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Abstract

Protein dynamics is pivotal to biological processes. However, experiments are very

demanding and difficult to perform, and all-atom molecular dynamics simulations can still

not provide all the answers. This motivates us to analyze protein dynamics in terms of differ-

ent reduced coordinate representations. We then need to resolve how to reconstruct the

full all-atom dynamics from its coarse grained approximation. Accordingly we scrutinize all-

atom molecular dynamics trajectories in terms of crystallographic Protein Data Bank (PDB)

structures, and inquire to what extent is it possible to predict the dynamics of side chain Cβ
atoms in terms of the static properties of backbone Cα and O atoms. Here we find that simu-

lated Cβ dynamics at near physiological conditions can be reconstructed with very high

precision, using the knowledge of the crystallographic backbone Cα and O positions. The

precision we can reach with our PDB-based Statistical Method reconstruction exceeds that

of popular all-atom reconstruction methods such as Remo and Pulchra, and is fully compa-

rable with the precision of the highly elaborate Scwrl4 all-atom reconstruction method that

we have enhanced with the knowledge of the backbone Cα and O atom positions. We then

conclude that in a dynamical protein that moves around at physiological conditions, the rela-

tive positions of its Cβ atoms with respect to the backbone Cα and O atoms, deviate very lit-

tle from their relative positions in static crystallographic PDB structures. This proposes that

the dynamics of a biologically active protein could remain subject to very similar, stringent

stereochemical constraints that dictate the structure of a folded crystallographic protein.

Thus, our results provide a strong impetus to the development of coarse grained techniques

that are based on reduced coordinate representations.

Introduction

The Cα atoms are located at the branch points of a protein, they connect the backbone and

the side chains. As a consequence their positions are subject to relatively tight stereochemical
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constraints. Indeed, in the case of static crystallographic proteins, the all-atom structure can be

often determined with a good precision from the knowledge of the Cα positions [1–9]. This

motivates the so-called Cα trace problem where the goal is to construct an accurate all-atom

model of a crystallographic folded protein structure solely from the knowledge of the positions

of its Cα atoms [10–15].

Protein dynamics is pivotal to biological function and many proteins are presumed to be

flexible under physiological conditions. Unlike in the case of static crystallographic protein

structures, the relative positions of the various atoms can then become variable. There is no

a priori reason why the dynamical all-atom structure could be determined solely from the

knowledge of the Cα backbone. Instead the peptide planes and the side chains are expected to

twist and bend with respect to the Cα backbone, presumably in a complicated fashion. How-

ever, high precision experiments in the case of a dynamical protein are very difficult to per-

form, and our knowledge of atomic level protein dynamics remains limited [16–19]. Presently,

the best sources of information are all-atom molecular dynamics simulations. These are proba-

bly best exemplified by the very long Anton folding trajectories [20, 21].

In [22] a dynamical variant of the Cα trace problem is addressed. For example, two all-

atom Anton trajectories were analyzed in detail, with focus on the peptide plane O atoms and

side chain Cβ atoms: The O atom is the only heavy peptide plane atom that is not covalently

connected to the Cα and the Cβ defines the direction of the side chain. Thus, these two atoms

have a particularly important structural information content. Unexpectedly, it was found that

the motions of the peptide plane O atoms and the side chain Cβ atoms could be reconstructed

with high precision solely from the knowledge of the Cα atom dynamics, using a statistical

analysis of static crystallographic protein structures in Protein Data Bank (PDB) [23]. The

results suggest that in an isolated dynamical protein, at near physiological conditions, the

motions of its O and Cβ atoms remain strongly slaved to the Cα dynamics, to the extent that

they are more or less only subject to modest thermal fluctuations. If this is indeed the case,

the problem of protein dynamics at physiological conditions could be much simpler than

expected: If the motions of different atoms are strongly correlated and in a systematic manner,

many aspects of protein dynamics could be modelled by an effective coarse grained energy

function, formulated in terms of a reduced sets of coordinates that describe only the Cα atoms

[24–26] or a group of atoms including the Cα as effective interaction centers [27–29].

