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Abstract
A discussion concerning whether to conceive Artificial Intelligence (AI) systems as 
responsible moral entities, also known as “artificial moral agents” (AMAs), has been 
going on for some time. In this regard, we argue that the notion of “moral agency” 
is to be attributed only to humans based on their autonomy and sentience, which AI 
systems lack. We analyze human responsibility in the presence of AI systems in terms 
of meaningful control and due diligence and argue against fully automated systems in 
medicine. With this perspective in mind, we focus on the use of AI-based diagnostic 
systems and shed light on the complex networks of persons, organizations and artifacts 
that come to be when AI systems are designed, developed, and used in medicine. We 
then discuss relational criteria of judgment in support of the attribution of responsibil-
ity to humans when adverse events are caused or induced by errors in AI systems.

Keywords Artificial Intelligence · Responsibility · Moral agency · Due diligence · 
Principle of confidence · Medicine

1  Introduction: AI and Responsibility

When humans and Artificial Intelligence (AI) systems interact, there is an issue at 
stake about who or what can be held “responsible” — and hence possibly “liable” 
— for adverse events that may derive from this interaction. In this regard, some 
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authors question whether AI systems can or will ever be considered “moral entities” 
and therefore “responsible entities”, and if so, which conditions are necessary and 
sufficient for artificial entities to be treated as Artificial Moral Agents (AMAs: Allen 
et al., 2000; Behdadi & Munthe, 2020).1

However, the idea of conceiving AI systems as “moral agents”2 and therefore 
“responsible entities”3 has been criticized for at least two reasons.

Firstly, from a conceptual point of view, AI systems are entities to which one can-
not ascribe the “moral agency” that is necessary for them to be considered “respon-
sible”. The European Group on Ethics in Science and New Technologies (European 
Commission, 2018, p. 9–10) has already made a statement along this line: “no smart 
artefact or system — however advanced and sophisticated — can in and by itself be 
called “autonomous” in the original ethical sense (…). The ability and willingness 
to take and attribute moral responsibility is an integral part of the conception of the 
person on which all our moral, social, and legal institutions are based. Moral respon-
sibility is here construed in the broad sense in which it may refer to several aspects 
of human agency, e.g., causality, accountability (obligation to provide an account), 
liability (obligation to compensate damages), reactive attitudes such as praise and 
blame (appropriateness of a range of moral emotions), and duties associated with 
social roles. Moral responsibility, in whatever sense, cannot be allocated or shifted 
to “autonomous” technology”.

Secondly, focusing on practical implications of this debate, many scholars have 
pointed out that attributing responsibility to an AI system may take responsibility 
away from the humans who have, in one way or another, contributed to the opera-
tions of that AI system (Braun et al., 2020; Bryson, 2010; Johnson & Miller, 2008; 
Johnson & Verdicchio, 2019; Sharkey, 2017; Tonkens, 2009). In fact, if “AIs are not 
moral agents, then someone needs to take responsibility for what they do” (Véliz, 
2021, p. 3). On the contrary, if AIs are considered moral (as well as legal) agents, 
then it might be argued that human beings would share responsibility with AI sys-
tems, or even that no human being would be responsible for what systems might do 
and for the harmful events they might cause.

AI systems fit into human relationships in multiple ways: by performing socially 
useful functions and by introducing risks connected to those functions. Changes in 
the paradigms adopted in AI technology have expanded the variety of those risks.

1 This research endeavor, known as “machine ethics” (Floridi & Sanders, 2004), “artificial morality” 
(Allen et  al., 2005), or “robot ethics” (Loh, 2019) is indeed aimed at conceiving and creating autono-
mous machines suitable to be treated as “moral entities”. The term “machine ethics” (Van Wynsberghe 
& Robbins, 2019) was first used in 1987 by Mitchell Waldrop in the AI Magazine article “A Question of 
Responsibility” (Waldrop, 1987). In 2005, the Association for the Advancement of Artificial Intelligence 
(AAAI) held a symposium on machine ethics which resulted in the edited volume Machine Ethics, edited 
by Susan Leigh and Michael Anderson in 2011 (Anderson & Anderson, 2011).
2 See for example Floridi & Sanders (2004), Allen et  al. (2005). According to Van Wynsberghe & 
Robbins (2019, p. 721), the reasons often given for developing AMAs are: the prevention of harm, the 
necessity for public trust, the prevention of immoral use, such machines are better moral reasoners than 
humans, and building these machines would lead to a better understanding of human morality.
3 See for example Hallevy (2015) about the possibility of punishment of AI systems; see Mulligan 
(2018) for a similar stance.
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The rule-driven, top-down approach of the AI of the beginnings, also known 
as GOFAI, good old-fashioned AI (Haugeland, 1989), prescribed the encoding 
of knowledge into a computer in the form of axioms and general laws that mimic 
deductive reasoning, with the aim of automatising the formulation of a solution to 
a problem in accordance with the knowledge stored in the computer. The risk here 
relates to the encoding of knowledge: such knowledge might be incomplete, contra-
dictory, obsolete, or plain wrong, leaving the AI incapable of formulating a proper 
solution to a problem or, worse, providing a solution that not only does not solve the 
problem but harms people.

The more recent data-driven, bottom-up approach of Machine Learning (ML) 
prescribes that patterns, schemes and general laws are searched by computers 
among a vast amount of data by means of statistical inductive processes. The 
basic idea underlying ML is to tweak the parameters of complex mathemati-
cal functions computing those processes depending on how well their output 
matches the goals for which the functions were introduced in the first place. 
Those goals typically consist of tasks of data classification (e.g., distinguishing 
X-rays of patients with breast cancer from healthy ones), data clustering (e.g., 
grouping the users of a streaming service in accordance with their tastes), and 
outlier detection (e.g., notifying a credit card company of an unusual instance of 
purchase).

The stark difference between ML and GOFAI, however, is not about the goals, 
but about the way they are achieved: the role played by the programmers of AI 
technology has radically changed in this paradigm shift. AI programmers are not 
called to program knowledge and rules into computing machines, but to feed data 
and tweak complex mathematical functions until they are able to process (i.e., 
classify, cluster, detect) data in accordance with the programmers’ objectives. In 
GOFAI, humans set the goals and make the rules to achieve them. In ML, instead, 
humans still set the goals, but the rules are developed automatically inside the 
mathematical functions running on the computers in accordance with some gen-
eral algorithms regulating the alteration of the functions’ parameters. What hap-
pens inside an ML system is too complex and quick for human programmers to 
keep in check. The only aspect programmers can measure is whether the data 
whose classification was already known to them have been classified correctly by 
the system as well. If this happens for most known data at the programmers’ dis-
posal, the ML system is said to have “learned” the task, and it is considered ready 
to be applied to new data to be processed. There is no complete or proven theory 
on how such results are achieved. Therefore, ML systems are called “black boxes”: 
humans can only see what goes in (the input data) and what comes out (the clas-
sification in output), but not what happens in-between. This paradigm shift in AI 
comes with a drastic decrease in the direct involvement of programmers in the 
creation of computational systems that may be used to automatise what has tradi-
tionally been performed by humans.

The risks of harmful outcomes are thus increased: in addition to the possibly ill-
encoded knowledge of GOFAI, the rather mysterious knowledge created in a black 
box of ML needs to be harnessed. This task has significant implications on responsi-
bility in AI, which this work is aimed at analyzing.
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In the first part, we take a stance against the recognition of a “moral personal-
ity” in AI systems or the attribution of a “moral agency” to them. We will show 
that the principle of responsibility, as a cardinal rule of human interactions, is appli-
cable to “moral entities” endowed with deliberative autonomy (Sect.  2) and self-
awareness about said deliberative autonomy (Sect. 3). AI systems, even if hypotheti-
cally provided with a high degree of autonomy, are devoid of self-awareness and are 
therefore not moral entities. Hence, it is up to humans, as moral entities, to create 
technological conditions that make it possible to manage these risks and prevent the 
adverse effects that may arise. Those humans are to be considered then responsible 
if something goes wrong (Sect. 4). We will then evaluate the reasons and the impli-
cations of this human-AI relational philosophy by considering the use of AI diag-
nostic systems in medicine (Sect. 5) and draw our conclusions and propose guide-
lines for future work (Sect. 6).

2  Intentional Agency and Compatibilist Accounts of Human Moral 
Responsibility

In this Section, we will outline a compatibilist account of individual responsibility. 
This approach will allow us to argue that the notion of “moral agency” can be attrib-
uted only to humans, and therefore it is not applicable to artifacts.

