinary boundaries [3, 4], and provided empirical fuel for the

debate over interdisciplinary research [5–8]. Yet much remains unknown about the nature of

the large-scale scientific system that emerges from individuals’ intellectual and social incen-

tives. It is especially unclear what features of this system may make it more or less effective at

producing insights.

In recent years, network analysis has provided a particularly useful framework for begin-

ning to reveal the structure and evolution of the emergent scientific landscape. The tools of

this growing discipline have facilitated greater understanding of the roles of specific authors or

papers in co-authorship and citation networks. Network measures can predict authors’ future

collaboration patterns [9, 10], and can help identify turning points in the literature [11]. While

the fine-scale topology of such networks differs by scientific discipline [12, 13], many network

architectures display similar global properties. One such commonly shared property is small-

world architecture [13, 14], which reflects high local clustering within specialty, potentially

supporting development and refinement within sub-fields, combined with efficient paths that

connect distant areas, providing outlets for innovation and information sharing.

Although co-authorship and citation networks have provided much insight into the proper-

ties of the scientific community, their dependence on authors’ social network structures makes

them an indirect window into the structure of scientific knowledge. Topic networks, which

reflect the relations between scientific ideas, offer an opportunity to fill this gap. Existing stud-

ies of topic networks have tended to focus on manual inspection of network appearance or

node-level trends, with only occasional analyses of the networks’ large-scale features [15–21].

Yet, the operationalization of science as a set of interconnected ideas provides a unique oppor-

tunity to study how research topics are related within and across scientific disciplines, how

these topics and their relationships grow and change over time, and how these changes may

influence the extent to which scientists engage with the literature.

In this study, we seek to demonstrate the potential value of topic networks for understand-

ing the large-scale network structure of scientific concepts. We present a generalizable meth-

odological framework for studying topic relationships within scientific literature, and apply it

to a network of topics covered in PNAS since the year 2000. In the presented analysis, network

nodes reflect specific words or phrases, and network edges reflect the extent of co-occurrence

within article abstracts and keyword sections. Using the resultant weighted, undirected net-

work of scientific topics, we conduct an exploratory investigation of the static and dynamic

natures of the topic network, focusing on four specific hypotheses.

First, building on findings from co-authorship and citation networks [13, 14], we hypothe-

size that the topic network will demonstrate non-random, small-world structure. Second,

based on prior studies that performed latent topic modeling [3, 4], we hypothesize that the

community structure of the network will deviate significantly from disciplinary classifications.

Third, as collaboration has crossed national boundaries and broadly increased in recent years

[22, 23], we hypothesize that over time the network will show greater bridging across topic

communities. Finally, although the benefits of interdisciplinarity for individual papers are

debated [5–8], we seek to investigate whether the topic network’s interdisciplinarity is associ-

ated with the overall amount of engagement the component literature receives, as measured by

PNAS’s impact factor.

Design and application

For this study, we used data from 65,290 articles published in PNAS between 2000 and 2017 to

create a network of research topics. Though limited in scope, the choice to apply this frame-

work to data from a single multidisciplinary journal was made for two critical reasons. First,
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the regularity with which disciplinary classifications are applied to articles sometimes varies

across journals, and each journal has its own set of disciplinary classifications. The use of data

from one journals facilitates a consistent and standardized system of classifications, allowing

for investigation into the extent to which research topics do or do not cross disciplinary

boundaries. Second, as the external relevance of the topic network was of interest, a single

journal was desirable in order to draw connections between network structure and journal

impact factor over time.

To create the network, we drew potential topics from the keywords section of each article to

allow for multi-word phrases. We determined the prevalence of each potential topic by finding

the proportion of articles in which the word or phrase was contained in either the abstract or

the keywords section. Based on this prevalence score, we identified the 1000 most common

topics and represented each as a node in the network (See Methods for details). We then

assigned a disciplinary classification to each topic, given by the most common classification

among the articles in which the topic appeared (Fig 1).

Edges of the network represented the co-occurrence of topic i and topic j within abstracts,

quantified by the ϕ coefficient of association for binary variables [24], given by,

�ij ¼
Ai\jAi0\j0 � Ai0\jAi\j0

AiAi0AjAj0
; ð1Þ

where Ai\j gives the number of articles containing both topics i and j, Ai\j0 gives the number of

articles containing topic i but not topic j, and Ai gives the number of articles containing topic i.
In this context, the ϕ coefficient represents the extent to which articles tend to discuss both

topics or neither topic relative to the extent to which they discuss one topic without the other.