Here we present an analysis of simulated all-atom protein dynamics in terms of reduced

coordinate sets. We focus on the interrelations between the Cα, peptide plane O and side

chain Cβ atoms. This choice is partly motivated by a series of articles [30–32] that propose to

investigate the interrelations between the Cα, the peptide plane O and the side chain Cβ atoms

in a Hamiltonian context. Specifically, we inquire how accurately can the dynamics of the Cβ
atoms be determined from the knowledge of the backbone Cα and O atom dynamics, using

solely a statistical analysis of static crystallographic PDB structures. We select these three

groups of atoms for their pivotal structural role: Alongside the Cα atoms the peptide plane O

atoms and side chain Cβ atoms are both structurally highly important. The O atoms are the

only backbone heavy atoms that have no covalent bond with Cα atoms, but they have many

very important formative functions. For example, in combination with the peptide plane H

atoms they forge and stabilize regular secondary structures including α-helices and β-strands.

Similarly, the Cβ atoms determine the orientations of the side chains, strongly affecting the

positions of all the higher level side chain atoms. Indeed, in the case of crystallographic protein

structures, the knowledge of the peptide planes and the Cβ atom positions is quite sufficient to

determine the other side chain atom positions in terms of rotamer libraries [33–37]. This is

amply demonstrated by the success of reconstruction programs such as Pulchra [13], Remo
[14] and Scwrl4 [15].

Protein side chain dynamics
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Our aim is to understand how protein dynamics could be modelled in an effective manner.

For this we propose to investigate and develop different coordinate descriptions that can adapt

to the dynamics. Previously, several different coordinate systems have been proposed in the

literature. Particularly notable are the Ramachandran angles [38, 39], widely used to validate

crystallographic protein structures. But these angles provide only local information, they are

not sufficient to describe the three dimensional shape, and thus, the dynamics, of a protein

[40]. For this alternative coordinate systems have been developed, often starting by envisioning

the Cα backbone as a piecewise linear polygonal chain for which the Cα coordinates rai ði ¼
1; . . . ;NÞ define vertices; here N is the number of Cα atoms and we start the indexing from

the N terminus. As a linear chain the Cα backbone can be framed, and one way is to employ

a discrete version of the Frenet frames [41, 42]. The Frenet frames are purely geometric, they

do not make any reference to the other heavy atoms of the protein. Nevertheless, discrete Fre-

net frames provide a very convenient description of a crystallographic protein structure, as it

turns out that the Cβ and peptide plane heavy atoms are all highly localized in terms of Frenet

frames, quite independently of the proteins amino acid content.

Other purely geometric ways to frame the Cα backbone can also be introduced. An example

is the parallel transport (Bishop) framing [43]. But in terms of parallel transport frames the Cβ
and peptide plane atoms fail to localize [41]. Thus, these frames do not seem to be very conve-

nient, in the study of protein structure. We also note that reconstruction programs such as Pul-
chra, Remo and others, commonly use their own, specially designed framings that are built on

the Cα backbone geometry.

Besides geometry based frames, proteins can also be framed using their structure; the

Ramachandran angles are an example. In particular, the combination of Cα and Cβ atoms

defines such a structure based framing [41, 42]. It employs the covalent bond that connects

these two atoms, in addition of the virtual bonds that connect neighboring Cα atoms, to define

the local frame. Such a Cβ framing adapts well to all amino acids except for glycine that has no

Cβ atom. Since the Cβ atoms are highly inert in the discrete Frenet frames, such a CαCβ based

framing yields a description of the protein structure that is very similar to the discrete Frenet

framing description.

Here we develop an alternative structure based framing, using the peptide planes: The nor-

mal vector of a peptide plane, in combination with the virtual bonds between the Cα atoms,

can be employed to define such a framing. Our aim is to study how such a peptide plane based

framing describes protein dynamics. For this we analyze data from two extended Anton simu-

lations [20] that are performed with Charmm22? force field [21]. The trajectories that we con-

sider are the villin and the ww-domain, reported in [20]. Villin is α-helical and ww-domain is

β-stranded in a folded state. The Anton simulations observe several transitions between struc-

tures that are (apparently) unfolded and that are (apparently) folded. Thus, the combination

of these two trajectories cover many local structures, with all the biologically relevant amino

acids appearing, except CYS with its unique potential to form sulphur bridges. Moreover,

the villin in [20] involves a NLE mutant and the HIS in [20] is protonated. Thus, our analysis

includes the effects of mutations and pH variations. All this ensures that there is a good diver-

sity of dynamical details for us to analyze, in terms of these two trajectories.

