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Abstract: Prostate cancer (PCa) is the most common non-skin cancer in men worldwide, resulting in 

significant mortality and morbidity. Depending on the grade and stage of the cancer, patients may be 

given radiation therapy, hormonal therapy, or chemotherapy. However, more than half of these pa-

tients develop resistance to treatment, leading to disease progression and metastases, often with le-

thal consequences. MicroRNAs (miRNAs) are short, non-coding RNAs, which regulate numerous 

physiological as well as pathological processes, including cancer. miRNAs mediate their regulatory 

effect predominately by binding to the 3′-untranslated region (UTR) of their target mRNAs. In this 

review, we will describe the mechanisms by which miRNAs mediate resistance to radiation and drug 

therapy (i.e. hormone therapy and chemotherapy) in PCa, including control of apoptosis, cell growth 

and proliferation, autophagy, epithelial-to-mesenchymal transition (EMT), invasion and metastasis, 

and cancer stem cells (CSCs). Furthermore, we will discuss the utility of circulating miRNAs iso-

lated from different body fluids of prostate cancer patients as non-invasive biomarkers of cancer de-

tection, disease progression, and therapy response. Finally, we will shortlist the candidate miRNAs, 

which may have a role in drug and radioresistance, that could potentially be used as predictive bio-

markers of treatment response. 

Keywords: MicroRNAs (miRNAs), biomarkers, prostate cancer, therapy response, radiation and drug therapy, apoptosis.  

1. INTRODUCTION 

Prostate cancer (PCa) is the most common non-skin ma-
lignancy affecting men, and the fifth leading cause of cancer 
related mortality in men [1]. Various treatment options are 
available, depending on the grade and stage of the tumour. 
The 5-year survival rate is excellent for patients with local-
ised disease, but is considerably lower for advanced disease. 
Unfortunately, most patients develop resistance to drugs or 
radiotherapy, and this type of cancer is often aggressive, and 
has limited response to current treatment modalities [2, 3].  

MicroRNAs (miRNAs) are non-coding ribonucleic acids 
(RNAs), 19-22 nucleotides long, which bind to the 3′- un-
translated region (3′UTR) of their target mRNAs, leading 
either to mRNA destabilization or inhibition of translation 
[4-6]. miRNAs can also bind to the 5′UTR of target mRNAs, 
leading to enhanced translation [6]. Interestingly, each 
miRNA can target several hundred mRNAs, thus, playing a 
critical role in multiple physiological processes. Hence, their 
deregulation can lead to widespread detrimental effects. 
Studies have implicated various miRNAs in cancer initiation,  
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progression and metastasis, by either acting as anti-
neoplastic tumour suppressors (downregulated) or tumour 
promoting oncomiRs (upregulated), in a number of human 
malignancies, including PCa (reviewed in [7]). miRNAs 
have also garnered interest as potential biomarkers of cancer 
detection, progression, and treatment response [8]. Recently, 
the focus has shifted to circulating miRNAs, which can be 
isolated from various body fluids of cancer patients, in a 
non-invasive way. Advantages of circulating miRNAs as 
biomarkers include 1) their resistance to ribonuclease degra-
dation and physiological conditions including high pH, incu-
bation at room temperature for 24 hours, and frequent freeze-
thawing, and 2) relatively easy quantification by PCR-based 
techniques [9].  

In PCa, aberrant expression of miRNAs correlates with 
resistance to radiotherapy [10], hormone therapy [11], and 
chemotherapy [12]. This review will discuss the mechanisms 
by which miRNAs mediate treatment resistance. We have 
focussed on the miRNAs shortlisted here as they have been 
directly implicated in resistance to therapy, and their roles 
validated mostly by tissue specimen and/or in vivo studies 
(Table 1). We have specifically tried to incorporate novel 
miRNAs, that have not been reviewed previously. In the 
second part of this review, we discuss circulating miRNAs, 
where we describe various body fluids that can be used to 
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Table 1.  miRNAs and their direct or functional known targets in prostate cancer. miRNAs can directly bind to the 3'UTR of their 

mRNA target to suppress its expression or indirectly by other unknown mechanisms.  

miRNA  Role in Expression Change 
Direct or Functional Targets in 

Prostate Cancer 
References 

miR-212 CRPC Downregulated 
Lin28B 
SIRT1 

hnRNPH1 

[19] 
[22] 
[23] 

miR-185 CRPC Downregulated 
AR 

BRD8 ISO2 
SREBP-1,-2 

[26] 
[27] 
[28] 

miR-616 CRPC Upregulated TFPI-2 [29] 

miR-221/222 cluster CRPC Upregulated* 

p27(kip1) 
SIRT1 

Caspase-10 

HECTD2, RAB1A 
Ecm29 

[39] 
[40] 
[41] 

[42] 
[43] 

miR-146a  CRPC Downregulated 
ROCK1 

Rac1 
[46, 48] 
[49, 50] 

miR-15a-16 cluster  Chemoresistance Downregulated 

CCND1, WNT3A 
CDK1, CDK2 

CMYB, AR 
TGFβ & Hh pathway genes 

[55] 
[56] 

[59] 
[60] 

miR-200c Chemoresistance Downregulated 

E-cadherin, EpCAM, Vimentin, 
ZEB1 

TUBB-3, ZEB1, E-cadherin, 
Vimentin 

[63-65] 
[65, 70] 

miR-128 Chemoresistance Downregulated 
ZEB1 
BMI-1 

[72] 
[73] 

miR-143 Chemoresistance Downregulated 

ERK5 
HK2 

KRAS 
FNDC3B 

[75, 81] 
[76] 

[80] 
[82] 

miR-31 Chemoresistance Downregulated 
E2F6 

AR, E2F1, E2F2, EXO1, FOXM1, 

MCM2 

[87, 91] 
[88] 

miR-34a Chemoresistance Downregulated 

CD44 
LEF1 

SIRT1, Bcl-2 

BCL2 
c-Myc 

BIRC5, TCF7 

[92] 
[93] 

[94, 99] 

[95] 
[96] 

