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Identification of key snoRNAs serves as 
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Abstract 
Background: Hepatocellular carcinoma (HCC) is a common malignancy with high mortality and poor prognosis due to a lack 
of predictive markers. However, research on small nuclear RNAs (snoRNAs) in HCC were very little. This study aimed to identify a 
potential diagnostic and prognostic snoRNA signature for HCC.

Methods: HCC datasets from the cancer genome atlas (TCGA) and international cancer genome consortium (ICGC) cohorts 
were used. Differentially expressed snoRNA (DEs) were identified using the limma package. Based on the DEs, diagnostic and 
prognostic models were established by the least absolute shrinkage and selection operator (LASSO) regression and COX analysis, 
and Kaplan–Meier (K–M) survival analysis and receiver operating characteristic (ROC) curve analysis were conducted to evaluate 
the efficiency of signatures. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to analyze 
the risk score and further explore the potential correlation between the risk groups and tumor immune status in TCGA. Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the functions of 
key snoRNAs.

Results: We constructed a 6-snoRNAs signature which could classify patients into high- or low-risk groups and found that 
patients in the high-risk group had a worse prognosis than those in the low-risk group and were significantly involved in p53 
processes. Tumor immune status analysis revealed that CTLA4 and PDCD1 (PD1) were highly expressed in the high-risk group, 
which responded to PD1 inhibitor therapy. Additionally, a 25-snoRNAs diagnostic signature was constructed with an area under 
the curve (AUC) of 0.933 for distinguishing HCCs from normal controls. Finally, 3 key snoRNAs (SNORA11, SNORD124, and 
SNORD46) were identified with both diagnostic and prognostic efficacy, some of which were closely related to the spliceosome 
and Notch signaling pathways.

Conclusions: Our study identified 6 snoRNAs that may serve as novel prognostic models and 3 key snoRNAs with both 
diagnostic and prognostic efficacy for HCC.

Abbreviations: AUC = area under the curve, DEG = differentially expressed genes, DEs = differentially expressed snoRNA, 
EMT = epithelial-mesenchymal transition, GO = gene ontology, GSEA = Gene set enrichment analysis, GSVA = gene set variation 
analysis, HCC = hepatocellular carcinoma, ICGC = international cancer genome consortium, K–M = Kaplan–Meier, KEGG = 
Kyoto encyclopedia of genes and genomes, LASSO = least absolute shrinkage and selection operator, ROC = receiver operating 
characteristic, snoRNAs = small nuclear RNAs, ssGSEA = single-sample gene set enrichment analysis, TCGA = The Cancer 
Genome Atlas, TIDE = tumor immune dysfunction and exclusion.
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1. Introduction
Hepatocellular carcinoma (HCC) is a common cancer with a 
high rate of recurrence and mortality and is the fourth leading 
cause of cancer-related mortality worldwide.[1,2] The etiology of 
HCC is usually related to factors that cause inflammatory liver 
disease, such as the hepatitis B virus, hepatitis C virus, alcohol, 
and food toxins.[3] Clinical data show that due to the lack of 
accurate early diagnostic indicators, most patients at initial con-
sultation are diagnosed at advanced stages. Due to inaccurate 
diagnosis and lack of effective treatment, the prognosis of most 
patients with HCC is poor. Therefore, it is imperative to iden-
tify new candidate biomarkers for the diagnosis, prognosis, and 
treatment of HCC.

Many studies have demonstrated that non-coding RNA, 
especially microRNAs and long non-coding RNAs, are promis-
ing biomarkers for the diagnosis and prognosis of diseases.[4–6] 
However, small nuclear RNAs (snoRNAs) have rarely been 
reported as biomarkers of cancer because of their single func-
tion in the nucleolus. snoRNAs mainly exist in the nucleus, 
with a length of 60 to 300 NT. The main biological processes 
involved are rRNA processing, RNA splicing and translation 
regulation, and the oxidative stress response. Previous studies 
have shown that snoRNAs are involved in the development of 
various tumors.[7] It has been reported that SNORD76 can pro-
mote the proliferation of tumor cells in HCC.[8] Other studies 
have shown that SNHG3, SNHG20, SNHG6, SNORD76, and 
SNORA47 regulate the development of HCC cells by regulating 
epithelial-mesenchymal transition (EMT). In addition, SNHG16, 
SNORD76, and SnoU2_19 regulate HCC progression through 
the Wnt/β-catenin signaling pathway.[9] Recently, Ding et al 
indicated that SNORD31, SNORA71A, and RNU5E-1 could 
be used as prognostic genes for HCC.[10–12] However, research 
on snoRNA as a prognostic diagnostic marker for HCC is not 
comprehensive. Therefore, this study intends to use the tran-
scriptome data of HCC from cancer genome atlas (TCGA) and 
international cancer genome consortium (ICGC) public data-
bases to screen the key snoRNAs for HCC diagnosis and prog-
nosis using bioinformatics technology.