The length of the villin trajectory is 120μs, and we have selected every 20th simulated struc-

ture for our prediction analysis, for a total of 31395 structures. The length of the ww-domain

trajectory is 651 μs and we have chosen every 40th simulated structure for our prediction anal-

ysis, for a total of 60814 structures. We use the coordinates of the backbone Cα and O atoms

along the Anton trajectories, to try and reconstruct the coordinates of the Cβ atoms using a

variety of methods. We then compare the results with the Cβ coordinates along the Anton tra-

jectories. Besides a Cα-Frenet frame based reconstruction [22], and the peptide plane based

Protein side chain dynamics
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Statistical Method reconstruction that we develop here, we also analyze the results that we

obtain using commonly available all-atom structural reconstruction programs Remo and

Scwrl4; here we use and enhanced variant of Scwrl4 that accounts for the positions of the back-

bone Cα and O atoms. We have also performed the analyses using Pulchra, with results that

comparable to those we obtain with Remo. For clarity of representation, we do not present the

Pulchra results explicitely.

Finally, we remind that the Anton simulations provide us with dynamical data at physiolog-

ically relevant temperature values while all the reconstruction algoritms that we use, are based

on static crystallographic structures that are commonly measured at very low (liquid nitrogen)

temperatures. Thus, our results should also reveal how the structure deforms due to tempera-

ture effects in addition of dynamics.

Methods

Framing a protein backbone

Purely geometric discrete Frenet frames. The discrete Frenet frames are purely geomet-

ric frames, they are built solely in terms of the Cα atoms of a protein backbone. Thus, these

frames can be useful e.g. for reconstruction of the atomic structure when only the Cα atom

positions are known. We define the discrete Frenet frames as follows: We assign to each

Cα position ri an orthonormal triplet (ni, bi, ti) [41, 42]. We construct these vectors by first

identifying ti with the vector that points from the center of the ith Cα towards the center of the

(i + 1)st Cα,

ti ¼
riþ1 � ri
jriþ1 � rij

ð1Þ

The binormal vector is normal to the plane formed by three consecutive Cα carbons,

bi ¼
ti� 1 � ti
jti� 1 � tij

ð2Þ

and the normal vector is

ni ¼ bi � ti ð3Þ

For visualization we use a color coding with n� x� red (r), b� y� green (g) and t� z�
blue (b) in terms of a right-handed Cartesian (xyz)�(rgb) coordinate system; see Fig 1.

We use the discrete Frenet frame vectors to define the (virtual) Cα backbone bond (κ) and

torsion (τ) angles as follows,

ki ¼ arccos ðtiþ1 � tiÞ

ti ¼ signðbiþ1 � niÞ arccos ðbiþ1 � biÞ
ð4Þ

These angles are shown in Fig 2 We identify them as the canonical latitude (κ) and longi-

tude (τ) angles on the surface of a unit radius (Frenet) sphere S2

a
that is centered at the Cα

atom; the sphere is oriented so that the north pole is in the direction κ = 0. Thus, the discrete

Frenet frame vector t points to the direction of the north pole; it coincides with the z-direction

in a Cα centered Cartesian coordinate system. The torsion angle τ coincides with the longitude

angle and takes values τ 2 [−π, π), increasing in the counterclockwise direction around the

positive z-axis i.e. around vector t. The great circle τ = 0 passes through the north pole and the

tip of the normal vector n that lies at the equator.

Protein side chain dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0215141 April 12, 2019 4 / 22

https://doi.org/10.1371/journal.pone.0215141


Structure based peptide plane CαO frames. When in addition of the Cα atom positions

also e.g. the peptide plane O atom positions are all known, we can proceed and frame the pro-

tein backbone in a structure dependent fashion: The Cα atoms Cα(i) and Cα(i + 1) that are

located at the ith and (i + 1)st sites define two corners of the (virtual) peptide plane. The third

corner coincides with the ith O atom. Accordingly, when we continue to denote the Cα(i) coor-

dinates by ri and denote the O(i) coordinates by rOi
, the Oi centered CαO frames are defined

by the following right-handed orthonormal triplet (û; v̂; ŵÞ � ðxyzÞ � ðrgbÞ

û i ¼
riþ1 � ri
jriþ1 � rij

ð5Þ

ŵ i ¼
riþ1 � ri
jriþ1 � rij

�
rOi
� ri

jrOi
� rij

ð6Þ

v̂ i ¼ ŵ i � ûi ð7Þ

In Fig 3 we show these frames. In our reconstruction we shall assume that the peptide

planes are ideal. The vector ŵ i is then a normal vector of the (ideal) peptide plane and we can

estimate the coordinates of the remaining peptide plane atoms Ci, Ni+1 and Hi+1, starting from

the ideal peptide plane (IPP) geometry that we display in Fig 4.