Similar constructions of topic similarity have been used to effectively capture network effects

in prior research [18, 21], and this measure also approximately resembles the inverse of meth-

ods previously used to calculate the similarity between articles [10, 19].

Negative correlations—comprising roughly 65% of edges—were removed to increase the

interpretability of the links between topics. As a result, the magnitude of a positive connection

Fig 1. Architecture of the topic network. Nodes (N = 1000) reflect research topics and edges (E = 173, 309) reflect the extent of co-

occurrence in abstracts and keyword sections. (A) The adjacency matrix sorted by topics’ most commonly associated article

classification. (B) Visualization of the topic landscape using t-SNE [28], a method that places datapoints on a two-dimensional map

based on their similarity. Nodes are colored by classification; “other” includes biophysics, developmental biology, ecology,

environmental sciences, plant biology, and sustainability science.

https://doi.org/10.1371/journal.pone.0216146.g001
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represents the extent of the association between two topics within the literature, and an edge

weight of zero represents a lack of a conceptual relationship between two topics. Additionally,

negative correlations between topics had notably lower magnitude and less variability (range:

[-0.10,0], interquartile range: 0.004) than positive correlations (range: [0,0.84], interquartile

range: 0.011), potentially suggesting that they contained less meaningful information than the

remaining positive edges. To ensure that the estimated community structure was not overly

dependent on this choice, we performed sensitivity analyses in which all edge weights were

maintained. The effects of this choice on the community structure of the network are shown

in S1 Fig.

Structure of the topic network

To understand the structure of the topic network, we calculated measures of interconnected-

ness (global efficiency) and local clustering (average clustering coefficient); see S1 Appendix

for mathematical definitions. For comparison, we obtained null adjacency matrices using the

Hirschberger-Qi-Steuer algorithm [25], which accounts for structural features that are inher-

ent to correlation-based networks [26, 27]. We observed that the topic network had signifi-

cantly lower global efficiency (p< 0.01) and higher average clustering (p< 0.01) than was

observed in the null correlation networks, indicating locally dense, non-random connectivity.

See S1 Table for robustness of results to variations in network size.

To probe the local contributions of a topic to this overall structure, we examined each

node’s general level of connectivity (degree, strength) and its role in bridging disparate regions

of the network (betweenness centrality). Interestingly, we observed that betweenness centrality

and degree were slightly negatively correlated (ρ = −0.14, p< 0.001), yet betweenness central-

ity and strength were moderately positively correlated (ρ = 0.55, p< 0.001; Fig 2A). These

associations indicate that topics with high betweenness centrality tended to be those with

strong connections to other topics, as opposed to those with many connections to other topics.

Intuitively, this pattern suggests that high betweenness nodes in the topic network may more

Fig 2. Structural relationships within the topic network. (A) Log-log relationship between topics’ strength and betweenness

centrality. (B) Relationship between topics’ log-clustering coefficient and participation coefficient. Topics from notable disciplines

are highlighted, and topics from other disciplines are gray.

https://doi.org/10.1371/journal.pone.0216146.g002
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closely resemble “bridges” (nodes with a few strong/well-placed connections) than “hubs”

(nodes with many connections), though the weak betweenness-degree relationship may indi-

cate that both types are present.

The observed high local clustering and the presence of bridge nodes could be parsimoni-

ously explained by the principle of small-worldness. To evaluate this possibility, we estimated

the small-world propensity of the network [29]. Small-world propensity quantifies the extent

to which a network shows similar local clustering to that of a lattice network (typically high),

and similar average path length to that of a random network (typically low). This metric is sim-

ilar to the commonly used small-world index, σ [30], but has been shown to be unbiased even

in the context of networks with varying densities. Both measures broadly represent how well a

network can be characterized as having both disparate clusters and high levels of between-clus-

ter integration (see Methods for mathematical definition).

For the topic network, the observed small-world propensity was 0.57. This value was found

to be significantly higher than would be expected of a random correlation-based network

(p< 0.01). This result demonstrates that the relationships between topics have small-world

properties, with more local clustering than would be expected of a random network and rela-

tively efficient pathways between clusters. The presence of small-worldness then suggests that

the topic network is naturally organized into a structure that may be well-suited for advance-

ment within topic clusters and innovation between them.