2. Materials and Methods

2.1. Data acquisition and preprocessing

A cohort containing a total of 412 samples, including 50 nor-
mal and 362 HCC samples with gene transcriptome data and 
related clinical information, was extracted from TCGA database 
(https://portal.gdc.cancer.gov/). In total, 440 samples, including 
197 normal and 243 HCC samples with complete survival infor-
mation, were downloaded from the ICGC database (https://
dcc.icgc.org/). snoRNAs were annotated using the Ensembl 
database (http://ensemblgenomes.org/). Simultaneously, snoR-
NAs that were differentially expressed in HCC in TCGA and 
ICGC datasets were screened. Then, in TCGA, the least absolute 
shrinkage and selection operator (LASSO) Cox regression algo-
rithm was used to construct a diagnostic model based on differ-
entially expressed snoRNAs (DEs). DEs with prognostic value 
screened by univariate Cox regression analysis were applied to 
construct a prognostic model with a P value <.05. The effective-
ness of the models was evaluated by receiver operating charac-
teristic (ROC) curve or Kaplan–Meier (K–M) survival analysis, 
and the prognostic model was validated using HCC samples in 
the ICGC database. We performed gene set enrichment analysis 
(GSEA) and gene set variation analysis (GSVA), emerging immu-
notherapy targets, and infiltrating immune cell correlation anal-
ysis among the high- and low-risk groups. Finally, we took the 
intersection of the diagnostic model and the prognostic model 
snoRNAs, plotted the single-gene ROC curve of the intersection 
snoRNA, and analyzed the area under the curve (AUC) > 0.6 
as the key snoRNA. Finally, mRNA differentially expressed in 

tumor tissues were screened in TCGA, and differential genes 
related to key snoRNAs were identified by Pearson correlation. 
These genes were subjected to Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment anal-
yses. The detailed workflow is shown in Figure S1, Supplemental 
Digital Content, http://links.lww.com/MD/H417.

2.2. Establishment and validation of the prognostic model

Survival-related snoRNAs were identified in patients with HCC, 
accompanied by the snoRNA expression profile as well as their 
clinicopathological features. Next, the intersection snoRNAs 
from TCGA and ICGC were screened as candidate snoRNAs 
that were passed on for Cox regression analysis. To further eval-
uate whether these candidate snoRNAs correlated with survival, 
328 HCC cases with complete clinical information in the TCGA 
dataset were randomly divided into a training set (n = 230) and 
a testing set (n = 98) at a ratio of 7:3, and 243 HCC patients 
with complete survival information in the ICGC dataset were 
used as validation sets. Using univariate and multivariate Cox 
regression analyses, we established a prognostic signature and 
validated it in the training, testing, and validation sets. An snoR-
NA-based risk score model was constructed from this step. The 
risk score for each patient was calculated using the following 
formula.

Riskscore = h0 (t) ∗ exp (β1X1+ β2 X2+ . . .+ βnXn)

where n is the number of predicted snoRNAs, β is the regres-
sion coefficient, and the inverse natural logarithm exp(β) gives 
the hazard ratio (HR). SnoRNAs with HR < 0 were considered 
protective factors, whereas those with HR > 0 were considered 
risk factors.

The patients were stratified into high- or high-risk groups 
according to the median risk score. We then evaluated the pre-
dictive ability of the signature for OS through K–M survival 
analysis as well as time-dependent ROC curve analysis con-
ducted using the "survminer” and “survivalROC” R packages. 
All these processes were performed using R software (version 
3.5.1).

2.3. Construction and evaluation of the predictive 
nomogram

The “rms,” nomogramEx’ nomogramEx “regplot” R package 
were used to construct nomogram. We constructed a nomogram 
to predict the survival probabilities at 1-, 2-, 3-, 4-, and 5-year 
survival probabilities in the TCGA cohort by integrating factors 
with P value <.05 in univariate COX analysis. Moreover, a cal-
ibration plot was used to evaluate the consistency between the 
predicted survival probability and the real observations.

2.4. GSEA and GSVA

GSEA is an approach to identify specific pathways or processes 
that are overrepresented in predefined subgroups, which is an 
alternative to differentially expressed genes (DEG)-based func-
tional analysis.[13] To explore the enrichment of KEGG pathway 
in the high-risk and low-risk groups, we performed GSEA anal-
ysis on 328 HCC samples in TCGA under NOM P value <.05. 
GSVA, known as GSVA, is a nonparametric unsupervised analy-
sis method used to evaluate gene set enrichment in microarrays 
and transcriptome.[14] GSVA was used to further analyze the dif-
ference of pathways between the subtypes using GSVA “limma” 
package. Differential analysis of GSVA scores in the high- and 
low-expression groups was performed with the low-expression 
group as the reference group and the difference filter condition 
for |t value|>2, P value <.05. When t > 0, we reasoned that this 
pathway was activated in the high expression group and vice 

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://dcc.icgc.org/
http://ensemblgenomes.org/
http://links.lww.com/MD/H417
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versa. t < 0, we believe that this pathway is activated in the 
low-expression group.

2.5. Immune-related analysis

Using the “GSVA” R package, we calculated the enrichment 
score of 24 immune-related cells as well as 24 immune-re-
lated functions for each patient using single-sample gene set 
enrichment analysis (ssGSEA). The enrichment score was 
calculated in the gene expression matrix using the ssGSEA 
algorithm and the enrichment scores were normalized for sub-
sequent analyses. The enrichment scores for diverse immune 
cells and functions of patients in different risk groups were 
then compared to illustrate the potential immune infiltra-
tion status. A Spearman correlation analysis heat map of the 
immune cells and 6 prognostic snoRNAs in HCC was gen-
erated. Correlations were considered significant and positive 
when P < .05 and R > 0.20. Furthermore, the expression of 
more than 18 immune checkpoint genes was analyzed in the 
different risk groups. The tumor immune dysfunction and 
exclusion (TIDE) framework was used to analyze the immu-
notherapy response of 328 HCC samples in TCGA. To identify 
markers with predictive value in immunotherapy response, 
the SubMap algorithm was used to analyze the response of 
high- and low-risk groups to immune checkpoint inhibitors 
(CTLA4 and PD1).