Fig 1. Discrete Frenet frame vectors (1), (2) and (3).

https://doi.org/10.1371/journal.pone.0215141.g001

Fig 2. Definition of (virtual) Cα backbone bond (κ) and torsion (τ) angles.

https://doi.org/10.1371/journal.pone.0215141.g002
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Visualizing a protein structure

Cα atom visualization. The PDB data pool that we use is the same as used in [22]; see

also [40]. It is updated continuously, to consist of all contemporary crystallographic protein

structures that have been measured with better than 1.0 Å resolution. We trust that such ultra

high resolution structures have been subjected to (at most) very minimal refinement.

For visualization purposes, we use the statistical distribution of the Cα backbone bond and

torsion angles on a stereographically projected two-sphere S2
, shown in Fig 5 and constructed

Fig 3. The CαO frames are centered at the O atom of the peptide plane.

https://doi.org/10.1371/journal.pone.0215141.g003

Fig 4. The detailed structure of the ideal peptide plane (IPP) that we use.

https://doi.org/10.1371/journal.pone.0215141.g004
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as follows: Let S2

a
ðiÞ be a (unit radius) sphere that is centered at the ith Cα atom of a given PDB

structure. The vector ti then has its tail at the location of Cα(i) and its head lies at the north

pole of S2

a
ðiÞ, pointing towards the Cα(i + 1) atom. The following atom Cα(i + 2) is located

similarly, in the direction of the discrete Frenet frame vector ti+1 that points from the center of

S2

a
ðiþ 1Þ towards its north pole. We parallel transport ti+1, with no rotation, until its tail coin-

cides with the origin of S2

a
ðiÞ. Let (κi, τi) be the discrete Frenet frame coordinates of the parallel

transported head of ti+1 on the surface of S2

a
ðiÞ. These coordinates describe how a miniature

observer at the position of Cα(i) atom, with head oriented towards the north pole of S2

a
ðiÞ,

finds the backbone twisting and bending when she proceeds along the chain to the position of

Cα(i + 1).

After we repeat this construction for all the Cα atoms of all PDB structures in our PDB data

pool, we obtain a statistical distribution of coordinates (κ, τ). We visualize this distribution

by projecting the sphere S2

a
stereographically onto the complex plane from the south pole as

Fig 5. Top: Stereographic projection of two sphere onto plane, with the projection taken from the south pole. Bottom:

Statistical distribution of all Cα atoms in our pool of PDB structures, on stereographically projected sphere.

https://doi.org/10.1371/journal.pone.0215141.g005
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shown in Fig 5. The projection is defined by

xþ iy ¼ tan
k

2

� �
eit

In Fig 5 we also show the (κ, τ) distribution of all the Cα atom coordinates in our PDB data

set, on the stereographically projected Frenet sphere. The distribution is largely concentrated

inside an annulus, with inner circle κin� 1 and outer circle κout� π/2. In the Figure we have

identified the regular secondary structure regions corresponding to α-helices, β-strands and

left-handed α-helices.

Visualization of peptide plane O atoms and side chain Cβ atoms. To visualize the pep-

tide plane O atom and side chain Cβ atom distributions in our PDB data set, we use the Cα
centered Frenet spheres S2

a
but with no stereographic projection. We depict the direction of

these atoms on the surface of S2

a
, exactly as they are seen by a discrete Frenet frame observer

who stands at the position of the Cα atom. In Fig 6 we show the ensuing statistical distribu-

tions that we obtain for the O and Cβ atoms in our statistical pool of PDB structures. Again,

the major regular secondary structures have been identified.

The Statistical Method reconstruction algorithm

Our Statistical Method reconstruction algorithm is an extension of the algorithm developed in

[22]. It builds on the CαO framing, it aims to use the known positions of Cα and O atoms to

predict the positions of the remaining atoms along a protein chain. As an example, we here

predict the spherical coordinates (θ, ϕ) i.e. directions of Cβ atoms on the surface of a proper

two-sphere S2
, using the knowledge of the Cα coordinates (κ, τ) and O coordinates that we

denote (ϑ, ψ) in the sequel.