While the presence of small-worldness in the network suggests separation between topic

clusters, it remains an open question whether these clusters tend to fall along disciplinary

lines. Using topics’ disciplinary classifications, we can quantify the trade-off between disciplin-

ary diversity in a topic’s connections (participation coefficient) and local integration between a

topic’s neighbors (clustering coefficient). Unsurprisingly, topics with more cross-disciplinary

connections tended to show less local clustering (ρ = −0.46, p< 0.01; Fig 2B). Yet interestingly,

topics generally had high participation throughout the network (M = 0.74, SD = 0.12), indicat-

ing that close connections between disciplines were common. Additionally, topics in neurosci-

ence (M = 0.64, SD = 0.17) showed significantly lower participation than topics in other

disciplines (M = 0.76, SD = 0.09; t173 = −8.78, p< 0.001).

Community structure of the topic network

As the high participation across topics’ disciplinary classifications implies the presence of mul-

tidisciplinary relationships and clusters, we sought to identify the communities inherent in the

data. Additionally, we set out to formally compare this data-driven partition to the partition

arising from manually assigned disciplinary classifications.

First, we turned to the problem of identifying a natural partitioning of the topics based solely

on the structure of the network, with no knowledge of the disciplinary classifications. We used

a Louvain-like locally greedy algorithm [31, 32] to maximize the modularity, Q, of the network

[33] (see Methods for details). The Louvain algorithm was chosen due to its efficient applica-

tion within large networks, and comparably good performance relative to other “greedy” algo-

rithms [34]. However, because of the stochastic nature of the Louvain algorithm, individual

runs may return different local modularity maxima. To address this issue, we performed 100

optimizations, created an agreement matrix from the resulting partitions, and extracted a con-

sensus partition to better represent the underlying community structure of the topics [35].

From this point forward, we refer to the consensus partition that resulted from the above

process as the “data-driven partition”. It is important to note that various other empirical par-

titions could have been obtained from these data, so the name “data-driven partition” mostly

serves to differentiate the consensus partition from the data-agnostic partition derived from
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article classifications. As compared to the 16 disciplinary communities implied by topics’ clas-

sifications, the data-driven partition yielded only eight distinct communities. Each community

contained topics from various classifications, with relatively weak connections between com-

munities (Fig 3 and S2 Table). It can be seen that communities are typically dominated by top-

ics from two or three different disciplines. Two notable exceptions were a community made

up almost entirely of neuroscience topics, which is consistent with the decreased participation

in this discipline noted previously, and a community that was largely made up of medical sci-

ences topics.

With the classification partition and data-driven partition in hand, we next sought to quan-

titatively compare the two. A natural way to formulate this comparison is to calculate the mod-

ularity for each partition to determine the extent of the separation between communities. As

the data-driven partition was obtained by optimizing modularity and the classification parti-

tion was not, the data-driven partition will necessarily have a higher value on this metric. Yet

the magnitude of the discrepancy is still informative, as it demonstrates the extent to which

disciplinary classifications do or do not reflect a nearly optimal delineation of research topic

clusters. We observed that the modularity value was 48% higher in the data-driven partition

(Q = 0.37) than in the classification partition (Q = 0.25), indicating that the data-driven parti-

tion provided a more natural segregation into topic communities. Notably, this effect holds

across a range of γ values, as the number of communities in the data-driven partition is varied

from 8 to 16 (S3 Table). This fact suggests that community size did not drive the observed dif-

ference in modularity.

As further confirmation of the data-driven partition’s characterization of the community

structure, we considered the framework of the weighted stochastic block model (WSBM; e.g.,

[36]), which provides a complementary means of quantifying how well a partition fits the data.

Though there are many formulations of the WSBM and methods for obtaining WSBM parti-

tions from networks, the framework broadly assumes a community structure in which edge

weights are drawn from block-specific distributions, yielding expected weights for each edge.