The idea and the principle of “individual responsibility” are traditionally based 
on the conception of a human being as a “moral entity”. In turn, the notion of 
“moral agency” is linked to the premise of considering intentional action as typi-
cally human. In fact, philosophers dealing with the question of responsibility have 
founded their peculiar reconstructions of their imputation theories based on con-
ceptual macro-containers variously called “will”, “voluntariness”, “spontaneity”, 
“freedom”.4 This is why an outcome of a human’s behaviour is not imputable to 
their responsibility — as their own fact — if it does not depend on their “cognitive-
volitional powers” (Civello, 2017, p. 312).

So, a person is responsible in that they are presumed to be capable of acting 
according to their own “free will”. This allows us to state that the agent could have 
acted differently; that they had capacity and the possibility to act otherwise. The 
responsible agent is by definition “free” or “able” to choose whether to comply 
with or breach a certain rule of conduct. That is the reason why they must respond 
for the breach of that rule.

Nevertheless, a question arises about whether “moral autonomy” meant as “pos-
sibility to act otherwise” is compatible with the impossibility of the “ultimate moral 
responsibility” (Strawson, 1994). The notion of ultimate moral responsibility refers 
to the idea that human beings should be considered as “uncaused causes”, that is, 
the idea of free will, where “free” means “uncaused”. However, the possibility of 

4 The idea, which is still dominant within the Western tradition, is that “voluntary” misconduct is the 
essence of “fault” (Hegel 1821, §§ 117–118). Therefore, “no one should be punished unless he has 
clearly acted immorally, i.e., voluntarily harmed someone” (Hall 1963, p. 635–636).
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such an idea has been convincingly rejected by several philosophers.5 According to 
the “free will skepticism”, “what we do and the way we are is ultimately the result of 
factors beyond our control and because of this we are never morally responsible for 
our actions” in the ultimate sense explained above (Caruso, 2019, p. 43).

The reconciliation between responsibility, moral agency and the impossibility of 
ultimate moral responsibility is possible within the compatibilist conception of moral 
responsibility. According to such conception, “the fact that factors outside a person’s 
control influence his or her actions is compatible with the idea that the person is the 
ultimate causer of his or her actions. Thus, the person is culpable (i.e., responsible) for 
the action that he or she causes, even if external factors contribute to the production of 
such actions” (Coppola, 2021, p. 14; see Caruso, 2012 also for criticism).6 Moreover, 
human beings are responsible precisely because they are deeply conditioned by factors 
beyond their control. Otherwise, those prevention strategies adopted by contemporary 
legal systems — based both on the threat of a sanction in case of a law breach (negative 
general prevention) and the communicative or motivating meaning of its application in 
society (positive general prevention) — would not make sense. If our decisions were 
not influenced by threats and encouragements, prevention would not be effective.

Within a compatibilist conception of the principle of “responsibility”, the notion of “human 
agency” sets aside the classical (and impossible) idea of “freedom” intended as absence of 
causes. This notion rather reflects a hypothetical (i.e., presumed) space of “deliberative normal-
ity”. One could say that a “free” (=responsible) agent is “normally conditioned” in their will, 
rational deliberation, and action.7 In other words: we are not free, but sometimes it is as if we 
were8; we cannot act otherwise, but sometimes we judge our conducts as if we could.

5 Among them, Strawson expressed his basic argument as follows: “When one acts, one acts in the way 
one does because of the way one is. So, to be truly morally responsible for one’s actions, one would have 
to be truly responsible for the way one is: one would have to be causa sui, or the cause of oneself, at 
least in certain crucial mental respects. But nothing can be causa sui – nothing can be the ultimate cause 
of itself in any respect. So, nothing can be truly morally responsible” (Strawson, 1998). This argument 
recovers an idea expressed by Schopenhauer (1840, p. 84, 116): “the human being always does what he 
wills, and, indeed, he does it necessarily. However, this depends on the fact that he already is what he 
wills: for from that which he is everything that he ever does follows of necessity”. Therefore: “Every-
thing that occurs, from the greatest to the least, occurs necessarily. (…) Our deeds are simply no first 
beginning, for in them nothing actually new attains existence: rather, through that which we do, we sim-
ply experience what we are”. The same idea is also found in Nietzsche (1878), §§ 18, 39, 99, 102, 106.
6 This position may underlie the recognition of “moral luck” (Nagel, 1979). In fact, “moral luck”, as it is 
broadly understood, occurs precisely “when an agent can be correctly treated as an object of moral judg-
ment even though a significant aspect of what she is assessed for depends on factors beyond her control” 
(Nelkin, 2019). In this context, the factors beyond the agent’s control that nevertheless determine the 
agent’s responsibility are those biological and environmental factors that lead the agent to be who they 
are and therefore to assume certain behaviors (the so-called “nature” and “nurture”).
7 This conclusion poses the philosophical and practical question of the definition of this sphere of “nor-
mality” (Günther, 2006), “lack of constraint” (Ayer, 1972) or “responsible will” (Frankfurt, 1971), but 
it lies beyond the scope of this work. The question refers to the definition of the normative notion of 
“imputability”, Zurechnungsfähigkeit, as “personal status” about the “capability” of being the recipient 
of consequences, and it presupposes a “demonstrated ability to be accountable” (Donini, 2020, p. 1701).
8 As shown by the notes of Planck in La conoscenza del mondo fisico (1964, Bollati Boringhieri) quoted 
by Casertano (1975, p. 144 and following). This idea was already proposed by Feuerbach, who pre-
scribed determinism in the juridical field and non-determinism in the moral field, and by Kelsen, in the 
theory of conditioned will (i.e., not free from conditioning and not suspended in an etiological vacuum) 
as an explanation of responsibility (Donini, 2020).
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In this way, we can state that the concept of responsibility also “includes a spe-
cific psycho-motivational constitution of the responsible subject: we think she or he 
is answerable in the sense of being an autonomous person, able to take on her or his 
responsibility, and equipped with capabilities such as judgement and the faculty of 
reflection” (Loh, 2019, p. 2).

Borrowing from the terminology of philosophy of law, this can also be expressed 
in the following terms: the “responsible” agent is the one suitable to be “motivated” 
by moral and/or legal rules of conduct and, therefore, they are a possible recipient of 
sanctions. Hence, when a breach of a certain rule of conduct occurs, the imputation 
of responsibility is justified if we assume (unless proven otherwise) that the agent 
has “normal” subjective skills9 and that they were acting in “normal” (not excep-
tional) contextual or concurrent circumstances.10

So, the question at stake is the following: if “free will” means that “nothing exter-
nal to the party in question was forcing its actions and that it did what it “intended” 
to do”, why couldn’t this concept apply «almost equally to humans, many animals, 
and autonomous robots”? From this perspective, a robot appears to be “just as 
blameworthy as a human for its actions and just as deserving of consequences for its 
actions” (Mulligan, 2018, p. 592). In other words: if a human — just as an artifact 
— is subject to the principle of causality,11 why would only the former and not also 
the latter be responsible?

3  Autonomy and Sentience in Human Moral Agency

Floridi & Sanders, (2004) argue that artificial autonomous agents can be considered 
moral agents, and that they constitute an instance of “mind-less morality”. In disa-
greement with them, Véliz, (2021) argues that “the main reason why algorithms can 
be neither autonomous nor accountable is that they lack sentience”. Sentience “is 
necessary for moral agency” because it implies the necessary moral understanding 
to be morally responsible.12 In what follows, we argue for the latter stance.

The requirement of deliberative “freedom” (understood as deliberative normal-
ity or responsible caused-will: as we illustrated in Sect. 2) is not sufficient for the 
purposes of the attribution of moral agency. This sort of autonomy must be accom-
panied by a second requirement: the self-awareness of the capacity to decide, the 
ability to understand it as “one’s own”, and therefore also to take the resulting 
responsibilities.

9 See footnote 7.
10 The reference to concurrent circumstances alludes to the criterion of the judgment of responsibility 
known in philosophy of law as Zumutbarkeit (Fornasari, 1990). The imputation of personal responsi-
bility for one’s action requires evaluating whether the agent can be possibly excused for being unable 
to comply with their duty of conduct. According to that criterion, those who violate a rule of conduct 
under an exceptional “motivational pressure” determined by “exceptional” factual circumstances may 
be “excused” because those circumstances made them unable to do otherwise. They could not be “nor-
mally” motivated by the norm of conduct because of those “exceptional” circumstances.
11 In terms of “moral luck”. See footnote 6.
12 See also Tollon (2020).
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This second requirement, which we could also define as “feeling of freedom”, 
characterizes humans and makes them responsible on a relational level (towards 
others with whom they potentially interact). Self-awareness or self-perception of 
freedom is what allows everyone to assume a fact as “their own” or “of others”. 
Instead, although hypothetically endowed with a high level of autonomy,13 the arti-
fact is devoid of consciousness, it does not perceive nor could it assume the fact as 
“its own”, either individually or socially (that is, on a relational level). The absence 
of this precondition for “moral agency”, individually and socially perceived as such, 
prevents the same paradigm of human responsibility from being applied to the 
artifact.