We do not address fluctuations in the covalent bond lengths and other distance scales. By

construction, any reconstruction that builds on crystallographic data can only reproduce (at

most) very long time scale average values of these quantities. Besides, our analyses confirm

that the radial distance variations in Anton trajectories are minor in comparison to the

Fig 6. Fig a): The distribution of peptide plane O atom coordinates (ϑ, ψ) in our PDB pool of structures on the surface

of the Frenet sphere S2

a
. Fig b): The distribution of Cβ atom coordinates (θ, ϕ) in our PDB pool of structures on the

surface of the Frenet sphere S2

a
. In both Figures we have identified the α-helices (α), β-strands (β), left-handed α-helices

(αL) and cis-peptide planes (cis).

https://doi.org/10.1371/journal.pone.0215141.g006

Protein side chain dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0215141 April 12, 2019 8 / 22

https://doi.org/10.1371/journal.pone.0215141.g006
https://doi.org/10.1371/journal.pone.0215141


directional (angular) variations. Thus, for the Cα-Cβ covalent bond length we use the Anton
average value 1.55 Å and for the other distances we refer to Fig 4.

We start as follows [22]: We divide the statistical distribution of our PDB data shown in Fig

5 (bottom) into 60 equal sectors with angular size Δτ = π/30 radians. We then divide each of

these sectors into two radial sets, one corresponding to bond angle values κ> 1.2 (rad) and

the other to κ� 1.2 (rad): The value κ = 1.2 divides the annulus in Fig 5 (roughly) into two

annuli corresponding to α-helix-like (κ> 1.2) and β-strand-like (κ< 1.2) structures.

Next, we observe that the statistical distribution of peptide plane O atoms shown in Fig 6

(top) forms a very narrow circular strip with latitude ϑ� π/4. Accordingly, we further divide

the PDB data in terms of the O atom coordinate values, by longitudinally dividing the statisti-

cal O distribution of Fig 6 into 90 equal length Δψ segments with length Δψ = π/45.

We use our division of PDB structures according to the (κ, τ, ψ) values, to predict the Cβ
coordinates (θ, ϕ) of a given structure as follows:

Step 1. We start from the known τi value of the given Cα(i) atom, to select the pertinent sec-

tor τi 2 Δτ. We then use the κi value of Cα(i) together with κi+1 of the Cα(i + 1) atom,

to further assign Cα(i) to one of the four sets

Set Dk1 : ki < 1:2 & kiþ1 < 1:2

Set Dk2 : ki < 1:2 & kiþ1 � 1:2

Set Dk3 : ki � 1:2 & kiþ1 < 1:2

Set Dk4 : ki � 1:2 & kiþ1 � 1:2

We then use the ψi value of O(i) to select the Δψ segment. These steps identify a subset

of [Δκ;Δτ;Δψ] to which we putatively assign the Cβ(i) atom.

Step 2. We proceed to consider those PDB structures for which the (κ, τ, ψ) values are in the

same subset [Δκ;Δτ;Δψ]. Among these we search for a PDB structure that has equal

amino acids at two consecutive sites, as the Cβ atom of interest.

• If we find only one such matching PDB structure we use the coordinates of its Cβ atom for

our prediction.

• If we have more than one pair of matching amino acids in the PDB subset, we use the aver-

age values of the ensuing Cβ coordinates for our prediction.

• If there are no PDB entries with matching amino acid pairs, we use the average value of Cβ
coordinates (θ, ϕ) of all PDB structures in the given subset [Δκ;Δτ;Δψ] for our prediction.

• Finally, if the PDB subset [Δκ;Δτ;Δψ] has no entries, we use a neighboring subset for our

prediction. In selecting the neighboring subset, we move clockwise in along the strip of O

atoms, then clockwise in terms of the torsion angle.

In Step 2, the average latitude value κave is simply

kave ¼
1

N

XN

i¼k

kk

where the summation is over all elements in the given subset [Δκ;Δτ;Δψ]. For the average lon-

gitude value τave we first define

X ¼
1

N

XN

i¼k

cos tk & Y ¼
1

N

XN

i¼k

sin tk

Protein side chain dynamics
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and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2
p

The average value is then obtained from

cos tave ¼
X
R

& sin tave ¼
Y
R

We compute the average longitude value ψave in the same way.

The present Statistical Method reconstruction algorithm is extremely simple and computa-

tionally very fast, in fact much faster than any of the other reconstruction programs that we

have considered even though we have not optimized the search algorithm, but use a straight-

forward MatLab code. We note that the sizes of the subsets Δκ, Δτ, Δψ can be changed and

optimized, the choice we have made here is only to exemplify the method.