[97] 

miR-521 Radioresistance Downregulated CSA [103] 

miR-95 Radioresistance Upregulated SGPP1 [106] 

miR-106b Radioresistance Upregulated Caspase-7 [111] 

miR-320 
CRPC, 

Chemoresistance 
Downregulated 

β-catenin 
LAMP1 

AR 

[116] 
[117] 
[118] 

miR-21 
CRPC, 

Chemoresistance 
Upregulated 

PTEN 
PDCD4 

RECK 
p57Kip2 

[122] 
[125, 128] 

[129, 130] 
[131] 

miR-32 
CRPC, 

Radioresistance 
Upregulated 

BTG2 
DAB2IP 

[136] 
[138] 

miR-205 
CRPC, 

Chemoresistance, 

Radioresistance 

Downregulated 

BCL2L2 
c-SRC 

BCL2 
IL24, IL32 

AR 
MED1 

TP53INP1 

[87] 
[140] 

[141] 
[142] 

[143] 
[145] 

[147, 148] 

* indicates contradictory evidence of role in prostate cancer.  
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isolate and quantify miRNAs as potential biomarkers of 
drug- and radioresistance in PCa patients, concluding with 
the list of shortlisted potential candidates. 

2. CASTRATION-RESISTANT PROSTATE CANCER 

(CRPC) 

Prostate cancer cells need androgens for growth and pro-
liferation, so disruption of androgen receptor (AR) signalling 
is a primary treatment option. Androgen receptor (AR) is a 
nuclear family transcription factor present in its inactivated 
form in the cytoplasm. AR dimerises upon ligand binding, 
and translocates to the nucleus, transcriptionally activating 
its target genes, leading to increased cell growth and prolif-
eration [13, 14]. 

At diagnosis of metastatic disease, most PCa patients are 
androgen-sensitive, and therefore, androgen deprivation 
therapy (ADT) is the preferred treatment. ADT is also given 
as part of neo-adjuvant therapy, prior to primary therapy 
(radical prostatectomy or curative radiation therapy), to 
shrink the tumour mass, or as adjuvant systemic therapy for 
high-risk PCa patients, for whom metastatic disease is even-
tually a reality. Unfortunately, after initially responding to 
ADT, most patients develop resistance within 18-24 months, 
progressing to a more aggressive form of PCa, referred to as 
castration-resistant prostate cancer (CRPC). The progression 
of PCa from hormone-sensitive to hormone-resistant state is 
often accompanied by rising levels of serum prostate specific 
antigen (PSA) [15]. CPRC was previously designated as 
androgen-independent prostate cancer (AIPC) or hormone-
refractory prostate cancer (HRPC) [11]. However, as ADT-
resistant prostate cancers are still sensitive to AR pathway 
signalling, and respond to the nonsteroidal anti-androgenic 
drug abiraterone acetate [16], and AR antagonists like en-
zalutamide [17], the more accurate term is CRPC. In this 
review, we will use the term CRPC for patient studies, and 
androgen-independent (AI) and androgen-dependent (AD) 
when referring to PCa cell lines. There is currently no cura-
tive therapy available for CRPC patients [18].  

2.1. Key miRNAs Implicated in CRPC 

2.1.1. miRNA-212  

miR-212 expression is downregulated in prostate tissue 
and serum samples from cancer patients compared with 
healthy controls [19]. Using an online tool, TargetScan, 
which predicts the mRNA targets of miRNAs, Lin28B 
mRNA was identified as a potential target of miR-212 [19]. 
This prediction was validated in vitro. Lin28B is an RNA 
binding protein, which plays an oncogenic role [20], and 
forms a regulatory loop with miR-212 via the c-Myc protein 
[21], resulting in increased growth in CRPC. miR-212 also 
regulates Sirtuin 1 (SIRT1) expression by binding to its 
3′UTR, leading to inhibition of starvation induced auto-
phagy, angiogenesis, and cellular senescence [22]. Recently, 
Yang et al., investigated the causes of significantly higher 
incidence of PCa in African American men compared with 
Caucasian American men [23]. Decreased expression of 
miR-212 and aberrant expression of AR and the splicing 
regulator heterogenous nuclear ribonucleoprotein H1 
(hnRNPH1) were associated with an increased incidence of 
PCa in African American men.  

2.1.2. miRNA-185 

miRNA-185 has been implicated many cancers including 
gastric [24], non-small cell lung cancer (NSCLC) [25], and 
PCa, where it is downregulated in comparison with non-
cancerous cells [26]. miR-185 plays an important role in the 
transition of androgen-dependent PCa cells to androgen-
independent cells by binding to the 3′UTR of AR mRNA and 
decreasing its expression [26]. Further, miR-185 also binds 
to the 3′UTR of the AR co-activator, bromodomain contain-
ing 8 isoform 2 (BRD8 ISO2), reducing its expression [27]. 
miR-185 along with miR-342 promotes caspase-dependent 
apoptosis in PCa cells by inhibiting the expression of an im-
portant transcription factor needed for lipogenesis, sterol 
regulatory element-binding protein-1 (SREBP1), and its 
downstream targets, fatty acid synthase (FASN) and 3-
hydroxy 3-methylglutaryl CoA reductase (HMGCR), thereby 
impeding the tumorigenic potential of the cells [28]. Disrup-
tion of lipogenesis and cholesterogenesis halts tumour pro-
gression via inhibition of cell proliferation, migration and 
invasion in vitro, and regression of tumours in vivo (Fig. 1).  
 

 

Fig. (1). miRNAs implicated in CRPC, chemo-, and radio-

resistance. miRNAs may be upregulated or downregulated in all 

three types of resistances. A few miRNAs are common between 

CRPC and radio-resistance, CRPC and chemo-resistance, and in all 

three.  