Fig 3. The topic network’s community structure. Data-driven communities are placed along the x-axis. The three most common

topic disciplines contained within each community are presented in the graph and in the text below each community. The

proportion of topics not contained within the three most common disciplines is shown in white for each community.

https://doi.org/10.1371/journal.pone.0216146.g003
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To investigate which partition better characterized the edge weights between and within com-

munities, we fit an exponential distribution to the edge weights in each within- or between-

community block. This process approximated a simplified version of the WSBM, where edge

weight distributions were estimated from a fixed partition, as opposed to an optimal partition

being estimated from the observed weights. We then calculated the squared difference between

the observed edge weights and expected edge weights under the fit distributions. For each

edge, this yielded a difference between the observed weight and the expected weight under

the data-driven partition, dlij, and another difference between the observed weight and the

expected weight under the classification partition, dcij. We applied a paired Wilcoxon signed

rank test to these values to determine whether observed edge weights tended to be closer to

one partition’s expected edge weights than the other’s. This test revealed that observed weights

deviated from expected weights significantly more under the classification partition than the

data-driven partition (p< 0.0001). Notably, this effect also holds across γ values and commu-

nity sizes (S3 Table). Together, these findings indicate that the data-driven partition yields

both stronger community separation and greater edge weight consistency within intracommu-

nity and intercommunity blocks.

Temporal changes in network structure

While the static structure of the topic network is important, it does not provide insight into

whether and how the landscape of scientific inquiry might change over time. To address this

question, we created a dynamic network using a 12-month sliding window with an 11-month

overlap, tiling the period from January, 2000 to November, 2017. The 12-month width and

11-month overlap were chosen to induce smooth and gradual evolution of the network struc-

ture over time, as dramatic month-over-month changes in the relationships between scientific

concepts are likely rare. Because some structural change would be expected due to random

chance and patterns of journal publication over time, all measures were standardized relative

to 100 iterations of a temporal null model where the order of article appearance was permuted

uniformly at random. The null trajectories therefore represent change that would occur if

topic prevalence and topic associations were stable over the full time period (see Methods for

mathematical definition).

We first sought to test our hypothesis that the network would show strengthening connec-

tions between and within communities over time, consistent with increasing and changing

patterns of collaboration [22, 23]. We tested for significant temporal changes in strength and

small-world propensity by comparing the variance explained by the linear effect of year (R2) to

distributions of R2 created from the trajectories of the 100 temporal null networks. Average

strength (R2 = 0.75, p< 0.01) and small-world propensity (R2 = 0.25, p = 0.01) both showed

significant positive linear trends over time; see S4 Table for consistent trends across network

sizes). These results suggest that since 2000, associations between commonly covered scientific

topics have grown stronger, and the extent to which these topics demonstrate high clustering

and efficient pathways has increased as well.

Next, we sought to investigate whether the network’s interdisciplinarity showed a meaning-

ful change over the time period under study. To accomplish this, we defined two novel mea-

sures of journal interdisciplinarity. The first, referred to as unbalanced interdisciplinarity (ξU),

is given by the overall difference between within-classification edge weights and between-clas-

sification edge weights across the network. It is defined as,

xU ¼

P
i;jIfci 6¼ cjgwij
P

i;jIfci 6¼ cjg
�

P
i;jIfci ¼ cjgwij
P

i;jIfci ¼ cjg
; ð2Þ
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where ci is the classification of topic i within the set of classifications fC1; . . . ;CNC
g, NC is the

number of classifications in the network, and wij is the weight of the edge connecting topics i
and j. Thus, this measure represents the overall tendency for between-classification relation-

ships to be stronger or weaker than within-classification relationships. The measure increases

as between-classification connection strength increases relative to within-classification con-

nection strength overall.

The second measure, referred to as balanced interdisciplinarity (ξB), is obtained by sepa-

rately calculating the between-classification/within-classification difference for each classifica-

tion, and then by averaging over all classifications within the network. It is defined as,

xB ¼
1

NC

XNC

k¼1

P
i;jIfci ¼ Ck; cj 6¼ Ckgwij
P

i;jIfci ¼ Ck; cj 6¼ Ckg
�

P
i;jIfci; cj ¼ Ckgwij
P

i;jIfci; cj ¼ Ckg

" #

: ð3Þ

Compared to ξU, this measure facilitates the equal contribution of each classification to the

overall score. Thus, whereas increases or decreases in ξU can be driven by one or two large dis-

ciplinary communities, ξB gives a picture of changes in interdisciplinarity that are occurring

simultaneously across large and small fields.