The need of this self-awareness to be morally responsible derives from the objec-
tives that we assign to the principle of responsibility. A sort of retribution still under-
lies contemporary utilitarian concepts of punishment. In fact, imposing sanctions 
can be useful for motivating lawful behaviors only if society attributes a symbolic 
meaning to individual responsibility. This symbolic meaning is essentially what 
lets us affirm that certain harmful conduct is “blameworthy”. The difference with 
respect to the purely moral conceptions of retribution consists in overcoming the 
“prejudice” according to which “guilt and responsibility presuppose a “free will””14 
(Sect.  2). This makes it possible to abandon vengeful impulses15 and to attribute 
“secularly” communicative, remedial, or strictly restorative purposes to the attribu-
tion of responsibility and the application of sanctions.16

So, instead of being a question of revenge or pure retribution, the principle of 
individual responsibility should lie in the meaning and the preventive effect that its 
imputation to someone for their actions may assume in society. That is why this 
attribution requires that both the agent and society could assume the fact as their 
own. We need to recognize that the agent who is held responsible for their conduct 
can assume the responsibility for what they did.

If deliberative normality (autonomy)+self-consciousness (sentience)=human 
moral agency (responsible although caused will), then said “moral agency” is not 
applicable to an AI system. In the face of an adverse event caused by an AI system, 
there is no reason that justifies an attribution of responsibility to the artifact. The 

13 Véliz (2021, Sect. 4 and following) analyzes meanings of “autonomy” (personal efficacy, psychologi-
cal independence, or independence of mind, having a moral right to self-determination, authenticity, hav-
ing a coherent self-image, being heroic, self-governance, and being responsive to reasons), some relevant 
to moral responsibility (e.g., self-governance and reasons-responsiveness), others not, but all inapplicable 
to AI systems.
14 A prejudice “inherited from the Christian tradition”, according to Ross (1970, p. 284–285). Instead, 
we can assume that everything that happens, happens out of necessity, and that the will is nothing more 
than the subjective perception of objective necessity (Schopenhauer, 1840).
15 “Rehabilitation and reintegration would therefore replace punishment as the focus of the criminal jus-
tice system” (Caruso, 2019, p. 61).
16 Schopenhauer (1840, p. 84) came to the same conclusion and showed that it was “the most abundant 
source of comfort and peace of mind”. For some overview on liability and culpability without moral 
guilt, from Nietzsche to  20th Century criminal law, see Donini (2020). Instead, Mulligan (2018) argues 
for robots’ agency and therefore capacity to be blamed based on a “psychological instinct to blame” in 
humans.
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imputation would have not any communicative meaning towards society. No one 
would assume the fact as “the AI system’s own”. No one would feel that responsibil-
ity for what happened falls on it.

We now focus on the practical reasons underlying our standing. In addition to 
their lack of moral agency, we will consider why artificial systems, even though 
endowed with a high level of autonomy, should not act autonomously, nor shall they 
share responsibilities with humans.

4  Human Responsibility Around “High‑risk” AI Systems

4.1  Towards a Preventive System

The previous considerations do not entail that an artifact cannot be made the recipi-
ent of consequences for its “actions”. However, the reason behind the application of 
certain consequences should only be the “special negative prevention”. This means 
that the goal of any normative system should be to provide and take measures so that 
the artifact does not cause more harmful events.

AI systems are meant to fit into society by enabling humans to carry out socially 
useful activities with greater speed and lower costs. However, they also generate 
serious risks that are classifiable in terms of severity and social harm. That is why 
it is up to humans, as moral entities, to create technological as well as normative 
conditions that make it possible to take advantage of automation, while managing 
those risks and preventing the unacceptable adverse effects that may arise. In other 
words, we should treat artifacts for what they are: both useful instruments and dan-
gerous agents lacking morality.

In the history of European modern thought about the principle of “responsi-
bility”, as well as in contemporary legal systems, we already find models that 
consider certain agents not morally imputable, but socially dangerous or char-
acterized by a certain “social risk”. Various versions of  19th-century positivist 
criminology proposed systems of “responsibility” based on the idea that, “sci-
entifically, there are only causes, not faults”.17 Therefore, the type of punish-
ment was conceived based on the “type of perpetrator”, that is, we could say, the 
expected or foreseeable “type of criminal risk”, and the legal consequence was 
therefore pure prevention: resocialization, neutralization, or mere intimidation. 
What mattered was “to seek the causes of the crime: to prevent, not to blame”. 
According to the culture of  19th-century philosophical positivism, “science could 
really guide morality”.18

Today, this paradigm is partially welcomed by legal systems that provide post-
trial security measures that can be applied to non-responsible and socially dangerous 

17 See Donini (2020, p. 1719). For example, Italian positivism in criminal law referred to biological 
causes (Cesare Lombroso), psychological causes (Raffaele Garofalo), social causes (Enrico Ferri). Franz 
von Liszt, chief member of the so-called German “Moderne Schule”, in his famous Marburg Program 
(Liszt, 1883), classified delinquents into three categories: recoverable, irrecoverable, occasional.
18 Donini (2020), p. 1724–1725.
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offenders.19 Of course, the fundamental difference from back then is the need to 
respect human rights.20 Moreover, the non-responsibility depends on an “incapacita-
tion” (e.g., because of a major mental illness or serious personality disorders) that 
allows to rule out moral agency (= autonomy + sentience).

Mutatis mutandis, an analogous idea (anti-retribution, utilitarian, purely preven-
tive) should underlie any normative system that intends to regulate the relationships 
between human beings as moral entities, and AI systems as non-moral sources of 
risk. Artifacts should be conceived as “centers of indictment” in the same way as 
potentially dangerous agents (“caused causes” without moral agency). The conse-
quences associated with certain adverse events possibly caused by AI systems may 
befall them (e.g., in terms of neutralization), but the duties and responsibilities relat-
ing to such events must befall the humans who determined or otherwise conditioned 
the operation of the AI systems (e.g., programmers, users, etc.).

Such idea would be about setting up a system of “preventive law”, the activation 
of which would occur under two fundamental conditions: (1) a verification that an 
AI system has caused, or is about to cause, or could cause damages worthy of inter-
vention; (2) a judgment of “objective risk”. The reaction would be preventive: e.g., 
suspension, reprogramming, or even destruction and prohibition of use.

This is indeed, as we will see in what follows, the (human-AI) relational philoso-
phy underlying the new Proposal for a regulation of the European Parliament and 
the Council laying down harmonised rules on Artificial Intelligence (Artificial Intel-
ligence Act) and amending certain Union legislative acts (EU Artificial Intelligence 
Act, henceforth AIA-21).21 In fact, the proposal excludes the possibility of assigning 
to AI systems any status as a legal person, with rights and duties. By adopting the 
so-called “risk-based approach”, the AIA-21 classifies AI systems based on the level 
of risk: (i) unacceptable, (ii) high (e.g., medical devices22), (iii) low or minimal, 
and it applies risk assessment standards according to the risk category attributed 
to an AI system. The responsibility to fulfill the relevant obligations and standards 
rests entirely with humans who design, manufacture, market, and use the AI system 
(Floridi, 2021, p. 219).

4.2  Meaningful Human Control and Due Diligence

What has been observed so far reflects a principle already upheld in the litera-
ture and progressively confirmed also on a regulatory level: “technology ought 
to be designed in such a way that responsibility distribution remains “tethered to 

21 Available at https:// digit al- strat egy. ec. europa. eu/ en/ libra ry/ propo sal- regul ation- laying- down- harmo 
nised- rules- artifi cial- intel ligen ce. It is important to clarify that it is a proposal, so it may take time before 
it enters into force in all 27 EU Member States as a Regulation. See Floridi (2021).
22 About the classification of medical devices as “high risk” artifacts pursuant to the AIA-21, see art. 
6(1) and Annex II. See also the Explanatory Memorandum, Sect. 5.2.3, and the Purposes (30), (31) and 
(32).

19 See Brown and Pratt (2000) for criticism.
20 Art. 3 of the European Convention of Human Rights states that no one shall be subjected to torture 
or to inhuman or degrading treatment or punishment. See Jehle et al. (2021), also for criticism about the 
current situation in Europe.
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humans”” (Braun et  al., 2020; Johnson & Miller, 2008; Romeo Casabona, 2020). 
This need for “tethering” can be met by a standard called “meaningful human con-
trol”. “This means that humans — and not computers and their algorithms — should 
maintain ultimate control, thus being able to be morally and perhaps legally respon-
sible for it as well” (Romeo Casabona, 2020, p. 183).23

The General Data Protection Regulation (henceforth GDPR-16) has already 
adopted a similar approach. In fact, according to art. 22, decisions in the context 
of AI systems cannot be fully automated, i.e., based “solely on automated process-
ing”.24 As it has been argued, this could be interpreted as to establish a “right to 
information and explanation” (Selbst & Powles, 2017; Watson et  al., 2019), and 
therefore entail that “black box” systems, which don’t allow any “meaningful human 
control”, nor any explanation, should be prohibited (as we will argue in Sect. 5).