Results

We report on results that we have obtained using our Statistical Method reconstruction algo-

rithm, and the publicly available reconstruction algorithms Remo and Scwrl4. Since Scwrl4
requires that the peptide planes are known, we first construct the peptide planes using the Cα
and O atom coordinates from the Anton simulation. We then estimate the positions of peptide

plane C, N and H atoms using the ideal peptide plane structure shown in Fig 4. Accordingly

we denote this enhanced variant ScwrIPP in the sequel. The present Statistical Method recon-

struction algorithm will be denoted Stat in the sequel. Note that we do not use the full Anton
peptide planes in ScwrIPP. This is so that the information content in ScwrIPP and Stat are

comparable.

Description of Anton data distributions

We start by displaying the various data distributions in the Anton simulations; for the bond

and torsion angles of the Cα backbone, for the peptide plane structures and for the Cβ atoms

on the surface of a two sphere.

Bond and torsion angle distributions in Anton simulations. In Fig 7 we show the distri-

butions of the Cα bond and torsion angles on the stereographically projected two sphere of Fig

5, for the villin and ww-domain trajectories in the Anton data.

Both distributions in Fig 7 are somewhat different from the PDB distribution in Fig 5. Spe-

cifically, the villin distribution is largely concentrated in the vicinity of the α-helical region

while the ww-domain distribution has a wider spread. The data distributions in Fig 7 both con-

firm that the Anton data has a substantial dynamical content.

Peptide plane structure in Anton simulations. We proceed to confirm that the ideal,

crystallographic peptide plane structure of Fig 4 is indeed preserved, in the course of Anton
simulations. For this we plot the statistical distributions of the C(i) and N(i + 1) directions as

seen in the O(i) centered CαO frames, in the Anton trajectories of villin and ww-domain. The

results are shown in Fig 8: We observe that all four distributions are consistent with the ideal

peptide plane structure of Fig 4, to the extent that any (minor) deviation could be attributed to

a thermal fluctuation.

Cβ distributions in Anton simulations. In Fig 9 we show the Cβ density distributions of

Fig 6, along the Anton trajectories. In each case the distributions have a support which is very

similar to that in Fig 6; the villin distribution has a higher population in the vicinity of the α-

helical region of Fig 6 and the ww-domain has a higher population in the vicinity of the β-

stranded region, as expected.
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Fig 7. a) Statistical distribution of Cα atoms in villin structures of Anton. b) Statistical distribution of Cα atoms in ww-

domain structures of Anton.

https://doi.org/10.1371/journal.pone.0215141.g007

Fig 8. Statistical distribution of peptide plane C(i) and N(i + 1) atoms in Anton simulations, as seen in the O(i)
centered CαO frames. a) C(i) in villin, b) N(i + 1) in villin, c) C(i) in ww-domain, d) N(i + 1) in ww-domain.

https://doi.org/10.1371/journal.pone.0215141.g008
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Reconstruction of side chain Cβ(i) coordinates

Comparison of CαCβ
���!

direction with Frenet frame based reconstructions. In [22] a

Frenet frame based method has been developed to reconstruct the positions of atoms along a

protein chain, from the knowledge of the Cα atom positions. The present Statistical Method
builds on that method. Thus, by comparing the results from these two methods we obtain an

understanding how the knowledge of O atom positions influences the quality of reconstruc-

tion. For this we consider the vectors CaCb
���!

that point from the Cα atom to the ensuing Cβ
atom. We evaluate these vectors from Anton simulations, and we reconstruct them using the

two methods. We then compute the statistical (probability) distributions of the angles between

the Anton vectors and the reconstructed vectors. The results are shown in Fig 10.

We find that in both methods, the predicted Cβ positions are extremely close to the original

Anton results: The peaks of all four distributions in Fig 10 are very strongly peaked in the

range of 0.08—0.11 radians; the values are slightly larger in the Frenet frames based recon-

struction. With the Cα-Cβ average covalent bond length�1.55 Å this corresponds to a dis-

tance in the range of 0.12—0.15 Å, which is hardly observable with presently available atomic

level x-ray spectroscopy. For example, in our pool of ultra high resolution PDB structures, the

Debye-Waller B-factor fluctuation distances all have values that are larger than 0.15 Å [22].