Unbalanced interdisciplinarity (R2 = 0.76, p< 0.01) showed a significant decrease over the

time of study, while balanced interdisciplinarity did not (R2 = 0.11, p = 0.08) (Fig 4, top row).

Since ξU captures shifts in the prevalence of different disciplines over time, it is possible that

this pattern is reflecting a trend towards the publication of more siloed disciplines. Fig 4,

bottom row, shows the trends in prevalence of the three most common topic classifications.

While subtle, there does appear to be a gradual increase in the prevalence of smaller disci-

plines, which suggests that these smaller disciplines may tend to be less interdisciplinary than

the larger disciplines. The lack of a similar decrease in ξB similarly suggests that the shifting

balance of discipline prevalence was the driving factor behind the decrease in ξU.

To begin understanding how interdisciplinary research is perceived, we compared the stan-

dardized trajectories of ξU and ξB to the trajectory of PNAS’s impact factor. We obtained yearly

impact factors from 2000 to 2016 from the Web of Science, and fit a cubic spline to interpolate

Fig 4. Temporal features of the dynamic topic network. (Top row) Temporal trajectories of unbalanced interdisciplinarity (green),

balanced interdisciplinarity (maroon), and residual impact factor (blue) over time. (Bottom row) Temporal prevalence of topics from

the three most common disciplines, relative to the prevalence of all other disciplines.

https://doi.org/10.1371/journal.pone.0216146.g004
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a smooth monthly trajectory. Interestingly, the number of articles published in a given time

window explained 61% of the variation in impact factor; we therefore only considered the

residuals. We calculated the partial correlation between standardized interdisciplinarity mea-

sures and impact factor after accounting for strength [37], and we compared the values to a

null correlation distribution, obtained using the set of standardized trajectories drawn from

the 100 temporal null networks described previously.

Unbalanced interdisciplinarity was not significantly associated with impact factor (ρ = 0.25,

p = 0.27), but balanced interdisciplinarity showed a significant, positive partial correlation

with impact factor (ρ = 0.41, p< 0.01) (Fig 4). These results suggest that fluctuations in inter-

disciplinarity that are shared across disciplines are associated with impact factor, but fluctua-

tions that are driven by changing disciplinary prevalence may not be.

Summary and discussion

Prior analyses of collaboration and citation networks have produced deep insights into the

structures and relationships behind the production of scientific research [9, 11–14]. Yet little is

known about the network structure of the scientific ideas themselves, or what features of this

network might be most effective at facilitating innovation. Here, we sought to present a gener-

alizable framework for understanding the structure that emerges from relationships between

scientific topics. By applying this method to data from PNAS, we demonstrate the value of this

framework for characterizing the structure of research topic networks, investigating whether

topic communities tend to fit into disciplinary classifications, quantifying how the landscape

of topics is changing over time, and determining whether a network’s interdisciplinarity may

be related to the amount of engagement that its component research receives.

Structure of the topic network

We constructed a network of research topics using seventeen years of PNAS articles, and

found—unsurprisingly—that it had features uncharacteristic of a random correlation network.

Specifically, the network had significantly higher clustering and lower efficiency than a ran-

dom network, and showed patterns that revealed low-degree, high-strength bridge nodes that

provide links within and between local clusters. The network also showed moderate to high

small-worldness compared to what would be expected of a random correlation network. Both

the graph statistical findings and the small-world classification are consistent with the net-

works described in studies of co-authorship and citation [13, 14], which would be expected to

share many features with a network of research topics. As the structure of this network repre-

sents the structure of research from a single journal, it would be important for future work to

determine whether these structural features hold for networks that examine research across

multiple journals. If these features do hold, a possible next step would be to investigate the for-

mation processes of these structures, potentially by examining the birth and growth of nodes

and edges over time.

Community structure of the topic network

Although community detection was referenced only as a future direction in seminal collabora-

tion network analysis [12], the modular structure found in the topic network is consistent with

the presence of communities in newer research on country-specific collaboration networks in

both scientific and nonscientific fields [38, 39]. In this network, the empirical partition made

up of multidisciplinary communities showed stronger separation between communities and

provided a better fit to the within- and between-community edge weights than the partition

arising from disciplinary classifications. Overall, the superior fit of the empirical communities

The emergent integrated network structure of scientific research
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compared to the classification-specific communities indicates that research published in PNAS
is more interdisciplinary than the article classifications would suggest. One notable exception

was a community made up almost exclusively of neuroscience topics (Fig 3), potentially

reflecting neuroscience’s unique status as a field both popular enough to encompass many top-

ics and young enough to remain largely insular. Yet the relative isolation of medical science

topics complicates this interpretation, suggesting that further research is needed to understand

the community-level mechanisms that drive or hamper interdisciplinarity.