 

2.1.3. miRNA-616 

miR-616 is overexpressed in PCa tissue compared to 
normal and benign prostate hyperplasia (BPH) tissue speci-
mens, and also in androgen-independent (AI) PCa cell lines, 
but not in androgen-dependent (AD) or normal prostate 
epithelial cell lines [29]. LNCaP (AD) and 22rv1 (AI) cells 
are commonly used PCa cell lines. When miR-616 overex-
pressing LNCaP cells were injected into the nude mice, tu-
mour growth remained unaffected even after bilateral or-
chiectomy, whereas tumour growth rate reduced for the con-
trol mice. 22rv1 cells with repressed miR-616 expression had 
delayed the tumour onset and cancer growth in vivo, suggest-
ing that higher expression of miR-616 promotes castration-
independent cell growth. miR-616 mediated the AI growth of 
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Fig. (2). Mechanisms by which miRNAs mediate their castration-resistant, chemoresistant, and radioresistant activities. These mechanisms 

include apoptosis, cell growth and proliferation, cancer stem cells (CSCs), autophagy, regulation of epithelial-to-mesenchymal transition, and 

cellular migration and invasion. 

 
PCa cells by suppressing the expression of tissue factor 
pathway inhibitor-2 (TFPI-2), which acts as tumour suppres-
sor in various cancers [30-32] including prostate cancer [33].  

2.1.4. miRNA-663 

There are conflicting results regarding the role of miR-
663 in cancer. It appears to promote tumorigenesis and cell 
proliferation in nasopharyngeal carcinoma [34], but was re-
ported to act as a tumour suppressor in pancreatic cancer 
[35], and glioblastoma [36]. In PCa, miR-663 expression 
level increases progressively from BPH to tumour tissue to 
CRPC tissue specimens, and AI cell lines [37]. This change 
in miR-663 expression correlated with poor clinical outcome 
and cancer recurrence in patients. Furthermore, overexpres-
sion of miR-663 promoted cell proliferation, invasion, and 
neuroendocrine differentiation in AI cells [37]. Increased 
expression of miR-663 may be due to binding of transcrip-
tion factor Ets2 to its promoter. Ets2 activates the genes re-
quired for malignant transformation of PCa cells [38]. 

2.1.5. miRNA-221/222 Cluster 

Overexpression of miR-221/222 has been associated with 
the prostate cancer cell progression from AD to AI. This may 
be mediated by miR-221/222 binding to the 3′UTR of 
p27/kip1, thereby decreasing p27/kip1 expression [39]. 
miRs-221/222 enhances cell proliferation [39, 40] and mi-
gration [40], but suppresses apoptosis [40, 41], and EMT 
[42] (Fig. 2). However, not all studies confirm the oncogenic 
role of miRs-221/222 in PCa. Goto et al., demonstrated that 

miR-221/222 expression was lost in PCa and CRPC tissues 
compared with the normal prostate epithelium [43]. Fur-
thermore, loss of miR-221/222 expression in vitro was, in 
part, responsible for decreased invasive and migratory abili-
ties of PCa cells, which appeared to be mediated by a scaf-
fold protein Ecm29. 

2.1.6. miRNA-146a 

Tumour suppressor miR-146a inhibits cancer cell growth, 
migration and invasion [44, 45]. miR-146a expression is 
downregulated in AI versus AD PCa cells. In androgen-
independent PC-3 cells, overexpression of miR-146a resulted 
in reduced cell proliferation, invasion, and adhesion. This 
occurred via suppression of the protein Rho-associated, 
coiled-coil containing protein kinase 1 (ROCK1) [46], which 
is a promoter of cancer cell invasion and anchorage-
independent growth [47]. Another study confirmed this find-
ing, by demonstrating that miR-146a mediates its caspase-3 
dependent anti-apoptotic function in AI cells via binding to 
the 3′UTR of ROCK1 mRNA [48]. miR-146a also directly 
targets Rac1, a member of Rho family of small guanosine 
triphosphatases, leading to inhibition of apoptosis and aug-
mentation of cell proliferation in AI cells [49, 50]. 

3. CHEMORESISTANCE  

CRPC patients often develop metastases, particularly to 
the bones. Docetaxel is the preferred chemotherapeutic drug 
for such patients, although most develop resistance eventu-
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ally [51, 52]. Currently, not many effective treatment options 
are available for docetaxel-resistant patients. Docetaxel acts 
by binding to microtubules leading to their stabilization, mi-
totic arrest, resulting in apoptosis [53]. Cabazitaxel, a new 
generation taxane, was approved recently for patients having 
docetaxel-resistance [54].  

3.1. Key miRNAs Implicated in Chemoresistance 

3.1.1. miRNAs-15a/miR-16 

miRNAs miR-15a and miR-16 are candidate tumour sup-

pressors, frequently downregulated in tissue specimens from 
PCa patients [55, 56]. Intriguingly, miR-16 expression 

(along with other miRNAs) is also decreased in normal 

prostatic tissue of PCa patients compared with tumour-
negative healthy men (low-PSA) and tumour-negative con-

trols (high-PSA), suggesting that this loss of expression oc-

curs early during carcinogenesis [57]. The locus encoding 
miRNAs-15a and -16 is often homozygously deleted in PCa 

patients [58], and loss of miR-15a and miR-16 was associ-

ated with chemotherapy refractory behaviour of the PCa 
cells in vitro [55]. miR-15a and miR-16 were shown to pro-

mote apoptosis, impede cell proliferation, and reduce inva-

siveness of cancer cells by binding to the 3′UTRs of onco-
genes CCND1 (encoding cyclin D1) and WNT3A (member 

of the wnt family of cysteine-rich, secretory glycoproteins) 

[55]. AntagomiRs are synthetic oligonucleotides used for 
knocking down specific miRNAs in vivo. Silencing of miR-

15a and miR-16 in the prostates of Balb/c mice using an-

tagomiRs augmented the invasive and proliferative potential 
of cancer cells. miR-16 overexpression also inhibited pros-

tate tumour growth and bone metastasis in a PCa xenograft 

model, by decreasing the expression of cell cycle and apop-
tosis related genes, including Cyclin D3, CDK1, CDK2, 

Cks1, TAAC1, and TAAC3 [56]. Additionally, miR-15a 

impaired cell viability and migration by binding to the tran-
scription factor cMYB and AR [59]. Loss of miR-15 and 

miR-16, along with the overexpression of miR-21 signifi-

cantly increased the invasiveness of PCa cells, in addition to 
elevated likelihood of bone marrow metastasis [60]. Interest-

ingly, levels of miR-15-miR-16 are not only decreased in 

prostate epithelial cells, but also in the surrounding cancer-
associated fibroblasts (CAFs) [61]. 