2.6. Construction of the diagnostic model

We used R package “glmnet” to perform LASSO regres-
sion analysis on DEs in HCC and normal control samples 
of TCGA, and constructed the diagnostic model using the 
selected features snoRNAs. ROC curves were used to analyze 
the predictive efficacy of the diagnostic model, and the AUC 
was calculated.

2.7. Identification of the key snoRNAs

First, we drew a Venn diagram of the snoRNAs that constructed 
the diagnostic and prognostic models to explore the intersec-
tion of snoRNAs. Then, we plotted the single ROC curve of 
the intersection snoRNA in the TCGA and ICGC datasets and 
snoRNAs with AUC > 0.6 were identified as the key snoRNAs.

2.8. Enrichment analysis of DEG related to key snoRNAs

To explore the DEG related to HCC, DEG analysis was per-
formed using the edgeR package under the condition |log2FC| 
>1 and P < .05. Pearson correlation was conducted between the 
DEGs and the key snoRNAs, and the top 20 significant DEGs 
ranked by adjusted P values were selected. GO biological pro-
cess and KEGG pathway analyses were applied to identify the 
potential functions of these DEGs using the clusterProfiler R 
package.[15]

3. Results

3.1. Identification of differentially expressed snoRNAs in 
HCC

We identified 112 DEs, including 109 upregulated and 3 
downregulated snoRNAs, in the TCGA dataset. The differen-
tial expression map of TCGA is shown in Figure 1A and the 
thermogram is shown in Figure 1B. We also identified 163 DEs 
in the ICGC dataset, including 148 upregulated and 15 down-
regulated snoRNAs (Fig. 1C and D). Finally, we analyzed the 
intersection of TCGA and ICGC DEs and obtained 45 DEs. The 
expression trends of the 3 snoRNAs in TCGA and ICGC were 
inconsistent; therefore, they were abandoned. Therefore, we 

used the remaining 42 snoRNAs to conduct a follow-up analy-
sis, and all of them were found to be upregulated, as shown in 
Figure 1E.

3.2. Construction and validation of the prognostic model of 
snoRNA signature for HCC

Univariate Cox analyses showed the top 9 significant sur-
vival-related snoRNAs (SNORD46, SNORD72, SNORA11, 
SNORD124, SNORA59B, SNORD83A, SNORA16B, 
SNORD63, and SNORA70) (Fig. 2A), using P < .2 as the cutoff. 
These 9 snoRNAs were then subjected to multivariate Cox pro-
portional hazards regression analysis, and snoRNAs with P < .2 
were used for the risk model construction. A prognostic model 
based on 6 snoRNAs (SNORA59B, SNORD46, SNORD124, 
SNORA11, SNORD63, and SNORA16B) (Fig.  2B) was 
obtained, and a risk score formula was established according to 
their expression levels and coefficients. The 6-snoRNA risk score 
of each patient was calculated, and the patients were stratified 
into high-and low-risk groups according to the median risk score.

To reveal the potential prognostic value of the 6-snoRNA sig-
nature, K–M survival analysis was performed on the training, test, 
and validation sets. The results showed that the high-risk group 
patients had a significantly poorer prognosis than the low-risk 
group patients in the 3 cohorts (Fig. 2C–E). Furthermore, to con-
firm the validity of the obtained model, ROC analysis was con-
ducted to evaluate the accuracy of this signature in predicting 1-, 2-, 
3-, 4-, and 5-year survival. The results are shown in Figures 2F–H. 
Except for the AUC area of the test set in 3 years being 0.584, 
the AUC area of the rest was greater than 0.6 and reaches 0.7 in 
some years, indicating that the 6 snoRNA risk models had good 
efficiency. To further evaluate the predictive performance of the 
snoRNA signature, the distribution of the risk score, patient sur-
vival status, and snoRNA expression signature in the training, 
test, and validation sets was determined (Fig. 2I–K). The results 
showed that SNORA16B and SNORD63 were downregulated in 
the high-risk group, indicating that they act as protective factors, 
and SNORA59B, SNORA11, SNORD46, and SNORD124 were 
upregulated in the high-risk group, indicating that they were all 
risk factors for HCC. In conclusion, this 6-snoRNA signature can 
distinguish high-risk patients from low-risk patients with HCC, 
indicating its prognostic significance in HCC.

3.3. Prognostic value of the 6-snoRNA signature is 
independent of conventional clinical factors

We further appraised the predictive effect of the 6-snoRNA sig-
nature and other clinicopathological characteristics on survival 
status. We performed univariate and multivariate Cox analy-
ses to determine whether the 6-snoRNA signature could be an 
independent risk factor for evaluating the prognosis of HCC 
patients. The results showed that pathological stage, T stage, 
and risk score were significantly related to patient survival sta-
tus (all P < .05) (Fig. 3A). Multivariate Cox regression analysis 
showed that the 6-snoRNA signature and pathological stage 
were independent prognostic factors (Fig. 3B).