Dealing with the “right to an explanation” and the limits of full automation by 
recent regulation is of critical importance because, although there are still few cases 
in which AI systems take decisions autonomously, there is an assumption that “AI 
systems will eventually outperform human practitioners in terms of speed, accuracy, 
and reliability”.25

In this regard, the claim that opaque AI systems must be prohibited based on the 
GDPR-16 could be controversial (not so under the AIA-21, as we shall see below).26 
One could sustain that the GDPR-16 only establishes the data subject’s right not to 
face the consequences of the data processing alone, even though an explicit consent 
to an automated decision is given, thereby requiring that someone is responsible for 
the automated decision. However, “black boxes” don’t allow for human interpreta-
tion and explanation,27 thereby conflicting with the core idea of patient-centered 
medicine (Bjerring & Busch, 2021, p. 358, 360), that is, the bioethical principle of 
autonomy and the necessity of the informed consent (which is required by Arts. 22.4 
and 9 to except the general prohibition).

We then claim that the “meaningful human control” standard can make it pos-
sible to comply with those general provisions. In fact, it can allow for the assign-
ment of specific duties of assessment of the objective risks of artifacts and of control 
during their use, based on schemes of compliance and due diligence established for 
designers, manufacturers, distributors, and end users. These schemes have a preven-
tive aim and imply the existence of organizational and risk management structures 

23 Meaningful human control (MHC) is an expression introduced by Article 36, Killer Robots: UK Gov-
ernment Policy on Fully Autonomous Weapons, April 2013 p. 4: http:// www. artic le36. org/ wp- conte nt/ 
uploa ds/ 2013/ 04/ Policy_ Paper1. pdf. Article 36 is a British non-governmental organisation that aims at 
political and legal control to prevent harm from the use of lethal autonomous weapons.
24 GDPR-16, Art. 22.1: “The data subject shall have the right not to be subject to a decision based solely 
on automated processing, including profiling, which produces legal effects concerning him or her or sim-
ilarly significantly affects him or her”.
25 See also Bjerring and Busch 2021.
26 Dealing with the application of this general prohibition to healthcare providers, some authors already 
argued that this legal tool is “adequate but not sufficient to address the legal, ethical and social chal-
lenges that Machine Learning technologies pose to patients’ rights and health care givers’ capacities”. It 
is unclear what this prohibition could mean in practical terms (De Miguel et al., 2020, p. 7).
27 Art. 22.3 establishes the “right to obtain human intervention on the part of the controller, to express 
his or her point of view and to contest the decision”.
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and procedures aimed at preventing not only adverse events but also decisions that 
are consistent with the conclusions of an AI system but are not validated by human 
experts (Romeo Casabona, 2020).

Conveniently, similar schemes are now adopted by the above-mentioned AIA-
21. In fact, it establishes imputation centers and relevant duties: design conditions 
that allow for subsequent evaluations and controls28; certifications of conformity; 
risk assessment duties (compliance and risk assessment, functional to the fulfillment 
of preventive duties, such as the provider’s duty of information29); duties of sur-
veillance, control, and notification of adverse events (post-release)30; duties of care 
when using or otherwise interacting with AI systems.

In what follows we focus on these “duties of care” during the use of artifacts and 
their relationship with the “risk assessment duties” and ex ante risk communication, 
with a specific focus on the medical sector.31

5  Case Study: AI and Medical Malpractice

Let us consider the following case study: a medical doctor who uses a diagnostic 
imaging system makes a “false negative” diagnosis based on the output of the sys-
tem, which fails to indicate the presence of cancerous tissues.

In such a situation, two general questions arise (Perin, 2019): (i) Is there a desir-
able level of automation in medical care and, more specifically, is full automation 
desirable? (ii) How should a medical doctor behave if they do not agree with the 
diagnosis proposed by an AI system?

In addressing the first question, in addition to our general considerations about 
moral agency, responsibility, and meaningful human control, we will now consider 
four arguments against full automation in the context of healthcare. As we have 
already pointed out, this is of critical importance in the light of the statement that AI 

28 Art. 14: “High-risk AI systems shall be designed and developed in such a way, including with appro-
priate human–machine interface tools, that they can be effectively overseen by natural persons during 
the period in which the AI system is in use. / Human oversight shall aim at preventing or minimising 
the risks to health, safety or fundamental rights that may emerge when a high-risk AI system is used in 
accordance with its intended purpose or under conditions of reasonably foreseeable misuse, in particular 
when such risks persist notwithstanding the application of other requirements set out in this Chapter”.
29 Art. 22, Duty of information: “Where the high-risk AI system presents a risk within the meaning of 
Article 65(1) and that risk is known to the provider of the system, that provider shall immediately inform 
the national competent authorities of the Member States in which it made the system available and, 
where applicable, the notified body that issued a certificate for the high-risk AI system, in particular of 
the non-compliance and of any corrective actions taken.”.
30 Art. 62: “Providers of high-risk AI systems placed on the Union market shall report any serious inci-
dent or any malfunctioning of those systems which constitutes a breach of obligations under Union law 
intended to protect fundamental rights to the market surveillance authorities of the Member States where 
that incident or breach occurred. / Such notification shall be made immediately after the provider has 
established a causal link between the AI system and the incident or malfunctioning or the reasonable 
likelihood of such a link, and, in any event, not later than 15 days after the providers becomes aware of 
the serious incident or of the malfunctioning.”.
31 For more references regarding legal perspectives and proposals based on the “meaningful human con-
trol” standard, see Braun et al., (2020, p. 6–7).
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systems will eventually outperform human practitioners in terms of speed, accuracy, 
and reliability. After explaining why total automation in medicine is not desirable — 
mainly on bioethical grounds, we will then focus on the second question concerning 
the imputation of responsibility.

5.1  Four Arguments Against “Full Automation” in Medicine

(1) The first argument against full automation in medicine stems from the learn-
ing techniques that characterize some AI systems. The information and data 
given to the systems originates from the work of humans in terms of collection, 
classification, and categorization and, therefore, it cannot be 100% reliable and 
neither can the performance of the machine’s learning model.32 Still, this argu-
ment is not conclusive. Preliminary reports on the reliability of AI systems seem 
to show that the accuracy of certain systems is already higher than that of trained 
professionals; thus, although we should take those reports «with a grain of salt» 
(Bjerring & Busch, 2021, p. 345), it would be questionable to claim that AI sys-
tems are less reliable than professionals (see, for a systematic review on diag-
nostic inaccuracies, medical biases and resulting errors, Saposnik et  al., 2016). 
Coherently, the accuracy standards required to authorize the use of AI models are 
progressively higher.33

(2) The second argument refers to the levels of robustness which AI systems 
can ensure: as it has been demonstrated by cases reported in literature (Mirsky 
et al., 2019), AI systems suffer from vulnerability and might be manipulated by 
malware. The data used by the systems and determining their decisions may be 
stolen, altered, or destroyed, putting their confidentiality at risk.34 There are also 
much more subtle attacks, which do not involve theft, but images manipulated in 
an invisible way to humans (a few pixels here and there) which, however, over-
turn the result of the classification by the AI system (Jain, 2019).

32 “How is it possible to train an artificial intelligence to be better than a human, if the data you give it is 
of the same low quality as produced by humans?” (Harvey, 2017). On the same argument, see also Cab-
itza et al. (2019) and Zaffalon et al. (2003).
33 See in this regard Art. 15(1–2-3), AIA-21: “High-risk AI systems shall be designed and developed 
in such a way that they achieve, in the light of their intended purpose, an appropriate level of accuracy, 
robustness and cybersecurity, and perform consistently in those respects throughout their lifecycle / The 
levels of accuracy and the relevant accuracy metrics of high-risk AI systems shall be declared in the 
accompanying instructions of use. (…) / High-risk AI systems shall be resilient as regards errors, faults 
or inconsistencies that may occur within the system or the environment in which the system operates, in 
particular due to their interaction with natural persons or other systems”.
34 See at this regard Art. 15(3–4), AIA-21: “The robustness of high-risk AI systems may be achieved 
through technical redundancy solutions, which may include backup or fail-safe plans. (…) / High-risk 
AI systems shall be resilient as regards attempts by unauthorised third parties to alter their use or perfor-
mance by exploiting the system vulnerabilities. The technical solutions aimed at ensuring the cybersecu-
rity of high-risk AI systems shall be appropriate to the relevant circumstances and the risks. The techni-
cal solutions to address AI specific vulnerabilities shall include, where appropriate, measures to prevent 
and control for attacks trying to manipulate the training dataset (‘data poisoning’), inputs designed to 
cause the model to make a mistake (‘adversarial examples’), or model flaws”.
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(3) The third argument involves the lack of transparency (i.e., opacity).35 There 
are models whose decisions are relatively interpretable, others whose level of opac-
ity is extreme. The interpretation and understanding of the criteria or parameters on 
which the most advanced “deep” learning systems base their decisions — for exam-
ple, those that use convolutional neural networks — is extremely complex, also for 
those who developed the original algorithm (Watson et al., 2019).