Temporal changes in network structure

Though the structure of the static network yielded valuable insights into the relationships

between topics, the production of scientific research is far from static. Therefore, it was of

great interest to examine temporal changes in the topic network. At the network scale, while

generative evolution has been considered for authorship relationships [9, 40], the dynamic

evolution of large-scale network properties has rarely been examined in the context of author-

ship or citation [41]. Here we found that both edge strength and small-worldness significantly

increased over time. The strengthening of connections between seemingly distant research

areas could reflect a convergence of the scientific landscape towards a more efficiently inter-

connected network of ideas. This would represent an interesting emergent property of the

landscape, potentially arising from individual scientists consciously or unconsciously changing

their behavior over time to perform more innovative work.

Implications of interdisciplinarity

Despite the scientific push towards interdisciplinarity, and the prevalence of strong ties

between disparate fields, the merits of interdisciplinarity are still widely debated [5, 6]. Propo-

nents view interdisciplinary work as being crucial for “address[ing] the great questions of sci-

ence” [42], while some skeptics instead believe that it too often represents “amateurism and

intellectual voyeurism” [43]. In this study, we defined a novel measure of network interdisci-

plinarity, ξB, and found it to be positively associated with PNAS’s impact factor.

Although this finding only speaks to work published in PNAS, within that context it

suggests that bodies of work that are more interdisciplinary in nature may receive more

engagement from the scientific community. Yet it remains unclear whether the increased

engagement is reflective of the generation of more innovative scientific knowledge, or simply

more effective dissemination of the knowledge across fields. In either case, this finding could

reflect an important contribution to the discussion of interdisciplinary research, as previous

research on the benefits of discipline-spanning has produced mixed results [6].

Limitations

Validity and generalizability of the findings presented in this paper are limited by a few meth-

odological considerations. First, seminal work has shown that fields of study differ significantly

in the structures of their authorship and citation networks [12, 13]. Therefore it is likely that

journals may also have meaningful differences in the structure and correlates of topic net-

works. Future work could expand the data source to include several top-tier journals within

and across fields, and investigate the structural variability across journals, and the unique

structural features of datasets that collapse across journals.

Additionally, the restriction of the dataset to keyword sections and abstracts may ignore

potential information contained in introduction and discussion sections. However, it is plausi-

ble that topics mentioned in introduction and discussion areas may not be an accurate reflec-

tion of the topics truly covered in a given article, unlike those mentioned in the abstract and
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keyword sections. Future work could examine this assumption directly by implementing a

manual rating system. Additionally, the current method does not account for synonyms,

or for fields using different jargon to refer to identical concepts. Methods for discovering par-

allel scientific concepts being discussed independently within disparate disciplines would be

immensely valuable within the framework of topic networks, and could potentially be pursued

by assessing the existence and prevalence of cross-disciplinary topic pairs that share an abnor-

mally high amount of neighbors within the network.

Finally, impact factor is widely considered to be an imperfect measure of scientific engage-

ment with published research. Although warnings against impact factor’s use often highlight

its inability to facilitate valid comparisons between journals in different fields or different

countries [44, 45], within-journal changes over time are also incomplete and potentially sub-

ject to manipulation through editorial policies [46]. Future work could consider associations

between network structure and other measures of scientific engagement and journal quality.

Conclusion

In this study, we propose a topic network framework for investigating the emergent relational

characteristics of concepts in scientific research, and apply it to articles published in PNAS
since the year 2000. The topic network displayed small-world properties and interesting posi-

tive strength-betweenness/negative degree-betweenness associations, indicating the presence

of tightly connected clusters and low-degree, high-strength nodes serving as conceptual brid-

ges. Community detection showed that assigned classifications map poorly onto the underly-

ing clusters, with a data-driven partition revealing the existence of multidisciplinary modules

that contained topics from a variety of classifications. By investigating the temporal properties

of the network, we found that both strength and small-worldness have been increasing over

time. Interestingly, a novel measure of network interdisciplinarity was found to be positively

associated with journal impact factor. Overall, this work demonstrates the value of network

analysis in gaining insight into the structure of scientific knowledge, paints a picture of the sur-

prisingly integrated nature of scientific ideas, and reveals a potentially important positive rela-

tionship between interdisciplinarity and scientific engagement.