We then used pathological stage and risk score to construct 
a nomogram (Fig.  3C) and the 1 to 5-year correction curves 
(Fig. 3D). The 1 to 5-year survival rate was predicted based on 
the total score. The higher the score, the lower the survival rate. 
Thus, it can be concluded that the nomogram model has a cer-
tain prediction effect.

3.4. GSEA enrichment and GSVA in high and low risk 
groups

To explore the KEGG pathway in the high-risk and low-risk 
groups, 328 patients with TCGA HCC in the high-risk and 
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low-risk groups were analyzed by GSEA at P < .05. A total of 
27 KEGG pathways were screened, of which 13 were enriched 
in the high-risk group (normalized enrichment score > 0) and 
14 were enriched in the low-risk group (normalized enrichment 
score  < 0) (Table 1). Several cancer-related processes, including 
the P53 signaling pathway and the cell cycle, were significantly 
enriched in the high-risk group. Thus, these 6 snoRNAs may be 
associated with tumor progression.

To explore the KEGG pathway activated in the high-risk and 
low-risk groups, we performed GSVA analysis on 328 high-risk 
group samples of TCGA HCC using the KEGG pathway as the 
preset pathway (Fig. 4). Finally, we identified 17 pathways that 
were activated in the high-risk group and 81 pathways that were 
activated in the low-risk group. It is interesting to note that the 

P53 pathway was activated in the high-risk group, which is con-
sistent with the GSEA results.

3.5. Analysis of immune cell infiltration, immune 
checkpoints and the response to immunotherapy

Although GSEA and GSVA analyses were not enriched in 
immune-related pathways, we still attempted to explore whether 
the risk model based on DEs was related to immunity. We con-
ducted ssGSEA immune cell infiltration analysis, immune check-
point analysis, and TIDE immunotherapy response analysis on 
328 samples of TCGA HCC. Simultaneously, the SubMap algo-
rithm was used to analyze the response of high- and low-risk 

Figure 1. Identification of differentially expressed snoRNA in HCC. (A) Volcano plot showed the number of differentially expressed snoRNAs in TCGA. (B) 
Heatmap of differentially expressed snoRNAs in TCGA datasets. (C) Volcano plot showed the number of differentially expressed snoRNAs in ICGC. (D) Heatmap 
of differentially expressed snoRNAs in ICGC datasets. (E) An intersection analysis of differentially expressed snoRNAs in TCGA and ICGC was conducted. HCC 
= hepatocellular carcinoma, ICGC = international cancer genome consortium, snoRNAs = small nuclear RNAs, TCGA = the cancer genome atlas.
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Figure 2. Construction and validation of the prognostic model of snoRNA signature for HCC. (A) The top 9 (9/42) significant survival-related snoRNAs using 
univariate cox analysis. (B) Six significant snoRNAs in multivariate cox analysis were screened out (P < .2) as candidates for the risk model construction. The 
Kaplan–Meier plot of the overall survival (OS) for high-risk and low-risk patients in the training data set (C), testing set (D), and validation set (E). Receiver operat-
ing characteristic analysis for the 6-snoRNA signature in predicting the patients of 1, 2, 3, 4, and 5 years OS in the training set (F), testing set (G), and validation 
set (H). The distribution of the riskscore, patients’ survival status as well as snoRNA expression signature in the training set (I), testing set (J), and validation set 
(K). A shorter survival time, more dead events and the expression value of 6 snoRNAs ascended or decreased with the elevation of the riskscore. AUC, areas 
under the ROC curve, HCC = hepatocellular carcinoma, snoRNAs = small nuclear RNAs.
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groups to immune checkpoint inhibitors (CTLA4 and PD1). As 
shown in Figure 5A, the risk score is significantly associated with 
the abundance of infiltrating immune cells. The NK CD56bright 
cells, TFH, Th17 cells, and Th2 cells were more infiltrated in the 
high-risk group, while DC, neutrophils, and Tcm infiltrated more 
in the low-risk group.

We further analyzed the correlation between the 6 snoR-
NAs and immune cells in the prognostic model. Consistently, 
the expression of all 6 snoRNAs was associated with DC infil-
tration in HCC. The expression of SNORD46, SNORD124, 
SNORA59B, and SNORA11 significantly correlated with neu-
trophil infiltration. The expression of SNORD46 and SNORA11 
positively correlated with the infiltration of NK CD56bright 
cells. The expression of SNORD63, SNORD46, SNORD124, 
SNORA16B, and SNORA11 is related to the infiltration of Tcm. 

The expression of SNORD124, SNORA59B, and SNORA11 
was related to the infiltration of TFH, while the expression of 
SNORD46 and SNORD124 was negatively related to the infil-
tration level of Tgd. The expression of SNORD46, SNORD124, 
and SNORA11 was negatively correlated with the infiltra-
tion level of Th17 cells, while the expression of SNORD46, 
SNORD124, SNORA59B, SNORA16B, and SNORA11 was 
related to Th2 cells (Fig. 5B).

We further analyzed the correlation between the risk groups 
and expression levels of the immunoassay checkpoints. Both 
CTLA4 and PDCD1 (PD1), which are the most important 
checkpoints, were highly expressed in the high-risk group. 
The results showed that 18 immunoassay checkpoints were 
differentially expressed in the high and low risk groups, and 
the most important immunoassay checkpoints: CTLA4 and 

Figure 3. Prognostic value of the 6-snoRNAs signature is independent of conventional clinical factors. The riskscore and clinicopathological characteristics 
using (A) univariate cox analysis, (B) multivariate cox regression analyses. (C) Nomograms combining 6-snoRNAs signature and pathological features to predict 
1-, 2-, 3-, 4-, and 5-years survival probability of patients with HCC. (D) Correction of the characteristic curve based on riskscore and pathological characteristic. 
HCC = hepatocellular carcinoma, snoRNAs = small nuclear RNAs.
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PDCD1 (PD1) were highly expressed in the high-risk group 
(Fig. 5C).