So, concerning the possible use of those “black boxes” as assistant medical 
devices, the question would be the following: «If doctors do not understand why the 
algorithm made a diagnosis, then why should patients trust the recommended course 
of treatment? Moreover: how to guarantee the exercise of the right to receive an 
explanation established by art. 22 of the GDPR-16? (Selbst & Powles, 2017; Watson 
et  al., 2019)36 This provision might entail a general prohibition, addressed to the 
person responsible for the treatment, to make automated decisions that do not have a 
“significant human intervention”, i.e., without medical supervision.

As we already noted, the claim that opaque AI systems must be prohibited based 
on the GDPR-16 is arguable (Sect. 4.2). However, a stricter standard has been more 
recently put forward by the AIA-21, whose Art. 13 expressly requires a level of 
transparency that allows for the “interpretability of the model”.37

We can thus affirm that there is a clear coherence between the principle of trans-
parency, the right to explanation, and the right to consent, generally recognized 
in biomedical matters. For this reason, the healthcare professional cannot assume, 
accept, and apply “blindly” a diagnosis suggested and delivered by an AI system: he 
or she must understand how and why a certain decision is made, and know how to 
explain how the system reached a certain decision. This conclusion is thus incom-
patible with the idea of replacing a doctor with an AI system.

(4) Finally, against full automation it has been argued that “Medicine in part still 
remains an art which can never be fully quantified or solved. There will always be 
an outlier, always be a niche case, always be confounding factors. And for that rea-
son alone, we will always need some form of human oversight” (Harvey, 2018).38 
Medicine would then require intuition and creativity as typically humans’ skills. 
So, the question at stake is whether only humans can do inferential reasoning which 
allows establishing new correlations and finding surprising solutions, that is, making 
“extraordinary abductions” (Aliseda, 2000; Tuzet, 2006). Of course, determining 
causal correlations and finding explanations is precisely the problem of (medical) 

35 See on this: European Commission, 2018; Ching et al., 2018; Grote & Berens, 2020.
36 See the interpretation of articles 13, 14, 22(1), 22(3) provided by the Article 29 Data Protection 
Working Party, “Guidelines on automated individual decision-making and profiling for the purposes of 
Regulation 2016/679”, EU Commission, 22 August 2018, p. 9, available at https:// ec. europa. eu/ info/ law/ 
law- topic/ data- prote ction_ en. See also Rubel et al., (2021, p. 87 and following), specifically on technical 
limitations associated to the three categories of explanations that the right to explanation could encom-
pass: (1) ex ante system functional, (2) ex post system functional, (3) and ex post specific.
37 Art. 13, AIA-21: “High-risk AI systems shall be designed and developed in such a way to ensure that 
their operation is sufficiently transparent to enable users to interpret the system’s output and use it appro-
priately”.
38 See also Donovan (1956), 44: “There is no necessity to go to extremes in automation as applied to 
medicine. Medicine by its very nature is a combination of art and science”.
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diagnosis. Furthermore, we could wonder whether AI systems can make equally 
unexpected predictions and take innovative actions (like the one which allowed the 
first COVID-19 diagnoses in Northern Italy in early 2020, thanks to the decision to 
breach current medical guidelines).39 One might respond positively by pointing out 
at the “creativity” demonstrated by certain AI systems, such as AlphaGo. AlphaGo 
is a system developed by Google DeepMind and based on “reinforcement learning”, 
which in 2016 managed to beat the world champion of Go, a traditional Chinese 
board game. This AI system made an unexpected move during one of the games, 
which — as it has been argued — would have demonstrated its ability to be “crea-
tive”, that is, its ability to act not only based on patterns deduced from experience 
and learning, but also on completely new rules and strategies.

Such a conclusion relies on a certain way of understanding the idea of “crea-
tivity”, meant as a capacity to “discover something which wasn’t known before”, 
to act in an “unexpected” or inexperienced way, “outside of our norms”, from the 
perspective of common sense and common experience.40 Certainly, this meaning 
of “creativity” could be debated further,41 considering the fundamental difference 
between “understanding” (typical of humans) and mere “predictability” (as attrib-
uted to AI systems, which lack “hermeneutic autonomy”42). However, such “artifi-
cial creativity”, meant as a capacity to obtain information that apparently cannot be 
derived directly from the data, already existed before AlphaGo. Indeed, it must be 
recognized that the treatment of data through machine learning “allows establish-
ing relationships between very diverse data and obtaining conclusions that would be 
impossible or very difficult to extract from reduced or more homogeneous amounts 
of data”; furthermore, “big data involves not only a quantitative alteration in the 
processing of data, of huge amounts of data, but above all a qualitative change, as its 
treatment makes it possible to obtain information that is apparently not implicit in 
the data or it cannot be derived or deduced directly from them” (Romeo Casabona & 
Lazcoz Moratinos, 2020, p. 68).

Perhaps the real novelty was rather the context and the level of complexity of the 
unpredictable and unexpected performance of the system.43 Therefore, if the “sur-
prise” for the event that no one could anticipate stems from our limited ability to 

39 As Dr. Annalisa Manara recalls, “the patient did not meet the national criteria for coronavirus testing 
but because of his severe situation, we decided to do it anyway”: https:// www. escar dio. org/ Educa tion/ 
COVID- 19- and- Cardi ology/ diagn osing- the- first- covid- 19- patie nt- in- italy- codog no.
40 David Silver interviewed by Lex Fridman, podcast #86 “David Silver: AlphaGo, AlphaZero, and Deep 
Reinforcement Learning”: https:// www. youtu be. com/ watch?v= uPUEq 8d73J I&t= 5692s.
41 For example, exploring the standards currently set in comparative psychology (Halina 2021, p. 318).
42 A concept meant here as “an ability to interpret and reappropriate the fabric of socio-cultural expecta-
tions that can be (and regularly is) transformed through creative intervention” (Delacroix, 2021).
43 Halina (2021, p. 321, 323) concludes that, although AlphaGo lacks some of the virtues of animal 
“insight” (the “capacity to solve novel problems through a domain-general understanding of the world”), 
it exhibits the “capacity to transform a conceptual space in ways that do not appear available to human 
minds”, being able to produce “esults that are surprising, novel and valuable”. As we already observed, 
this also confirms that the answers to the more general question on whether AI systems has capacity for 
insight and generate creative or surprising outcomes depend on the paradigm of “creativity” that we have 
in mind (Halina, 2021, p. 326). Here, the author refers to the notion of “transformational creativity” and 
explicitly adopts Margaret Boden’s definition of “creative products” as “novel, surprising and valuable”. 
Compare further in the text Delacroix’s considerations about the required “surprise”.
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process data compared to that of the system’s, it appears to be more «trivial» than 
related to genuine creativity (Delacroix, 2021).

In short: although it could be stated that (1) certain AI systems could be already 
(at least) as accurate as humans and that risks of errors (error rates) are decreasing, 
and (4) that the AI systems are somehow “surprising” (or even “creative”), there is 
still (2) a security risk and (3) the principle of autonomy that applies in biomedi-
cal matters implies the patient’s right to receive an explanation and this requires an 
active as well as responsible participation of the medical doctor in every decision-
making process, in which she could still be assisted by AI systems.

Arguable concerns involve therefore bioethical issues stemming from opacity and 
moral as well as legal issues concerning responsibility, more than accuracy or efficiency. 
This opacity is higher than in traditional evidence-based medicine (EBM)44 and of a dif-
ferent kind. Undoubtedly, also practitioners who follow medical guidelines and/or emerg-
ing research evidence are often uncertain or radically ignorant about theories on why 
certain interventions work, or about the reasons behind certain predictions or the risks 
associated to certain treatments or their benefits (London, 2019, p. 17–19). However, “in 
ordinary clinical contexts, the clinician guides the patient through the spectrum of availa-
ble care” (Braun et al., 2020, p. 2) and “ordinary opacity” is more often a question of pos-
session of relevant knowledge or experimental evidence (which is available to a certain 
degree, although it might be scientifically uncertain, or not yet generally accepted, and 
often fragmentary and incomplete) and its proper communication to patients.45 Instead, 
when doctors deal with automation, black box AI systems replace human reasoning with-
out providing practitioners and patients with useful causal explanations of the systems’ 
internal decision procedures between input and output (Braun et al., 2020, p. 3; Bjerring 
& Busch, 2021, p. 363–364) or about implicit relevant value-laden concepts assumed 
(Grote & Berens, 2020, p. 209–210). Moreover, those systems make it “almost impos-
sible to assess risks adequately ex ante as well as to prove ex post which wrongful action 
has led to specific damage, thus hindering legal evaluation” (Braun et al., 2020, p. 3).