Materials and methods

Data collection

We retrieved keywords and abstracts from 65,290 articles published in PNAS from the jour-

nal’s website using an in-house R script, and we used keyword sections to create a list of poten-

tial topics to be searched for in the abstracts. This technique was chosen over latent topic

modeling, as it reflected scientists’ explicit opinions as to the words and phrases that constitute

relevant scientific topics, and allowed for the incorporation of multi-word phrases.

Full network construction

We calculated the prevalence of each potential topic by finding the ratio of abstracts or key-

word sections containing the topic phrase to the total number of articles written in the time

span of study. Thus, prevalence varied for the full network and the year-specific networks.

We represented the 1000 most common topics in the given time span as network nodes; this

value represented the approximate number at which the least prevalent words occurred often

enough to produce a meaningful signal. Edges were given by the ϕ coefficient for binary associ-

ation [24], and negative correlations were removed to improve interpretability and to allow for

analysis of structural features that do not extend to signed networks.

The emergent integrated network structure of scientific research

PLOS ONE | https://doi.org/10.1371/journal.pone.0216146 April 30, 2019 11 / 17

https://doi.org/10.1371/journal.pone.0216146


Temporal network construction

We created a dynamic network using a sliding window of ±6 months from a central month.

Central months ranged from July, 2000 to May, 2017 such that data from January, 2000 to

November, 2017 were included in the analyses. At each window, the 1000 most common top-

ics were used as nodes. We made the choice of 1000 nodes for both the static and dynamic net-

works because it represented the highest number at which all topics selected in each window

would occur more than five times. Thus, higher values would risk uninterpretable noise

among low-prevalence topics, and lower values would sacrifice valuable information. A tem-

poral null model was created to establish significance of temporal trends and correlations

among network measures. This model can be formalized as follows. The observed edge weight

between topic i and topic j in a specific temporal window is given by,

�
ðtÞ
ij ¼

AðtÞi\jA
ðtÞ
i0\j0 � AðtÞi0\jA

ðtÞ
i\j0

AðtÞi A
ðtÞ
i0 A

ðtÞ
j A

ðtÞ
j0

; ð4Þ

where A(t) is the set of articles that were published within a symmetric 12-month window

around time t. By randomly sampling without replacement from the full set of articles, A, we

created a reordered set of articles, B. We then assigned the dates from A to the reordered arti-

cles within B, and obtained B(t�), which represents a random sample of articles that is the same

size as A(t). Null edge weights, �
ðÞ

ij , are then given by,

�
ðt�Þ
ij ¼

Bðt�Þi\j B
ðt�Þ
i0\j0 � Bðt�Þi0\jB

ðt�Þ
i\j0

Bðt�Þi Bðt�Þi0 Bðt�Þj Bðt�Þj0
; ð5Þ

Then for a given network measure, θ(ϕ(t)), which is a function of the adjacency matrix at

time t, we can obtain a null measure, θ(ϕ(t�)). By applying this technique at every point t, a null

temporal trajectory can be obtained, and null distributions of specific functions of these trajec-

tories can be estimated.

Community detection

For both the static and the dynamic networks, we performed community detection using an

iterative generalized Louvain-like locally greedy algorithm to maximize a common modularity

quality function [31, 32]. The modularity, Q, of a network intuitively represents the extent of

separation between nodes in different groups [47]. It quantifies how well the network can be

separated into non-overlapping communities, with many (or strong) within-group connec-

tions and few (or weak) between-group connections. For a network containing only positive

weights, the modularity can be defined as follows:

Qw ¼
1

lw
X

i;j2N

wij �
sisj
lw

h i
dmimj

; ð6Þ

and for a signed network, the modularity can be defined as follows [48]:

Qw
s ¼

1

lw
þ
þ lw

�

X

i;j2N

wij �
sþi s
þ
j

lw
þ

þ
s�i s
�
j

lw
�

� �

dmimj
; ð7Þ

where lw is twice the sum of all of the weights in the network, lw
þ

is twice the sum of all of the

positive weights in the network, lw
�

is the sum of all of the negative weights in the network, sþi is

the strength of a node’s positive edges, s�i is the strength of a node’s negative edges, and dmimj
is
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1 if i = j and 0 otherwise. Note that the results of maximizing a signed modularity can be diffi-

cult to interpret [49], but in the current study the approach was used solely as a sensitivity anal-

ysis to investigate the effect of the decision to remove negative edges (see S1 Fig).