Finally, to identify potential groups that may benefit from 
immunotherapy, we used the TIDE algorithm to predict the 
response to immunotherapy in the high- and low-risk groups. 
However, TIDE failed to predict response to immunotherapy 

in HCC (P = .7), as shown in Figure  5D. We then evaluated 
whether the potential HCC groups were significantly changed 
in response to CTLA4 and PD1 inhibitor treatment, and the 
results showed that the high-risk group was likely to respond 
to PD1 inhibitor treatment, as shown in Figure 5E, which was 
consistent with the results in Figure 5C.

Table 1 

The results of GSEA (KEGG pathways).

NAME NES NOM P val FDR q val 

KEGG_SPLICEOSOME 1.9529938 0 0.12383109
KEGG_RNA_POLYMERASE 1.8508013 .001968504 0.2585907
KEGG_RIBOSOME 1.838765 .005836576 0.19020182
KEGG_PYRIMIDINE_METABOLISM 1.7589208 .005825243 0.3150124
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 1.7063819 .023529412 0.37924144
KEGG_CELL_CYCLE 1.7022977 .015444015 0.32390228
KEGG_BLADDER_CANCER 1.6731111 .012269938 0.35460255
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 1.6725879 .01775148 0.3114592
KEGG_PURINE_METABOLISM 1.6645832 .003853565 0.2918993
KEGG_RNA_DEGRADATION 1.6367117 .017175572 0.32317168
KEGG_HOMOLOGOUS_RECOMBINATION 1.6273555 .0317757 0.31436878
KEGG_P53_SIGNALING_PATHWAY 1.6000633 .015625 0.34605318
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM 1.5169243 .022916667 0.40110108
KEGG_RETINOL_METABOLISM -2.0041592 .001953125 0.037037235
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES -1.9880582 .005964215 0.023010917
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION -1.9735168 .005847953 0.01890336
KEGG_PROPANOATE_METABOLISM -1.9710437 .001926782 0.014520246
KEGG_BUTANOATE_METABOLISM -1.8493804 .009940358 0.05281399
KEGG_PEROXISOME -1.8470466 .013539651 0.044542238
KEGG_FATTY_ACID_METABOLISM -1.839958 .015355086 0.04063339
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 -1.7819082 .018108651 0.058401138
KEGG_BETA_ALANINE_METABOLISM -1.7790644 .020992367 0.053062357
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM -1.7447815 .029296875 0.06632929
KEGG_ASCORBATE_AND_ALDARATE_METABOLISM -1.7309594 .016194332 0.06751746
KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS -1.7269616 .01417004 0.06440593
KEGG_TRYPTOPHAN_METABOLISM -1.6852603 .03875969 0.08126818
KEGG_STARCH_AND_SUCROSE_METABOLISM -1.5867703 .03629032 0.13525608

GSEA = gene set enrichment analysis, KEGG = Kyoto encyclopedia of genes and genomes, NES = normalized enrichment score.

Figure 4. The GSVA analysis based on the KEGG pathway. The t values of each pathway in the high and low risk group on the vertical axis to represent the 
difference values. Negative values (green) indicate activation of the pathway in the low expression group, and positive values (blue) indicate activation of the 
pathway in the high expression group. GSVA = gene set variation analysis, KEGG = Kyoto encyclopedia of genes and genomes.
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3.6. Construction of the diagnostic snoRNAs signature for 
HCC and identified key snoRNAs

A diagnostic model was constructed on 42 DEs using LASSO 
regression from TCGA, and 25 snoRNAs were selected using 
the minimum criteria (Fig. 6A). We plotted the ROC curve of the 
model and evaluated its ability to predict normal and cancerous 
samples (Fig. 6B). The area under the ROC curve was 0.933, 
indicating that the 25-snoRNAs signature-based diagnostic 
model could distinguish normal samples from HCC samples 
with HCC, indicating its diagnostic significance for HCC.

Then, we took the intersection of 25 diagnostic snoR-
NAs and 6 prognostic model snoRNAs, and obtained 5 
snoRNAs, including SNORA11, SNORD124, SNORD46, 
SNORD63, and SNORA59B (Fig. 6C). We plotted the single 
ROC curves of 5 snoRNAs in the TCGA and ICGC data-
sets and chose the snoRNAs with AUC > 0.6 as the final key 
snoRNAs. Whether in the TCGA or the ICGC data set, the 
AUC for SNORA11, SNORD124, and SNORD46 were all 
greater than 0.6 (Fig. 6D and E). The expression levels of the 
3 key snoRNAs in TCGA and ICGC datasets are shown in 
Figure 6F and G.