We observe from Fig 10 that the present, Statistical Method reconstructed Cβ atoms are sys-

tematically slightly closer to the Cβ atoms that are reconstructed in the Frenet frame based

method. Thus, the inclusion of the peptide plane O atoms does appear to improve the recon-

struction precision.

Comparison of CαCβ
���!

direction with ScwrIPP and Remo reconstruction. In Fig 11

we compare the CaCb
���!

angles between the present Statistical Method and ScrwIPP. For com-

parison, we also compare with results from the Remo reconstruction program. In that case

the only input is the Cα positions of the Anton trajectory, the O(i) positions are determined

by the program. The results shown in Fig 11 display the statistical (probability) distributions

of the angles between the Anton vectors CaCb
���!

and the reconstructed vectors CaCb
���!

. The

Fig 9. Statistical distribution of side chain Cβ(i) atoms as seen from the position of Cα(i) atoms along the Anton
trajectory; a) villin and b) ww-domain.

https://doi.org/10.1371/journal.pone.0215141.g009
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results are very good in all three methods, those obtained with ScwrIPP are slightly better

than those obtained with Statistical Method. The comparison to Remo reconstruction con-

firms that the inclusion of O atom positions leads to a visible and systematic improvement in

the precision.

Fig 10. Comparison of the angle between the CαCβ
���!

directions in original Anton data and reconstructed data

using the present CαO based Statistical Method and the Frenet frames based method of [22]. a) for the villin data

and b) for the ww-domain data.

https://doi.org/10.1371/journal.pone.0215141.g010

Fig 11. Comparison of the angle between the CαCβ
���!

directions in original Anton data and reconstructed data

using the present Statistical Method (Stat), ScwrIPP and Remo. a) for the villin data and b) for the ww-domain data.

https://doi.org/10.1371/journal.pone.0215141.g011
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Statistical distributions of OðiÞCβðiÞ
������!

on the two-sphere. In Figs 12 and 13 we show vari-

ous statistical distributions of Cβ(i) atoms, as they are seen in the CαO frames on the surface

of a O(i) centered two-sphere. We show the results for the original Anton data, and the results

from Statistical Method, ScwrIPP and Remo reconstructions. The α-helical and β-stranded

regions are clearly identifiable in all distributions. We observe that Statistical method and

ScwrIPP reproduce properly the original villin and ww-domain distributions. But in the case

of Remo the distributions shows fragmentation and are also slightly, but systematically, shifted

to the left, both in the case of villin and ww-domain. There is also an apparent small dislocated

region in the villin distribution of Remo, pointed out in Fig 12d).

Comparison of OðiÞCβðiÞ
������!

direction with ScwrIPP and Remo reconstruction. In Fig 14

we compare the deviations in the statistical (probability) distributions for the reconstructed

OðiÞCbðiÞ
������!

angles in the case of Statistical Method, ScwrIPP and Remo. The reference structures

are the OðiÞCbðiÞ
������!

angles along the Anton trajectories, for villin and ww-domain. The deviations

Fig 12. Statistical distribution of villin Cβ(i) atoms, when viewed from the position of O(i) atoms in CαO frames.

a) Original Anton data, b) Statistical Method reconstructed data c) ScwrIPP reconstructed data and d) Remo
reconstructed data. In a) we have identified the α-helical and β-stranded regions. In d) we have pointed out a

dislocated region in Remo reconstruction.

https://doi.org/10.1371/journal.pone.0215141.g012
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for Statistical Method and ScwrIPP are again very small and strongly peaked, at around 0.04

radians; for Remo the deviation is also small, but visibly less so. The distance between the Cα(i)
and the O(i) atom is around 2.40 Å. Thus, a peak at 0.04 radians in angular deviation corre-

sponds to a distance around 0.05 Å. This is hardly observable with present day x-ray protein

crystallography techniques.

Statistical distributions of OðiÞCβðiþ 1Þ
���������!

on a two-sphere. In Figs 15 and 16 we com-

pare the distributions of Cβ(i + 1) atoms, as they are seen on the CαO frames at the surface

of O(i) centered two-spheres, for villin and ww-domain. We show the results for the original

Anton data, and from Statistical Method, ScwrIPP and Remo reconstructions. We observe that

the Statistical Method and ScwrIPP reconstructions are remarkably close to the original Anton
distributions. The Remo reconstruction shown in the Fig 16d) displays more dispersion than

the other two, shown in Fig 16b) and 16c).