5.2  Doctors’ Responsibility and the Principle of Confidence

With these provisional concerns about full automation in mind, we now focus on the 
second question: how should a doctor behave with respect to a diagnosis made by an 
artificial intelligence system?

44 Broadly speaking, EBM is a contemporary paradigm of medicine which combines three fundamental 
requirements: individual clinical expertise, scientific research, and patients’ autonomy (informed con-
sent). According to its second pillar, medical decisions ought to be made based on the most up-to-date 
and reliable scientific evidence. Therefore, EBM provides doctors with best practices and medical guide-
lines. See, also for more references and current discussions, Sackett et al (1996), Rogers and Hutchison 
(2015), Szajewska (2018).
45 As London (2019, p. 18) observes, “Medicine is (…) a sphere where current theories of disease 
pathophysiology or drug mechanism are often of unknown or uncertain value”. Therefore, “the overreli-
ance on theories that explain why something might be the case has sometimes made it more difficult to 
validate the empirical claims derived from such theories, with disastrous effects”. On controversial medi-
cal knowledge, its communication to nonexperts in legal, social, and clinical contexts, and the relation-
ships between overreliance on science and social lack of trust, see also Perin, 2021.
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We need to design a model of distribution and allocation of responsibility con-
sistent with the necessary human medical intervention, but that also allows for the 
advantages offered by AI systems in medicine, namely, efficiency and cost reduc-
tion. A normative model of responsibility consistent with these premises should 
then generate the conditions for increasing trust in collaborative teams composed by 
professionals (i.e., humans) and AI systems (Braun et al., 2020, p. 3).

Our proposal in this direction is the so-called “principle of confidence” (Perin, 2019). This 
principle indicates that a person who takes part in a relational activity in society, can act in 
confidence that all other participants acted / are acting / will act in compliance with their own 
duties of care (e.g., when driving a motor vehicle, when working as a team during a surgery). 
That confidence generates a legitimate or fair expectation, which implies that one has no duty 
to check constantly that other participants are acting according to their duties of care.

However, like any rule, this one also has exceptions. In fact, if evident and con-
crete indicators make it possible to foresee that a participant is failing to comply 
with due care, i.e., they are not acting as it could be expected, then the “legitimate 
confidence” will be replaced by a duty to act in order to avoid adverse events that 
may derive from the interaction between the subjects involved in the plurisubjective 
activity (Kirschbaum, 1980; Mantovani, 1997; Perin, 2020).

In philosophy of law, the principle of confidence reflects the liberal idea that 
abstractly dangerous activities are allowed until concrete circumstances recommend 
that a “reasonable and prudent person” refrain from a certain performance, so as not 
to exceed, in this way, the threshold of the so-called “allowed risk”.

This principle (and, at the same time, imputation criterion) could then be applied, 
mutatis mutandis, to the relationship between a doctor (moral and responsible entity) and 
an AI system (the non-imputable “third party”) for the construction of normative frame-
works aimed to meet the double objective of: (1) protecting the legitimate confidence 
of the physician in the automated diagnosis, but (2) without justifying or encouraging 
a tendency to uncritical or blind application of it, recognizing that in qualified cases the 
doctor has a duty to contradict the system’s indication and otherwise she could respond 
for not having realized that the indication she received was wrong.46

Recognizing this limit to the principle of confidence entails asking under what con-
ditions (in each specific case) can a duty be established that imposes taking charge of 
the error of others. The challenge then consists in determining when, specifically, there 
could be an objective enforceability of said residual and “relational duty” to face the 
error of a decision-maker that lies outside the acting person (Perin, 2019; Caputo, 2021, 
p. 198–199). This normative approach could allow for the determination of a physician’s 
responsibility in situations like, for example, the following: (1) when the AI model is 
used beyond the scope for which it was authorized and certified (off-label), so that any 
expectation would no longer be valid47; (2) when the medical doctor trusts an automated 
indication despite concrete and serious doubts about the reliability of the system.48

46 Similar indications appear in art. 14, AIA-21: measures of human oversight shall enable humans “to 
decide, in any particular situation, not to use the high-risk AI system or otherwise disregard, override or 
reverse the output of the high-risk AI system”.
47 Accordingly, art. 29 of the AIA-21 established that: “e systems, pursuant to paragraphs 2 and 5”.
48 Consider that the AIA-21 established providers’ duties to notify adverse events (post-release).
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A possible advantage of an approach based on the “principle of confidence” is 
that the burden of proof would not shift towards the clinician (as warned by Braun 
et al., 2020, p. 7–8), because fair reliance would be the rule, not the exception, and 
so would be the exoneration from any responsibility in case of deriving adverse 
events. Moreover, the maintenance of a residual duty to contradict the system’s indi-
cation might discourage “defensive” automatisms (i.e., blind and uncritical accept-
ance of AI systems decisions) and reduce the loss of the “epistemic authority” of 
the clinician (discussed by Grote & Berens, 2020, p. 207). In fact, the final decision 
would never be fully automatic, and the doctor would be accountable, taking the 
moral – although not always the legal — responsibility for it.

This approach seems therefore to indicate a balanced and flexible solution 
between fair reliance, a liberal principle suitable for ensuring a reasonable room to 
maneuver, and due diligence, a deontic basis for holding potential liability for medi-
cal malpractice.

Nevertheless, we must recognize that the application of the “principle of confi-
dence” might cause also serious concerns. First, this solution may require being able 
to affirm that AI systems are normally reliable, but in some cases this conclusion 
appears somehow premature. Moreover, «in order for the human subject to evalu-
ate the indication of error, he must proceed by checking, examining and evaluating 
the conclusion or decision-making proposal of the system, otherwise such indica-
tions could not be grasped or motivate the agent to make independent decisions» 
(Romeo Casabona & Lazcoz Moratinos, 2020, p. 83 and following). Secondly, there 
is a problematic issue affecting the relation between the level of automation of the 
AI and the human physician. The principle of confidence is generally applied to two 
or more autonomous and responsible human entities that collaborate or interact in 
the realization of a specific activity. Here, however, the scenario is somewhat differ-
ent, because AI systems are not “moral entities” (as we argued in the first part of this 
paper) and because there are different levels of automation (among which the full 
automation of healthcare processes, whose admissibility we have already excluded).

5.3  Automation in Medicine and the Principle of Confidence

Bitterman et al., (2020) stated that the “level of AI autonomy is broadly accepted to 
be crucial to the risk-assessment of AI algorithms, yet its definition and classifica-
tion is poorly defined”. Therefore, adopting the same scheme of levels of automation 
applied to autonomous vehicles, they indicate five possible degrees of automation 
also with respect to the context of AI in medicine: data presentation, clinical deci-
sion-support, conditional automation, high automation, and full automation.

This adaptation could enable the application of the principle of confidence in the 
sense that the more automation increases, the more the confidence increases, the 
more the responsibility of the doctor decreases and, in turn, the responsibility of 
the designer and/or the programmer of the AI system increases. Nevertheless, this 
approach deserves a critical analysis.

This is not the place to shed light on the issues of that proposal in the context of 
self-driving vehicles, but criticalities are present, perhaps to an even greater extent, 
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in the medical field. It is very difficult to define a concept of “autonomy” of AI sys-
tems in medicine, when the algorithms that regulate their operation are strongly 
dependent on a significant number of human beings who have contributed, directly 
or indirectly, to the definition of the instructions of such algorithms.

In every computer artifact there is an intrinsic dependence on the action of human 
beings: those who built the artifact (building hardware) and those who programmed 
it (writing software). Even in this restricted context, considerations could be made 
on the automation of the building and programming processes, but since it is a gen-
eral characterization of Computer Science tools, we want to focus here on the more 
specific peculiarities of AI systems in the medical field.

In particular, we will focus on two kinds of AI systems: Support Vector Machines 
(SVM) and Deep Learning (DL) systems, which reprise the distinction between 
GOFAI and ML, which we made in the first part of this paper. Both SVM and DL 
are designed to automate classification, that is, the task of analyzing medical data, 
typically in the form of digital medical images of patients’ organs and classifying 
them into categories. In the simplest case, the classification distinguishes pathologi-
cal cases from physiological ones. In SVM systems, quantitative parameters whose 
values characterize healthy patients in accordance with the expertise of the doctors 
involved in the design process are explicitly programmed into the system, so that 
when a digital medical image is analyzed that presents values that fall outside of that 
“healthy” range, it is classified as pathological and brought to the doctors’ attention. 
In DL systems, on the other hand, the role of the human expertise is less explicit, 
because DL systems consist of a neural network (a complex network of simple 
mathematical functions) that tweaks its own parameters based on a trial-and-error 
training phase, during which the system is fed with medical images and its clas-
sification output is matched against the human doctors’ pre-recorded classification 
results. When there is a mismatch, the DL system alters its own parameters; when 
there is a match, the DL system stays the same. This training procedure goes on until 
the mismatch rate goes below a threshold that is deemed acceptable by the people 
involved in the design of the system.