Figure 5. Analysis of immune cell infiltration, immune checkpoints and the response to immunotherapy. (A) The risk score significantly correlated with the infil-
tration levels of various immune cells. (B) The expression 6 snoRNAs significantly correlated with the infiltration levels of various immune cells. (C) Correlation 
analyses of the risk groups with immune checkpoint genes (D) Analysis of responses to TIDE immunotherapy. (E) Analysis of responses to immunosuppressive 
agents. *P < .05, **P < .01, ***P < .001, and ****P < .0001. snoRNAs = small nuclear RNAs, TIDE = tumor immune dysfunction and exclusion.
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3.7. snoRNAs associated differentially expressed mRNAs 
and their functions

To determine differential mRNA expression profiles in HCC, we 
screened for mRNA expression in the TCGA dataset. A total of 
1367 DEG were screened, of which 973 were upregulated and 
394 were downregulated. A volcano map of the DEGs is shown 
in Figure 7A.

We performed Pearson correlation analysis of differential 
genes with 3 key snoRNAs under the settings of P < .05, the 

TOP20 related differential genes were considered as the key 
snoRNAs related mRNAs, as shown in Figure 7B. All related 
mRNAs were positively correlated. Cytoscape was used to visu-
alize the snoRNA-mRNA network with 54 nodes and 60 edges 
(Fig. 7C).

To deeply examine the molecular mechanisms and related 
pathways of the top 20 related mRNAs, we performed GO 
enrichment analysis and KEGG analysis for HCC.As for 
SNORA11, the top 20 related proteins were enriched into 8 
“CC” GO terms. However, no significant terms in the KEGG 

Figure 6. Construction of the diagnostic snoRNA signature for HCC and identified key snoRNAs (A) least absolute shrinkage and selection operator (LASSO) 
coefficient profiles of the 42-survival related snoRNA. The tuning parameter (lambda) selection in the LASSO model. (B) The ROC curve of LASSO regres-
sion analysis. (C) The intersection diagram of 25 diagnostic model snoRNAs and 6 prognostic model snoRNAs. ROC curves for the SNORA11, SNORD124, 
SNORD46, SNORD63, SNORA59B in TCGA (D), ICGC (E). Key snoRNA expression level of SNORA11, SNORD124, SNORD46 in TCGA(F), ICGC (G). 
****P < .0001. HCC = hepatocellular carcinoma, ICGC = international cancer genome consortium, ROC = receiver operating characteristic, snoRNAs = small 
nuclear RNAs, TCGA = the cancer genome atlas.
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analysis were found (Fig.  8A); As for SNORD46, the GO 
enrichment analysis identified 70 enriched GO terms (59 BP, 1 
MF, and 1 CC). We sorted by P value and visualized the top10 
entries of the directory, as shown in Figure  8B. In addition, 
we enriched into 1 KEGG pathway: spliceosome, as shown in 
Figure 8C; As for SNORD124, the top 20 related proteins were 

enriched into 21 “CC,” 5 “MF,” and 4 “BP” GO terms, respec-
tively. We visualized the top 10 of each directory in P-value 
order, as shown in Figure 8D. In addition, we enriched the fol-
lowing 4 KEGG pathways: Notch signaling pathway, mRNA 
surveillance pathway, spliceosome, and RNA transport, as 
shown in Figure 8E.

Figure 7. Identification of differentially expressed mRNAs relating key snoRNAs in HCC. Volcano plot of differentially expressed mRNAs in HCC. (B) Pearson 
correlation analysis between key snoRNA and differentially expressed mRNAs. (C) Cytoscape visualization of the snoRNA-mRNA regulatory network. The dia-
monds represented snoRNAs, and circles represented differential mRNAs. The correlation of red representation was relatively high, and that of yellow represen-
tation was relatively low. The size of the point also represented the correlation, the larger the point, the greater the correlation. HCC = hepatocellular carcinoma, 
snoRNAs = small nuclear RNAs.

Figure 8. Functional enrichment analysis of key snoRNAs relating genes in HCC. GO enrichment analysis of top 20 different mRNAs related to SNORA11(A), 
SNORD46(B), SNORD124 (D). The horizontal axis represents the gene proportion of the GO entry, that is, the number of differential genes contained in the 
GO entry; The vertical axis represents the name of the GO entry and the color representation -log10P-value. KEGG enrichment analysis of 20 different mRNAs 
associated with SNORD46 (C), SNORD124 (E). The horizontal axis represents the proportion of genes in the KEGG pathway, that is, the number of differential 
genes in the pathway. The vertical axis represents the name of the KEGG pathway and the color representation -log10 P value. GO = gene ontology, HCC = 
hepatocellular carcinoma, KEGG = Kyoto encyclopedia of genes and genomes, snoRNAs = small nuclear RNAs.



11

Xie et al. • Medicine (2022) 101:39 www.md-journal.com

4. Discussions

The prognosis and survival of patients is still poor. Therefore, 
there is an urgent need for accurate early diagnosis and long-
term prognostic prediction of molecular screening for HCC 
biomarkers. This study highlights the prognostic and diagnostic 
value of snoRNAs and explores their underlying functions. We 
identified 6 snoRNAs that were significantly related to the prog-
nosis of HCC by data mining and data analysis and constructed 
a prognostic signature based on 6 prognostic snoRNA expres-
sion values (SNORA59B, SNORD46, SNORD124, SNORA11, 
SNORD63, and SNORA16B). GSEA and GSVE of the risk 
score suggested that the high-risk score phenotype was closely 
related to the p53 signaling pathways. We also screened 3 key 
snoRNAs with diagnostic and prognostic functions and found 
that some of them were closely related to the spliceosome and 
Notch signaling pathways. These results may provide new prog-
nostic, diagnostic, and therapeutic implications for HCC patient 
management.