3.1.2. miRNA-200c 

miRNA-200c belongs to the miR-200 family, which in-
cludes miR-200a, miR-200b, and miR-429 clustered on 
chromosome 1, and miR-200c and miR-141 clustered on 
chromosome 12. miR-200 family members may control 
maintenance of epithelial characteristics, and their loss con-
tributes to epithelial-to-mesenchymal transition (EMT) [62]. 
EMT is important in cancer metastasis and is associated with 
chemotherapy resistance. Commonly used epithelial markers 
are epithelial cell adhesion molecule (EpCAM) and E-
cadherin, and mesenchymal markers are zinc-finger E-box-
binding homeobox 1 (ZEB1), ZEB2, and vimentin. Expres-
sion of miR-200c is decreased in PCa cells [63, 64], and ex-
ogenous expression of miR-200c in DU145 cells resulted in 
reduced proliferative, migratory and invasive potential of the 
cancer cells via inhibition of EMT [65]. In PCa patients, 
neoadjuvant chemotherapy using docetaxel contributed to 

loss of E-cadherin and miRNAs -200c and -205, whereas, 
enforced expression of miR-200c and miR-205 in vitro sen-
sitized cells to docetaxel treatment [63]. Interestingly, levels 
of EpCAM are decreased in docetaxel-resistant cells in vitro, 
which were restored when either or both miR-200c and miR-
205 were made to express in the resistant cells [64]. Intrigu-
ingly, expression of miR-200 family members decreases 
when cells undergo EMT, and expression is restored during 
mesenchymal-to-epithelial transition (MET) [62]. Promoter 
hypermethylation, a mechanism by which genes are silenced 
[66], was shown to suppress miR-200c levels in PCa [67]. 
By analysing data from The Cancer Genome Atlas Data Por-
tal, Gu et al., suggested that a panel of tissue-derived miR-
NAs, including miR-200c, miR-182, and miR-221, could be 
used as a biomarker for PCa detection [68]. Cancer stem 
cells (CSCs) or tumour initiating cells may play a pivotal 
role in drug resistance by various mechanisms including en-
hanced DNA damage responses, ABC transporter expres-
sion, aldehyde dehydrogenase activity, and aberrations in 
key signal transduction pathways [69]. miR-200c along with 
miR-34a could modulate the hedgehog signalling pathway in 
CSCs in response to chemotherapeutic drug paclitaxel, re-
sulting in CSC enrichment [70]. Paclitaxel alone could in-
crease the CSC populations, but a combination of paclitaxel 
and hedgehog pathway inhibitor drug cyclopamine success-
fully countered this effect and induced apoptosis.  

3.1.3. miRNA-128 

Normal prostate cells express more miR-128 than inva-
sive PCa cells [71, 72]. Induced expression of miR-128 in 
DU145 and LNCaP by miR-128 mimics sensitised cancer 
cells to the chemotherapeutic drug cisplatin [72]. ZEB1 was 
identified in silico and validated in vitro as miR-128 target. 
Decreased miR-128 expression resulted in higher ZEB1 ex-
pression, and maybe, responsible for increased invasiveness 
and chemo-refractory behaviour of PCa cells. A second 
study found that restoration of miR-128 expression corre-
lated with reduced invasive potential of cancer cells in vitro, 
and suppressed tumour regeneration in vivo [73]. Tumour 
suppressive functions of miR-128 may also be mediated by 
binding to the proto-oncogene BMI-1, which is a regulator of 
prostate stem cells self-renewal and maintenance [74]. 

3.1.4. miR-143 

miR-143 expression is progressively lost as the grade of 
PCa advances [75, 76]. Lower miR-143 correlated with en-
hanced cell growth, migratory and invasive ability of PCa 
cells in vitro and in vivo [77, 78]. KRAS is a member of 
well-known Ras family of GTP/GDP binding proteins, 
which promote AI cancer progression [79]. KRAS is sup-
pressed by miR-143 in PCa cells, inactivating the down-
stream mitogen-activated protein kinase (MAPK) signalling 
pathway, and increasing docetaxel sensitivity [80]. The anti-
proliferative and anti-migratory effects of miR-143 were a 
result of miR-143 binding to the 3′UTR of extracellular sig-
nal-regulated protein kinase 5 (ERK5) mRNA and limiting 
its expression [75]. The reverse correlation between miR-143 
and ERK5 was confirmed by tissue microarray data from 
168 PCa patients [81]. Further, miR-143 promoted apoptosis 
and G1/S cell cycle arrest, and decreased cell viability via 
binding to the 3′UTR of hexokinase 2 (HK2), an important 
enzyme for aerobic glycolysis [76]. However, not all studies 
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have substantiated miR-143 as tumour suppressor in PCa. 
Using spheres of PC-3 cells as a prostate cancer stem cell 
model, elevated expression of miR-143 was correlated with 
increased migration and invasion of CSCs [78]. Addition-
ally, downregulated miR-143 suppressed metastasis in 
athymic nude mice. Functional studies revealed that fi-
bronectin type III domain containing 3B (FNDC3B), an in-
ducer of EMT, is a direct target of miR-143 [82]. 