Peruzzo et al., (2016) propose the use of an SVM system for the automation of 
the detection and characterization of malformations in the brain, with particular 
attention to the corpus callosum. Here is an illustration of the main points of the pro-
posed process, with emphasis on the dependence of this process on human factors 
external to the AI system.

5.3.1  Support Vector Machines for Automated Brain Analysis

Support Vector Machines are classifier systems, i.e., algorithms that group numeri-
cal data into sets based on a measurement of the numerical distance between data 
points: data are considered similar when they are characterized by values whose dif-
ference is below a preestablished threshold.

In the proposal by Peruzzo et al., (2016) the numerical data consist of measure-
ments of the dimensions of the corpus callosum of neurology patients. The basic 
idea is that if these data show a significant difference with the measurements of a 
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physiological corpus callosum, then it is possible that the patient has a pathology 
and therefore needs further investigations.

The procedure for creating numerical data starting from the patient’s brain 
involves the following: a magnetic resonance is performed to create digital medi-
cal images with MRI technology; these images are processed with standard soft-
ware (FMRIB Software Library) for the elimination of noise and discontinuity in the 
image due to intrinsic delays in the resonance machinery; the images are scaled and 
normalized in relation to the measurements of an “average brain”, such as the one 
present in the “Brain Atlas” of the Montreal Neurologic Institute; the measurements 
of the corpus callosum under examination are extracted according to a predeter-
mined geometric model, in terms of area, perimeter, distance between focal points, 
thickness.

Once the numerical data are created, they are processed by the SVM system, 
which inserts them into a multidimensional mathematical space, where they con-
stitute a new point, representing the corpus callosum under examination. In the 
same space there are numerous other points representing the other corpora cal-
losa examined previously, labeled as physiological or pathological based on cri-
teria established by the medical knowledge of the doctors that participated in the 
classifications.

The SVM system, based on the distance of the new point from the area where 
the points previously classified as physiological are located, establishes whether it 
represents a physiological or a pathological corpus callosum. Furthermore, in the 
latter case, with an operation based on mathematical counterfactuals, the system 
calculates the displacement in the multidimensional space that the point needs to 
reach the boundary of the physiological area. This shift, in terms of the parameters 
involved and the extent of the shift itself, creates an “explanation” that accompanies 
the classification of the point as pathological. It is far from an explanation in scien-
tific terms, but at least the human expert who receives the result of the classification 
also gets data to support the decision taken by the AI system. This is a “characteriza-
tion” of the result that should help the human expert in the “validation” process with 
further medical investigations.

5.3.2  A Case Against Levels of Automation in Medical AI Systems

The complexity of the relationships between prior and distributed knowledge, inter-
disciplinary and multidisciplinary efforts, numerical modeling and technological 
implementations that characterize the aforementioned proposal sheds light on the 
excessive simplification imposed by a framework of levels of automation in AI sys-
tems such as the one proposed by Bitterman et  al., (2020), where a dichotomy of 
“clinician” and “AI” is presented, and where “liability” falls either on the “clinician” 
or the “AI developer”. Whatever the approach that is adopted to ascribe responsibil-
ity in the medical field with AI systems, be it meaningful human control, be it the 
rights to information and explanation, whether one requires ex ante supervision and 
controls or ex post countermeasures, it is clear that the entities that must be taken 
into consideration are much more numerous than a single AI system in use in a hos-
pital and the human being who has used it for a particular medical case.
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In particular, in the case of the use of SVM systems for the analysis of the corpus 
callosum, at least the following entities are involved:

• The company that supplied the MRI machinery;
• The company that provided the software for the pre-processing of the images;
• The technicians managing the Brain Atlas, as well as all the hospitals and 

research centers that provided the data with which the atlas was built;
• The researchers who established the geometric model of the corpus callosum to 

be used in the experimental study;
• The programmers who created the SVM system used in the experimental study;
• The clinician who uses the results of the SVM system to deal with a case.

We can imagine a series of problematic cases of misdiagnosis (false negative: the 
patient has a pathological corpus callosum but is not diagnosed as such) in which 
the responsibility falls on each of the entities listed above:

• The pathology does not appear in the image due to a malfunction of the MRI 
machinery;

• The pathology does not appear in the processed image due to a malfunction of 
the image processing software;

• Normalization of the image with respect to the Brain Atlas makes the pathology 
invisible on the image;

• The pathology alters a characteristic of the corpus callosum that was not taken 
into consideration by the geometric model established by the researchers;

• The image is classified as physiological due to a malfunction of the SVM sys-
temsoftware;

• The clinician considers the SVM system result to be incorrect and decides that 
the patient’s corpus callosum is physiological.

In this list we have imagined independent events, but of course we cannot exclude 
cases of accumulation of errors and malfunctions. The intrinsic dependence of AI 
systems on data and on criteria decided by experts to process such data means that 
this network of relationships between different human beings and technologies they 
have developed holds even in a scenario of significant development of AI tech-
nology: machinery can always break down or wear out; the models on which the 
software is based may be incomplete, or become incomplete in case new types of 
pathology emerge that were unknown at the time of modeling, and so on.

A detailed analysis of this network of relationships is not an exercise that is destined to 
become obsolete because of technological development. It is indeed a fundamental step for 
the construction of a system of attribution of responsibility that aims to increase the trust 
towards these human-AI hybrid systems. Such trust will be based on the speed with which 
any system malfunction can be identified and the relevant responsibilities correctly attributed.

Due to the explicit description of the characteristics of the analyzed organs, SVM-
based techniques fall into an operational category called “feature engineering”. More 
recent advances in ML, specifically in the field of DL, have focused more on the use 
of data classified by human experts without any indication on characterizations or 

11   Page 20 of 28



When Doctors and AI Interact: on Human Responsibility for…

1 3

quantifications of features. With this shift, medical image classifiers that had taken years 
to develop could be designed, trained, and deployed in a matter of weeks or months 
(Langlotz et al., 2019). Unfortunately, this purported increase in efficiency comes with 
a price in terms of a significant increase in the opacity of the AI systems. Here follows a 
more detailed analysis of an application of DL to the prevention of breast cancer.

5.3.3  Deep Learning for Automated Breast Tissue Analysis

The starting point of the initiative is the medical notion that breast density is an impor-
tant risk factor for breast cancer. Moreover, through their experience medical experts 
have found that areas of higher density can mask findings within mammograms (i.e., 
X-ray pictures of the breast used by doctors to look for early signs of breast cancer), 
which leads to a lower sensitivity, that is, fewer positive cases (i.e., patients with breast 
cancer) are correctly identified. Radiologists typically assess breast density by using the 
Breast Imaging Reporting and Data System (BI-RADS), which divides breast density 
into four categories: (a) almost entirely fatty; (b) scattered areas of fibroglandular den-
sity; (c) heterogeneously dense; and (d) extremely dense.

The assessment of BI-RADS breast density is performed by radiologists using digital images 
and, in such task, they exhibit intra-reader variability, i.e., measurement differences from the 
same radiologist, usually due to inherent difficulties with the digital image, and inter-reader vari-
ability, i.e., measurement differences among different readers, possibly because of a problematic 
digital image but more often due to differences in the readers’ skills. This can result in differ-
ences in estimated risk and, thus, differences in clinical care.

To tackle this issue, Matthews et al., (2020) proposed a DL system for breast den-
sity classification. The main difference between this DL-based experiment with the 
previous SVM-based proposal lies in the methodology followed by the AI system 
designers to enable it to perform classification of medical images.

In the SVM system there were explicitly quantified parameters given by the geo-
metric model and by the thresholds of admissible distance from data points repre-
senting physiological corpora callosa. In the case of the DL system, the opacity of 
the “black box” is complete: the system is trained based on data pre-classified by 
experts without a specific and quantified indication on why the training data was 
classified that way. The neural networks in the DL system begin training with ran-
dom mathematical parameters, which are then corrected and calibrated when the 
network classifies the training data incorrectly. When the classification errors fall 
below a pre-established threshold, the verification phase starts: the DL system is to 
classify a set of new data, the correct classification of which is known to the experts. 
If the system remains below an acceptable threshold of error rate, then it is consid-
ered ready for deployment: the AI system can classify new data, never classified 
before, neither by the system itself, nor by a human expert.