Along with an increasing number of mechanisms of HCC 
tumorigenesis being revealed, newly discovered biomarkers 
have been evaluated for the diagnosis, assessment, and treat-
ment of HCC.[16] In recent years, mounting evidence has indi-
cated a direct relationship between ncRNA dysfunction and 
tumor oncogenesis, as well as the function of ncRNAs as assess-
ment indicators for tumor progression. Among these, snoRNAs, 
a type of ncRNA with a length of 200 nucleotides, are com-
monly found in the nucleolus and perform regulatory functions 
in the process of post-transcriptional modification.[17] Following 
advances in the field of tumor regulation, it has been proven that 
the dysfunction of specific snoRNAs can directly induce and pro-
mote the development of various tumors,[18] including HCC. Xu 
et al were the first to illustrate the relationship between snoRNA 
and HCC, which indicated that snoRNA SNORD113-1 in HCC 
could inactivate the intracellular phosphorylation of ERK1/2 
and SMAD2/3, demonstrating its tumor-suppressing func-
tion.[19] In contrast, SNORD126 overexpression in HCC was 
shown to function as a tumor-promoting snoRNA by increas-
ing fibroblast growth factor receptor 2 expression and activat-
ing the PI3K-AKT pathway.[20] Moreover, according to a recent 
study by McMahon et al, HCC patients with low SNORA24 
expression tend to exhibit poor long-term survival.[21]

In recent years, the potential of snoRNAs as biomarkers 
has been proven to predict the clinical prognosis of different 
types of cancers.[7,22–24] In addition, a predictive model based 
on several snoRNAs has been developed for several cancers. 
For example, Zhao et al[25] screened and constructed 6-snoR-
NAs diagnostic and prognostic signatures using clear cell renal 
cell carcinoma patients in the TCGA cohort. Xing et al[26] also 
identified 5 prognostic snoRNA signatures by performing uni-
variate survival analysis in TCGA head and neck squamous 
cell carcinoma cohort. Liu et al also identified 15 prognostic 
snoRNAs and identified a 4-snoRNA signature for sarcoma 
overall survival.[27] In the current study, we performed a sys-
tematic analysis of the potential role of snoRNAs in HCC and 
made several important discoveries. We identified 42 DEs and 
established 6 survival-related snoRNAs using Cox analysis: 2 
of the 6 snoRNAs, SNORA16B and SNORD63, are protective 
factors, and the other 4 (SNORA59B, SNORD11, SNORD46, 
and SNORD 124) are risk factors that may play a crucial role 
in tumor metastasis and progression. The signature was vali-
dated in the training, testing, and validation sets, suggesting its 
reliability. This finding is consistent with the results of previ-
ous studies. As for SNORD63, a previous study reported that 
SNORD63 was greatly upregulated in urinary sediment and 
SNORD96A elevated in plasma could act as a noninvasive diag-
nostic biomarker for clear cell renal cell carcinoma.[28] Recently, 
Liu et al[27] identified 15 snoRNAs that were significantly related 
to sarcoma prognosis and constructed a prognostic signature 
based on 4 prognostic snoRNA (U3, SNORA73B, SNORD46, 

and SNORA26) expression values. As for SNORA16B, 
SNORA59B, SNORA11and SNORD124, there have been no 
related reports in the cancer field. However, the expression of 
these 6 snoRNAs and their clinical impact as biomarkers for 
HCC have not been investigated in previous studies. This study 
is the first to report these 6 prognostic snoRNAs in HCC. In this 
study, we also screened the 25-snoRNAs signature for diagnosis 
in patients with HCC for the first time, confirming that snoRNA 
expression levels can be used for the diagnosis of HCC.

Clinicopathological characteristics, including age, sex, patho-
logical stage, and TNM stage, are of great importance for HCC; 
however, these features do not just belong to HCC. From this 
perspective, we successfully established a molecular scoring sys-
tem based on the expression profiles of the 6 survival-related 
snoRNAs and assessed the reliability of the prognostic model 
by conducting K–M survival analysis separately in the training, 
test, and validation sets. We found that this signature helped 
stratify low-and high-risk groups and predicted the OS of 
patients with HCC with high sensitivity and specificity. In addi-
tion, we found that the 6-snoRNA signature and pathological 
stage were independent risk factors for OS in HCC patients, 
like previous studies.[26,27] Another contribution of our research 
was that we integrated clinical characteristics with the 6 surviv-
al-related snoRNA signatures to construct nomogram models 
that could amplify the clinical value and simplify the use of this 
signature in clinical practice.

To determine the functional mechanism of these 6 snoR-
NAs, we used GSEA and GSVA to explore the function of this 
6-snoRNA prognostic signature. Notably, our present study 
indicated that the well-known p53 signaling pathway was acti-
vated in the high-risk group, which suggests that the 6 snoR-
NAs can be significantly enriched in the p53 signaling pathway. 
Many genes promote tumor progression by inducing EMT 
through the p53 pathway.[29–31] Indeed, snoRNA promote tumor 
growth and metastasis by inducing EMT in HCC.[32] However, 
little is known about the mechanism of snoRNAs in EMT of 
HCC. Therefore, the role of snoRNAs in p53 signaling may pro-
vide new clues for p53-dependent cancer treatment.