3.1.5. miRNA-31  

miR-31 is suppressed in various cancers, including naso-
pharyngeal [83], liver [84], oesophageal [85], and breast 
[86]. Normal prostate epithelial cells express high miR-31, 
whereas prostate tumours and PCa cell lines express low 
levels of miR-31 [87, 88]. Enforced expression of miR-31 
and miR-205 rendered the cells sensitive to docetaxel and 
cisplatin [87]. Transcription factor E2F6, which inhibits hy-
poxia [89] and UV-induced apoptosis [90], is a direct target 
of miR-31. Inverse correlation between miR-31 and E2F6 
was confirmed by another study [91], which established that 
a histone deacetylase inhibitor promoted apoptosis by acti-
vating miR-31 and consequently, inhibiting E2F6 expres-
sion. Intriguingly, AR and miR-31 mutually repressed each 
other, with AR binding to the promoter of miR-31 and miR-
31 binding to the 3′UTR of AR mRNA, leading to the in-
creased aggressiveness of the PCa cells [88]. Additionally, in 
tumours, miR-31 expression was suppressed by promoter 
hypermethylation.  

3.1.6. miRNA-34a 

Studies using cell lines, xenograft mouse models, and 
clinical specimens have established that miR-34a acts as a 
tumour suppressor in prostate cancer [92, 93]. miR-34a me-
diates its anti-tumourigenic actions by inhibiting cell prolif-
eration [94, 95], inducing apoptosis [96, 97], inhibition of 
EMT, and suppressing migration and invasion in vitro [96], 
and impeding tumour growth and metastasis in vivo [98]. 
Restoration of miR-34a in PC3 cells inhibited cell growth 
and cell cycle progression, and induced apoptosis, indicating 
sensitization of cells to chemotherapeutic campothecin, 
along with growth inhibition and cell cycle arrest [99].  

4. RADIORESISTANCE  

Radiation based treatment or radiotherapy (RT) uses high 
energy rays or proton beams, which severely damage the 
DNA of cancer cells and induces apoptosis. Radiotherapy is 
given to patients as part of curative therapy, as an adjuvant 
therapy following radical prostatectomy [100], or as pallia-
tive therapy to relieve the bone pain, particularly in patients 
whose cancers have metastasised. Although the response rate 
to RT is about 60% for patients with localised tumours, up to 
45% of patients develop recurrent PCa within 5 years [101, 
102].  

4.1. Key miRNAs Implicated in Radioresistance  

4.1.1. miRNA-521 

Josson et al., performed miRNA screening on LNCaP 
and C4-2 cells four hours after radiation treatment, and 
found that expression levels of miR-521 decreased consid-

erably [103]. Overexpression using miR-521 mimics sensi-
tised the cells to RT, and miR-521 inhibition conferred resis-
tance to RT. Mechanistic studies revealed cockayne syn-
drome protein A (CSA), a DNA repair protein, as a potential 
target of miR-521.  

4.1.2. miRNA-95 

Elevated levels of miR-95 have been linked to increased 
cell proliferation in colorectal cancer [104], and NSCLC 
[105], and are also associated with chemo- and radio-
resistance in NSCLC [105]. Next generation sequencing on 
parental radiosensitive and radioresistant PC3 cells generated 
by fractionated irradiation, identified miR-95 as increased in 
radioresistant cells [106]. Overexpression of miR-95 caused 
increased invasiveness, anchorage independent growth, and 
increased radioresistance of PC3 cells. In athymic nude 
mice, increased expression of miR-95 in PC3 cells correlated 
with quicker growth of the tumour. miR-95 targeted the 
3'UTR of sphingosine-1-phosphate phosphatase 1 (SGPP1), 
as determined by reporter assay [106]. SGPP1 suppresses the 
invasive and migratory capabilities of cancer cells [107]. 
Interestingly, radioresistant PC3 cells also showed cross-
resistance to commonly used chemotherapeutic drugs do-
cetaxel and cisplatin.  

4.1.3. miRNA-106b 

miRNA-106b is an oncomiR in various cancers including 
hepatocellular carcinoma [108], cervical carcinoma [109], 
and colorectal cancer [110]. Recently, miR-106b overexpres-
sion in prostate tumours was linked with disease recurrence 
and metastasis, and shown to directly target caspase-7 [111]. 
Using a miRNA microarray on samples from LNCaP cells 
following irradiation, a number of miRNAs were found to be 
differentially expressed including miR-106b [112]. Increased 
expression of miR-106b by transient transfection with pre-
miR-106b resulted in the suppression of cell cycle inhibitor 
p21 post radiation, causing G2/M arrest.  

5. MIRNAS COMMON IN CRPC AND CHEMORE-

SISTANCE 

5.1. miRNA-320 

miR-320 acts as a tumour suppressor in cancers, includ-
ing osteosarcoma [113], glioma [114], and cervical cancer 
[115]. In PCa, miR-320 is lowly expressed in tumour tissues 
compared with normal prostate epithelium [116-118], and its 
overexpression resulted in reduced tumorigenic potential of 
PCa cells, both in vitro and in vivo [116]. Expression of 
miR-320 is further downregulated in tissue specimens from 
CRPC patients. miR-320 directly targeted lysosomal-
associated membrane protein 1 (LAMP1) [117], which has 
been previously associated with tumour invasion and metas-
tasis [119]. Knockdown of miR-320 in PCa cell lines in-
creases the resistance to chemotherapy via enriching the 
CD44

high
 CSC population [116]. Moreover, miR-320 medi-

ates CSC inhibition by binding to 3′UTR of another target β-
catenin. β-catenin is critical for self-renewal and mainte-
nance of stem-like characteristics of the CSCs [120]. In PCa 
cell lines, histone deacetylase (HDAC) inhibitor OBP-801 
reduced AR expression and tumour cell growth, by upregu-
lating miR-320 expression [118]. miR-320 expression also 
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increased when PCa xenograft rats were treated with OBP-
801, resulting in decreased tumourigenicity.  