5.3.4  A Case Against Purely Data‑driven Approaches in Medical AI Systems

To the entities involved in the planning and design of an SVM system listed before, 
new ones must now be added if DL technology is adopted:

Page 21 of 28    11



M. Verdicchio, A. Perin

1 3

• Those who choose the structural parameters of the neural network (also known 
as hyperparameters, they are not modified by the training, but they affect the per-
formance of the network) and

• Those who provide the data with which the network is trained and then validated.

Accordingly, the potential causes for a false negative misdiagnosis increase. To 
the previously listed issues we must add the following:

• The medical image is classified as physiological by the network because of the 
setting of its parameters chosen by the network trainers;

• The medical image is classified as physiological by the network because it has been 
trained with data that did not feature the patterns characterizing that specific pathology.

These two cases of misdiagnosis shed light on two distinct although connected 
aspects of what working with ML systems implies. If we stick with the metaphor of 
the “black box”, these aspects can be thought of as dealing with what is fed to the 
box and what happens inside the box.

The most famous incident related to data given to an ML system did not occur in 
medicine, but on Twitter. “Tay” was the name of a chat-bot developed by Microsoft 
with the goal of interacting with Twitter users and learning from their tweets. After 
a mere couple of days Microsoft had to withdraw Tay because it was sending out 
tweets filled with racist, sexist, and antisemitic slurs. Mischievousness of Internet 
trolls aside, scholars consider this case a symptom of an intrinsic problem charac-
terizing ML systems. In the context of software that “learns” from external data, 
the programmers have additional responsibilities on top of the already existing ones 
related to the encoding of knowledge into the software: they must go beyond the 
boundaries of their standard practice with traditional non-learning programs and be 
aware of and deal with all the possible results of the learning (Wolf et al., 2017).

To tackle the problems of understanding what happens inside the black box of an 
ML system, a new subfield of AI, called XAI (eXplainable Artificial Intelligence, 
Gunning et al., 2019), has recently emerged. The basic idea is to enhance an existing 
ML system so that its output is accompanied by an “explanation” of the results. Such 
explanation is for the humans using the ML system, and it is meant to provide infor-
mation on how the system has reached the results in the output. This research field is 
still at an early stage because the XAI community has not yet agreed on a definition 
of what constitutes a proper explanation in this context. It is not even clear whether a 
unique definition will ever be possible, since there are several research efforts along 
different directions tackling many varied aspects of ML systems. For instance, in the 
context of image analysis, explanations can be based on the concept of “salience”: the 
ML system returns not only the classification of an image, but also an indication of 
the areas in the image that have contributed most, in terms of the weight of the fac-
tors involved, to that result. The strategy is to show the human expert a visualization 
in which the salient points that led to the result given by the system are highlighted. 
Other proposals for explanations include verbal reconstructions of the operations of 
the system and mathematical functions that are meant to model the relation between 
input and output values, among other techniques (Tjoa & Guan, 2020).
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Whatever the nature and shape of the explanation, the goal of XAI is to make the 
“black box” of ML systems less “black” and more transparent, which is undoubtedly 
a praiseworthy effort. This, however, introduces a further type of problematic cases: 
to whom to attribute the responsibility for a misdiagnosis in which the attention of 
the clinician was focused on a particular area of the medical image indicated by the 
AI (or XAI) system, while in reality the truly critical area connected to the patient’s 
pathology was elsewhere and it was neglected by the clinician precisely because of 
these enhancements of the AI system that had been introduced to improve the use 
of AI in medicine? This problem is not new, and it is not limited to medical diagno-
sis: automation bias is an issue that has been discussed and tackled for decades in 
any context where humans must take decisions in a highly automatized environment 
(Skitka et al., 1999).

The principle of confidence may indicate the path towards reasonable solutions. 
XAI systems create indeed new opportunities for risk (e.g., misleading, erroneous 
explanations), or even harm in a full automation scenario. However, the XAI efforts 
towards the opening of black boxes, even if an exhaustive explanation may be out of 
reach, may ensure an increasingly higher level of transparency, which, in turn, could 
allow for an attitude of “alert confidence” by the doctors involved in the use of the 
AI systems. Concretely, this means that if evident indicators provided by the XAI 
make it possible to recognise that the suggested medical solution is not reliable, then 
the practitioner should reassess the case and independently take a responsible deci-
sion, either confirming the automated suggestion or taking a new course of action 
according to their individual clinical expertise and experience.

This scenario could reasonably meet the “meaningful human control” normative 
standard.

6  Conclusions

A new, more conscientious way of using AI in medicine would rest on a compromise 
between machine automation and human responsibility that enables doctors to har-
ness the technology without being overtaken by it. It is a very complex enterprise, 
because it is not just a technological issue, but a sociotechnical problem that touches 
on many and varied facets of society and hence requires a series of collective actions 
involving governments, markets, and communities (De Neufville & Baum, 2021).

Our reflection in this work has focused on the opportunity to hold the healthcare 
professional who makes use of AI systems responsible, without excluding the con-
current responsibility of other subjects involved in the design of those systems. We 
have seen that the number of associated stakeholders, especially when it comes to 
data-intensive technology, is significant. We acknowledge that attributing responsi-
bilities by establishing a network of causal relationships would not be trivial in a 
field riddled by uncertainty like medicine. Indeed, if we shift from a purely ethical 
dimension to a legal context, the proof of causality between each individual conduct 
(especially for all subjects involved in the design of an AI system) and an adverse 
outcome would pose serious difficulties. However, this very complexity of the rela-
tionships between humans, organizations and technological artifacts confirms the 
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usefulness of the principle of confidence, precisely because this normative instru-
ment allows for the distribution of responsibility that is indeed shared in principle, 
but not yet in practice.

In this sense, our hope is that making all participants in the network aware of 
their responsibilities will help ensure a better distribution of duties among all the 
entities involved in the design, implementation, deployment, and use of AI systems 
in medicine, which should strike a balance between “over-responsibilization” and 
“de-responsibilization” for doctors. On the one hand, if the designers of an AI sys-
tem perform and certify a quality control, then a doctor using that system should 
be in principle allowed to trust it without the need for continuous checks. On the 
other hand, if a wrong diagnosis depends on an error of the AI system, the concur-
rent responsibility of the doctor will depend on the possibility of recognizing that 
error and on their recklessness in acting. So, for example, if the AI system provides 
outputs that are significantly different from what the doctor has become accustomed 
to during an extended use of the system, then they would have the duty to verify the 
operation of the machine, possibly involving other people (e.g., the AI designers).

However, when ML systems are used, the opacity of the AI system prevents 
human users from grasping the automated decision-making process that led to a par-
ticular output. In such circumstances an approach based on confidence should be 
deemed imprudent, and it may be more appropriate to establish that the doctor must 
act (e.g., make a diagnosis) independently of the AI system, regardless of visible 
signs of malfunction.

In this regard, our point is not to take human medical doctors as an absolute “gold 
standard” to evaluate and compare the reliability of “black box” systems. While con-
sidering the relationship between practitioners and AI systems as analogous to the 
one between practitioners and EBM (medical guidelines or emerging research evi-
dence), we could be tempted to claim that practitioners should comply with a sort 
of «epistemic obligation to align their medical verdicts with those of AI systems».49 
Instead, full automation and “black box medicine” should be rejected on the grounds 
of the principle of responsibility which applies to medical doctors and the bioethical 
principle of autonomy which entails the patient’s rights to receive reasonable expla-
nations and not to be treated unless they give their informed consent.

In conclusion, a reasonable regulatory model should allow for the combination of 
at least three requirements:

(i) The right of patients to receive an explanation on the treatments they are 
receiving, which is a corollary of the fundamental bioethical principle of auton-
omy, so that they are not subjected to treatments against their will.
(ii) The duty of doctors and all subjects involved in the design and operation of 
AI systems in medicine to protect the life and integrity of patients, a duty stem-
ming from the principle of individual responsibility.

49 Bjerring & Busch, 2021. See again on this, also for criticism, Braun et al., 2020; and Grote & Berens, 
2020, p. 210, who arguably observe that “EBM is a movement within healthcare, whereas in machine 
learning the tech industry and leading computer science departments are among the major drivers. Suf-
fice it to say at this point that the engagement of the industry entails ethical problems of its own”.
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(iii) The possibility for doctors to reasonably trust the tools at their disposal, 
unless otherwise prescribed, and to be able to notice clues of error of the system 
and consequently take a new course of action.

Considerations on technology, accuracy, and efficiency aside, it seems necessary 
to keep on focusing on ethical concerns about what opaque systems and full automa-
tion entail for patient-centered medicine. Responsibility must, in any case, be attrib-
uted to the humans who, in one way or another, participate in this very complex 
endeavor that is AI in medicine.
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