The Louvain-like community detection technique that was used in this study (GenLouvain;

[32]) works by stochastic optimization of the quality index value Q, in which nodes are reas-

signed until no reassignment can improve Q, and then by iterating this optimization until con-

vergence to an output partition. While this iteration helps somewhat with addressing the issue

of near degeneracy [50] in the modularity landscape, the stochastic nature of the Louvain algo-

rithm makes even iterated applications fall subject to local maxima. In an attempt to find a

more empirical partition, we performed 100 separate iterations of the GenLouvain algorithm,

created an agreement matrix from the 100 resulting partitions, and extracted a consensus par-

tition from the agreement matrix according to the method described by Lancichinetti and For-

tunato [35]. Repeated runs of this consensus procedure obtained an average pairwise Jaccard

similarity of 0.96, showing strong consistency relative to individual partitions (average similar-

ity = 0.74), and only small improvements over consensus procedures that used 40 partitions

(average similarity = 0.93) and 70 partitions (average similarity = 0.95).

Additionally, to ensure that differences between the data-driven partition and the classifica-

tion-based partition were not simply the result of differences in the scale of the communities,

the free parameter used for modularity optimization, γ, was selected by maximizing the Jac-

card similarity [51] between the two partitions. At steps of size 0.1 within 0< γ� 2 (after

which Jaccard similarity was found to be strictly decreasing) the Louvain algorithm was per-

formed 100 times, and the average Jaccard similarity at that γ value was calculated. The optimal

γ was then taken to be the value at which similarity between the community-detection parti-

tion and the classification-based partition was highest (S2 Fig). This value was found to be γ =

1.2. Although more empirical methods for selecting γ have been proposed [52, 53], our method

was chosen due to our focus on comparing derived communities to classification communi-

ties. Studies with other priorities for community detection may wish to utilize alternative

methods for choosing γ.
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S1 Appendix. Detailed description of data collection and network analysis techniques.

(PDF)

S1 Table. Effect of network size on the results for the full network. Rows represent different

network level measures reported in the full text, columns represent their values and statistical

significance for different choices of network size. Note: � = p< 0.05, �� = p< 0.01.

(PDF)

S2 Table. Classification composition of empirically obtained topic communities. Rows rep-

resent the eight communities, and columns give the three most common classifications for the

topics contained within each community.

(PDF)

S3 Table. Effect of the number of communities on features of the empirical partition.

Rows represent partitions with between 9 and 16 communities. Columns represent the extent

to which the partitions demonstrate modular structure, contain disciplinary communities, and

better explain edge weights compared to the classification partition.

(PDF)
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S4 Table. Effect of network size on the linear trajectories of the temporal network. Rows

represent the linear change over time for various null-standardized measures of the temporal

network. Columns represent the estimates and statistical significance for different choices of

network size. Note: � = p< 0.05, �� = p< 0.01.

(PDF)

S5 Table. Effect of network size on the impact factor correlations of the temporal network.

Rows represent the correlations with PNAS’s impact factor for various measures of the tempo-

ral network. Columns represent their values and statistical significance for different choices of

network size. Note: � = p< 0.05, �� = p< 0.01.

(PDF)

S1 Fig. Visualization of the consistency, using Jaccard similarity, of the empirical commu-

nity structure both (i) across sizes, and (ii) with or without negative edge weights. Commu-

nity structure was consistent across sizes, and was reasonably consistent between positive

weighted networks and positive-and-negative weighted networks.

(TIFF)

S2 Fig. Visualization of the Jaccard similarity between the empirical community structure

and the assigned topic classifications. Jaccard similarities are plotted for a range of γ values,

demonstrating the procedure for optimizing Jaccard similarity over γ that was used when per-

forming community detection. These values are shown for three different choices of network

size.

(TIFF)
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