5.2. miRNA-21 

OncomiR miR-21 has been implicated in numerous solid 
and haematological malignancies (reviewed in [121]). miR-
21 is highly expressed in PCa tissues compared to normal 
prostate epithelia [122, 123]. Increased expression of miR-21 
correlated with cancer recurrence in PCa patients following 
radical prostatectomy. Upregulated miR-21 correlated with 
more robust AD and AI growth of PCa cells in vitro and in 
vivo [124], and conferred resistance to docetaxel in PC-3 
cells, conversely, miR-21 knockdown sensitized cells to do-
cetaxel-induced apoptosis [125]. This oncogenic activity of 
miR-21 was mediated by binding to programmed cell death 4 
(PDCD4), a tumour suppressor gene. PDCD4 is a direct tar-
get of miR-21 in breast [126], colorectal cancer [127], and 
PCa [128]. miR-21 promotes cell invasion via suppression of 
reversion-inducing cysteine-rich protein with Kazul motif 
(RECK), a matrix metalloproteinase inhibitor [129, 130]. 
Furthermore, by targeting the coding region of p57

Kip2
, a 

cyclin-dependent kinase inhibitor, miR-21 promotes cancer 
cell migration and anchorage-independent growth in PC-3 
and 22rv1 cells [131]. 

6. MIRNAS COMMON IN CRPC AND RADIORESIS-

TANCE 

6.1. miRNA-32 

miR-32 was predicted to act as a tumour suppressor in 
multiple neoplasias, including NSCLC [132, 133], and gas-
tric cancer [134]. In contrast, in colorectal cancer, miR-32 
promoted cell growth, migration, and invasion by targeting 
PTEN [135]. miR-32 expression is regulated by androgen in 
PCa, and is increased in CRPC tissue specimens compared to 
PCa and benign hyperplasia samples [136]. LNCaP cells 
transfected with pre-miR-32 had reduced apoptosis com-
pared to controls, and B-cell translocation gene 2 (BTG2) 
was identified as a target of miR-32 by mRNA microarray 
analysis [136]. Loss of BTG2 correlates with the oncogenic 
transformation of non-tumorigenic PCa cells [137], and a 
shorter progression free survival time in patients. miR-32 
also binds to the 3′UTR to inhibit tumour suppressor 
DAB2IP [138]. Loss of DAB2IP induced EMT in vitro and 
promoted distant organ metastases in a xenograft mouse 
model [139]. Overexpressing miR-32 in PCa cell lines in-
creased radioreistance, whereas its silencing sensitised the 
cells to radiation treatment. miR-32 appeared to mediate this 
effect via suppressing DAB2IP mediated autophagy [138]. 

7. miRNAs COMMON IN CRPC, CHEMORESIS-

TANCE, AND RADIORESISTANCE 

7.1. miRNA-205 

miR-205 suppresses the growth of tumours in various 
malignancies, including PCa, where it targets c-SRC to limit 
growth [140], and Bcl2 and Bcl-w to promote apoptosis [87, 
141]. miR-205 expression levels are significantly downregu-
lated in PCa cells compared to normal cells [64, 142-144]. 
This downregulation can be due to hypermethylation of the 

miR-205 promoter [87, 145]. Interestingly, miR-205 is a 
target of tumour suppressor p63, which binds to the miR-205 
promoter at two different sites [146]. Enhanced expression of 
miR-205 results in reduced cell migratory ability via inhibi-
tion of EMT. Recently, miR-205 was found play a part in 
irradiation-induced autophagy, possibly mediated by 
TP53INP1 [147, 148]. 

8. CIRCULATING MIRNAS AS NON-INVASIVE 

BIOMARKERS 

The presence of circulating miRNAs in cancer patients 
was first demonstrated using the sera of Diffuse Large B-cell 
Lymphoma patients [149]. Building on this, Mitchell et al., 
demonstrated the utility of circulating miRNAs as blood-
based diagnostic tools using plasma and serum samples from 
PCa patients [9]. Since then, many body fluids have been 
used for the isolation of miRNAs to try and use differentially 
expressed miRNAs as diagnostic, prognostic, or predictive 
biomarkers (Table 2). Recent research has suggested that 
circulating miRNAs may have a role in cell-to-cell commu-
nication as they are commonly found to be packaged in 
exosomes, microvesicles, and apoptotic bodies, and also as-
sociated with argonaute 2 protein [150-152].  

Currently, serum PSA levels are used to monitor therapy 
response in PCa patients. This approach has shortcomings, 
for example, rising PSA is not always indicative of drug re-
sistance or cancer recurrence. Some patients experience in-
creased PSA levels when starting docetaxel treatment, even 
if they respond well, whereas, PSA levels may plunge in 
response to docetaxel in others. Interestingly, PSA levels do 
not show any increase even after local recurrence. There is a 
need for novel biomarkers that are better at predicting the 
treatment response. Here, we will briefly describe the poten-
tial biological sources and candidate miRNAs, which were 
expressed differentially between cancer vs non-cancer pa-
tients. 

8.1. Plasma  

Isolating tumour-derived miRNAs from plasma was first 
demonstrated using NOD/SCID mice, where expression of 
miR-629-3p and miR-600, could distinguish between the 
xenografted mice and controls [9]. Besides, they also meas-
ured the expression of six candidate miRNAs (miR-100, 
miR-125b, miR-141, miR-143, miR-205, and miR-296) in 
the sera of PCa patients and normal controls, and observed 
increased miR-141 levels in PCa patients. In another study, 
increased levels of miR-21 and miR-221 differentiated be-
tween localised PCa patients and healthy controls [153]. In 
the same study, while comparing patients with localised or 
advanced and metastatic disease, miR-141 emerged as the 
best indicator of cancer progression. The finding was cor-
roborated by other studies [154, 155], and ability of miR-141 
to predict cancer progression was equivalent to other bio-
markers including serum PSA, circulating tumour cells 
(CTCs), and lactate dehydrogenase [154]. An Exiqon 
miRNA qPCR panel was used to profile 742 miRNAs in 
microvesicles from the plasma of localised (n=55), and me-
tastatic patients (n=16), and healthy controls (n=28) [155]. 
Differentially expressed miRNAs included miR-141, miR-
375, miR-107, and miR-574-3p. Additionally, microvesicle 
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Table 2.  Circulating miRNAs used as biomarkers of prostate cancer detection, disease progression, and therapy response, isolated 

from various body fluids. 