The ability of cancer cells to avoid detection and clearance 
by the immune system has recently become a central research 
topic in oncology. Numerous studies have shown a link between 
immune cell infiltration at the tumor site and a better response 
to therapy and prognosis in carcinomas. We found that NK, 
CD56bright cells, TFH, Th17, and Th2 cells had higher infiltra-
tion in the high-risk group, while DC, neutrophils, and Tcm had 
higher infiltration in the low-risk group. Immune checkpoints 
play an important role in tumor immune escape and the for-
mation of the tumor microenvironment. Antibody-based drugs 
targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4), programmed cell death protein 1 (PD-1), and programmed 
cell death protein-ligand 1 (PD-L1) have proven superior to the 
existing chemotherapy and radiation approaches for multiple 
cancer types.[33] Studies have shown that snoRNA expression is 
highly relevant to lymphocyte function and the immune response 
against cancers as well as the oncogenic mechanisms that pro-
mote their progression to metastatic disease.[34] Interestingly, 
our study suggests that the high-risk prognostic group showed 
high expression of PD1 and CTLA4 and was more sensitive to 
anti-PD1 treatment. These results are similar to those of previ-
ous studies.[33–36]

In recent years, the potential of snoRNAs as diagnostic bio-
markers has been recognized. For example, SNORA42 was 
identified as a novel diagnostic and predictive biomarker and 
a prospective therapeutic target for CRC patients. SNORD63 
was greatly upregulated in urinary sediment and SNORD96A 
elevated in plasma acted as a noninvasive diagnostic biomarker 
for clear cell renal cell carcinoma.[28] In our study, we aimed to 
construct a signature based on snoRNA expression profiles for 
the classification of patients with HCC, which could be more 
effective in distinguishing between normal and tumor patients. 
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In the present study, we characterized the snoRNA expression 
profiles in HCC and identified 42 DEs. We then screened for 
diagnostic snoRNAs using the LASSO Cox regression method 
and developed an HCC diagnostic signature composed of 25 
snoRNAs. Moreover, the diagnostic model was validated using 
ROC curve analysis, with a high AUC. Hence, the clinical value 
of the diagnostic models for HCC should attach importance to 
this point, and further investigation is needed.

To further determine whether these snoRNAs have diagnos-
tic and prognostic value, we obtained 5 characteristic snoR-
NAs (SNORA11, SNORD124, SNORD46, SNORD63, and 
SNORA59B) by intersecting the diagnostic and prognostic mod-
els and obtained 3 key snoRNAs (SNORA11, SNORD124, and 
SNORD46) with high diagnostic and prognostic efficacy. Among 
these 3 snoRNAs, our analysis also identified all of them as dif-
ferentially expressed in TCGA and ICGC HCC data. Finally, 
to further understand the biological function and explore the 
underlying oncogenic mechanism of the key snoRNAs, we first 
screened 1367 differentially expressed mRNAs in HCC samples 
in TCGA and further identified the top20 mRNAs related to 
key snoRNAs for further KEGG and GO enrichment analyses. 
Functional enrichment showed that the co-expressed genes of 
SNORD46, SNORD 124 can be significantly enriched in some 
well-known cancer-related pathways, such as the spliceosome 
and Notch signaling pathways. Some functions of RNA trans-
port and mRNA surveillance are also discussed. These enrich-
ment results have been reported to be closely related to HCC 
in previous studies. Lin et al[37] identified 3 key genes in HCC 
and found that they were mainly enriched in signaling pathways 
involved in the spliceosome and cell cycle. In another study 
came to similar conclusions, researchers identified 977 proteins 
(DEP) and 243 DEG in HCC and found that the DEP-DEGs 
were mainly enriched in the spliceosome and various metabolic 
processes.[38] The Notch signaling pathway has been found to be 
significantly associated with HCC cell migration, invasion, and 
apoptosis[39] regulates the differentiation of macrophages into 
M1 to promote inflammation and antitumor activity.[40] Our 
results are consistent with those of the above studies, indicat-
ing that these 2 signaling pathways are closely related to the 
occurrence and development of liver cancer, and the regulatory 
relationship between key snoRNAs requires further study.

This study has some limitations. First, the dataset that was 
used for the development of the diagnosis and prognosis mod-
els was obtained from TCGA and ICGC HCC cohorts, which 
may not completely include the clinical parameter information. 
This could have led to deviations in the results. Second, because 
the results of our study were based on data mining and data 
analysis, the drugs and functional mechanisms we screened were 
not verified experimentally in vivo or in vitro; therefore, com-
prehensive and accurate results could not be obtained. These 
theoretical predictions must be experimentally validated in 
future studies. Despite these shortcomings, the results of this 
study have important clinical implications. Our study is the first 
to report the screening of snoRNA prognostic and diagnostic 
markers for HCC from RNA-seq datasets, which provides a 
more comprehensive theoretical basis for future research on the 
clinical application value of snoRNA in HCC. At the same time, 
the snoRNA prognostic and diagnosis markers screened in this 
study and the constructed risk score model and diagnosis model 
are also expected to be applied in clinical practice in the future. 
Accordingly, our signature findings make it highly promising for 
further clinical applications.

5. Conclusions
In conclusion, our study identified 6 snoRNAs that may serve 
as novel prognostic models and 3 key snoRNAs with both 
diagnostic and prognostic efficacy for HCC. These results may 
provide new potential prognostic, diagnostic, and therapeutic 
implications for HCC patients.
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