Source Purpose miRNA Candidates References 

Plasma 
Diagnostic 

(PCa vs healthy) 
miR-141 [9] 

Plasma 

Diagnostic 

(PCa vs healthy), 

Prognostic 

(local vs metastatic) 

miR-21, miR-221, 

miR-141 
[153] 

Plasma 
Predictive 

(treatment response) 
miR-141 [154, 155] 

Plasma Microvesicles 

Diagnostic 

(PCa vs healthy), 

Prognostic 

(local vs metastatic) 

miR-107, miR-574-3p, 

miR-141, miR-375 
[155] 

Plasma 
Diagnostic 

(PCa vs BPH vs healthy) 
miR-let-7c, miR-let-7e, miR-30c, miR-622, miR-1285 [156] 

Plasma 
Prognostic 

(low vs high-risk) 
miR-20a, miR-21, miR-145, miR-221 [157] 

Plasma 
Prognostic 

(local vs mCRPC) 
miR-16, miR-141, miR-151-3p [158] 

Plasma exosomal RNA 
Predictive 

(drug response) 
miR-1290, miR-375 [159] 

Plasma 
Predictive 

(drug response) 

miR-20a, -20b, -21,-25,-132,-146a,-200a,-200b,-200c,-201b,-

222,-375,-429,-590-5p 
[160] 

Serum 
Diagnostic 

(PCa vs healthy) 

miR-16, miR-34b, miR-92a, miR-92b, miR-103, miR-107, miR-

197, miR-328, miR-485-3p, miR-486-5p, miR-574-3p, miR-636, 

miR-640, miR-766, mi-R885-5p 

[161] 

Serum 
Diagnostic 

(PCa vs BPH vs healthy) 
let-7i, miR-26a, miR-32, miR-195 [162] 

Serum 
Diagnostic 

(PCa vs healthy) 

miR-24, miR-26b, miR-30c, miR-93, miR-106a, miR-223, miR-

451, miR-874, miR-1207-5p, miR-1274a 
[163] 

Serum 
Diagnostic 

(BPH vs PCa) 
19 differentially expressed miRNAs [164] 

Serum 
Prognostic 

(low vs high-grade) 
miR-141, miR-200b, miR-375 [165] 

Serum 

Prognostic 

(local vs metastatic), 

Predictive 

(drug response) 

miR-21 [166] 

Serum 

Prognostic 

(PCa vs mCRPC), 

Predictive 

(treatment response) 

miR-141, miR-200a, miR-200c, miR-210, miR-375 

miR-210 
[167] 

Serum 
Prognostic 

(low-risk vs mCRPC) 
miR-141, miR-375, miR-378a-5p, miR-409-3p [168] 

Serum 
Predictive 

(biochemical recurrence) 
miR-141, miR-146b-3p, miR-194 [170] 

Serum 
Prognostic 

(BPH or low-grade vs high-grade) 

miR-let-7a, miR-24, miR-26b, miR-30c, miR-93, miR-100, miR-

103, miR-106a, miR-107, miR-130b, miR-146a, miR-223, miR-

451, miR-874 

[171] 

Urine 
Diagnostic 

(PCa vs healthy) 
miR-107, miR-574-3p [155] 

(Table 2) contd…. 
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Source Purpose miRNA Candidates References 

Urine 
Diagnostic 

(PCa vs healthy) 
miR-205, miR-214 [172] 

Urine 
Diagnostic 

(PCa vs healthy) 
miR-205, miR-183 [173] 

Urine 
Diagnostic 

(PCa vs BPH vs healthy) 
miR-1825, miR-484 [174] 

Urine 
Diagnostic 

(PCa vs healthy) 
miR-187 [175] 

Urine 
Diagnostic 

(PCa vs healthy) 
miR-483-5p [176] 

Seminal Fluid 

Diagnostic 

(PCa vs healthy), 

Prognostic 

(low vs high-grade) 

miR-200b, miR-200c, miR-30a, miR-375, miR-99a 

miR-200b 
[177] 

Seminal Fluid 
Diagnostic 

(PCa vs non-PCa) 
miR-200c, miR-125b [178] 

 
and exosome derived miR-375 and miR-141 levels increased 
in patients with recurrent PCa after surgery compared to pa-
tients who did not relapse. To differentiate PCa (n=21) from 
BPH (n=17) patients, a screen of 754 miRNAs using Illu-
mina Human v2 microarrays was performed [156], and iden-
tified candidates (miR-let-7c, miR-let-7e, miR-30c, miR-
622, and miR-1285) were validated by qRT-PCR in a large 
cohort, including PCa (n=80), BPH (n=40), and healthy con-
trols (n=54). Distinct expression patterns of miRNAs miR-
20a, miR-21, miR-145, and miR-221 separated high-risk 
from low-risk patients [157]. miR-141, miR-151-3p, and 
miR-16 together could accurately distinguish between local-
ised PCa and mCRPC with an improved sensitivity and 
specificity [158]. More recently, miR-375 and miR-1290 
overexpression correlated with poor overall survival in 
CRPC patients [159]. miRNA profiling of CRPC patients 
before and after docetaxel chemotherapy yielded a number 
of differentially expressed miRNAs [160]. 

8.2. Serum 

Besides plasma, serum is used for the isolation of miR-
NAs for the purpose of diagnosis [161-164] and predicting 
progression and [165], therapy response [166]. Elevated se-
rum levels of miR-375, miR-141, and miR-200b distin-
guished between patients with low-grade (Gleason Score 6) 
and high-grade (Gleason Score 7) cancer, more efficiently 
than the currently used biomarker, PSA [165]. Increased 
miR-21 in the sera of CRPC patients, was particularly 
prominent for patients resistant to docetaxel [166]. To iden-
tify prognostic and predictive biomarkers, Cheng et al., used 
TaqMan Low-Density Array to screen the miRNAs from the 
sera of mCRPC patients (n=25), and healthy controls (n=25) 
[167], and Nguyen et al., carried out TaqMan miRNA array 
using the sera from mCRPC (n=26) and localised PCa pa-
tients (n=28) [168]. Both studies found increased expression 
of miR-375 and miR-141 in the serum samples of mCRPC 
patients, as well as other distinctly expressed miRNAs, in-
cluding miR-200a, miR-200c, miR-210, miR-378a-5p, and 
miR-409-3p. miRNAs have also been used to predict treat-

ment response in PCa, with increased expression of miR-
141, miR-146b-3p, and miR-194 predictive of biochemical 
recurrence, which has been described as the PSA value of at 
least 0.4 ng/ml followed by another increase [169] in patients 
post radical prostatectomy [170]. To identify miRNAs that 
distinguish aggressive from indolent PCa, and predict bio-
chemical recurrence, Mihelich et al, performed qRT-PCR 
analysis of 21 miRNAs from BPH, low- and high-grade PCa 
patients, and described a panel of 14 miRNAs that were con-
siderably downregulated in high-grade PCa in comparison 
with BPH and low-grade PCa [171]. 

8.3. Urine 

The expression of miRNAs in urine was measured in pa-
tients with and without PCa following a trans-rectal digital 
massage [155]. Expression of miRNAs miR-107 and miR-
574-3p was increased in urine from PCa patients compared 
to controls. Another study found that downregulation of 
miR-205 and miR-214 levels could differentiate between 
healthy controls and PCa patients with 89% sensitivity and 
80% specificity [172]. However, levels of miR-205 alone 
failed to differentiate PCa patients from the controls in a 
more recent study [173]. The role of urinary miRNAs in dis-
tinguishing PCa patients from benign prostate hyperplasia 
was investigated; two candidate miRNAs (miR-1825 and 
miR-484) correlated with the development and progression 
from benign prostate hyperplasia to PCa [174]. Interestingly, 
combining urinary miR-187 levels with other predictive fac-
tors including serum PSA and urinary prostate cancer anti-
gen 3 (PCA3) was superior for predicting disease progres-
sion compared to PSA alone [175]. Recently the expression 
of three miRNAs (miR-483-5p, miR-1275, and miR-1290) 
was measured in freely voided urine samples [176]. In-
creased expression of miR-483-5p was observed in PCa pa-
tients but not in controls, suggesting that freely voided urine 
samples could be used for miRNA detection, bypassing the 
need for a digital rectal examination or prostate massage. 
However, miR-483-5p alone was not as robust as serum PSA 
in detecting PCa. 
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Fig. (3). miRNAs having a role in CRPC, chemoresistance, and radioresistance, which have evidence of being isolated from various body 

fluids of prostate cancer patients. Some miRNAs with good evidence for a role in drug- and radioresistance have also been isolated from the 

body fluids of cancer patients, and as such are good candidate biomarkers to predict patient responses to treatment. 

 

8.4. Seminal Fluid 

Recently, Selth et al., looked into the possibility of using 
miRNAs isolated from the seminal fluid (SF) of prostate 
cancer patients for diagnostic and prognostic purposes [177]. 
A series of candidate miRNAs (miR-200b, miR-200c, miR-
30a, miR-375, and miR-99a) were better diagnostic tools 
than serum PSA. Further analysis demonstrated that combin-
ing serum PSA with miR-200b levels was better at distin-
guishing PCa patients than the PSA alone. Additionally, 
miR-200b could also successfully separate low-risk patients 
(Gleason score 6) from high-risk patients (Gleason score > 
7). The same group has also demonstrated that combining 
serum PSA with miR-200c and miR-125b expression, which 
were derived from the non-sperm cell fraction of the seminal 
fluid improves the specificity of PCa diagnosis compared to 
PSA levels alone [178]. 

CONCLUSION 

In prostate cancer, accumulating evidence suggests that 
aberrant expression of miRNAs contributes to the develop-
ment of castration-resistance, chemoresistance, and radio-
resistance in patients. Many studies have been performed in 
vitro, in vivo, or on human tissue samples to reach these con-
clusions. 

Circulating miRNAs are promising candidates as non-
invasive biomarkers that have been successfully isolated 
from plasma, serum, urine, and seminal fluid, with varying 
functional roles, be it as diagnostic, prognostic, or predictive 
biomarkers. Recently, strong candidates have emerged for 
use as diagnostic or prognostic markers, including miR-141, 
miR-21, miR-221, miR-375, miR-205. Others have been 

proposed as good predictive biomarkers of therapy response, 
including miR-141, miR-1290, miR-375, miR-200a, -b, and 
–c, miR-20a, and –b, miR-21, miR-25, miR-132, miR-146a, 
miR-201b, miR-222, miR-429, and miR-590-5p (from 
plasma), and miR-21, miR-210, miR-141, miR-146b-3p, and 
miR-194 (from serum). We have identified a panel of miR-
NAs that have also been successfully isolated from various 
body fluids, which play roles in drug- and radio-resistance, 
and could potentially be used as biomarkers of treatment 
response, including miR-21, miR-146a, miR-200c, and miR-
222 (Fig. 3). These miRNAs are promising candidates be-
cause their roles in drug- and radio-resistance have been vali-
dated by various tissue-based studies, and they are known to 
be isolated from body fluids of cancer patients undergoing 
therapy.  

It is interesting to note that some of the miRNAs overlap 
between diagnostic, prognostic, and predictive categories, 
including the well-studied miR-141, miR-375, miR-21, and 
members of miR-200 family. Also worth mentioning is that 
we did not find any study which examined the potential of 
urine or seminal fluid miRNA(s) as biomarkers of treatment 
response. This would be an interesting topic for future re-
search. A panel of miRNAs could be used in place of PSA, 
or as an adjunct to PSA, to improve its sensitivity and speci-
ficity.  

Other key miRNAs that have been described here, for 
their role in drug- and radioresistance, but have not yet been 
isolated from the body fluids of cancer patients, should be 
evaluated for their potential as predictive biomarkers, and 
compared with the currently available and upcoming candi-
date biomarkers. Circulating miRNA research is still in its 
nascent stages, and more conclusive studies, with larger pa-
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tient cohorts will be required to validate the use of circulat-
ing miRNAs as biomarkers of treatment response.  
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