Comparison of the Cβ(i)-O(i)-Cβ(i + 1) angle. We combine the results in Figs 12

and 15, respectively in Figs 13 and 16 into analysis of the statistical distributions of the angle

Fig 13. Statistical distribution of ww-domain Cβ(i) atoms, when viewed from the position of O(i) atoms in CαO

frames. a) Original Anton data, b) Statistical Method reconstructed data c) ScwrIPP reconstructed data and d) Remo
reconstructed data.

https://doi.org/10.1371/journal.pone.0215141.g013
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Fig 14. Statistical probability distributions for the angular difference between the Anton trajectory vectors OCβ
���!

and the reconstructed vectors in the Statistical Method, ScwrIPP and Remo. a) villin, b) ww-domain.

https://doi.org/10.1371/journal.pone.0215141.g014

Fig 15. Statistical distribution of villin Cβ(i + 1) atoms viewed from position of O(i) atoms in CαO frames. a)

Original Anton data b) Statistical Method c) ScwrIPP d) Remo. Note the isolated region that has been identified in Fig a.

https://doi.org/10.1371/journal.pone.0215141.g015
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ffCβ(i)O(i)Cβ(i + 1) between the directions of the vectors OðiÞCbðiÞ
������!

and OðiÞCbðiþ 1Þ
���������!

. This

measures the quality in the reconstruction of the entire Cα-Cβ-peptide plane complex. In Fig

17 we show the results for both villin and ww-domain, in the four cases of original Anton, and

Statistical Method, ScwrIPP and Remo reconstruction.

A comparison shows that the Statistical Method provides slight improvement over ScwrIPP.

In the case of villin the peak in the Statistical Method is slightly closer to the original Anton
peak, and in the case of ww-domain Statistical Method succeeds to reproduce the double

peak profile of Anton. The difference between these two methods and Remo reconstruction is

apparent, the latter displays visibly larger deviations from the original Anton data. This con-

firms that the knowledge of the O(i) atom positions brings about clear improvement in the

reconstruction.

Isolated region in Cβ(i + 1) distributions. In both Figs 15 and 16a), 16b) and 16c) we

observe a very similar isolated region; in Fig d) this region becomes connected. In Fig 18 we

show the locations of the corresponding regions on the stereographically projected two-sphere

of Fig 5. The Fig 18 show that the isolated regions correspond to residues that are positioned

either in the left-handed α-helical region or in a region that is the mirror image of the β-

stranded region i.e. in both cases the torsion angle has become shifted by τ� π with respect to

Fig 16. Statistical distribution of ww-domain Cβ(i + 1) atoms viewed from position of O(i) atoms in CαO frames. a)

Original Anton data b) Statistical Method c) ScwrIPP d) Remo Note the isolated region that has been identified in Fig a.

https://doi.org/10.1371/journal.pone.0215141.g016
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the τ-values in the conventional α-helical and β-stranded regions. Note that the π-shifted β-

stranded region is very rare among the crystallographic structures shown in Fig 5 which pro-

poses that it might correspond to a higher energy, intermediate dynamical transition state.

Discussion

We have investigated dynamical proteins using results from all-atom molecular dynamics sim-

ulation, with Anton supercomputer. In particular, we have inspected the very long time period

Anton simulation trajectories of villin and ww-domain. We have found that the Cβ positions

along these trajectories can be accurately reconstructed, solely from the knowledge of the back-

bone Cα and O atom dynamics in combination with a statistical analysis of static crystallo-

graphic PDB structures.

Fig 17. Statistical distribution of the angle ffCβ(i)O(i)Cβ(i + 1) for original Anton data and its reconstruction

using Statistical Method, ScwrIPP and Remo. a) for villin, b) for ww-domain.

https://doi.org/10.1371/journal.pone.0215141.g017
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We have compared the results that we obtain from our Statistical Method reconstruction,

with publicly available all-atom reconstruction programs Remo and Scwrl4. Remo starts from

the Cα trace, then reconstructs the peptide planes using elaborate optimization protocols. It

then proceeds with Scwrl to add the side chain atoms for the full all-atom structure. Scwrl4
can also be used in a stand-alone mode, and for this we have enhanced it using the knowl-

edge of the Cα and O atom coordinates along the Anton trajectories, with N, C and H in

ideal peptide plane positions. Both Remo and Scwrlt4 need to reconstruct the entire all-atom

structure, to evaluate the Cβ coordinates. This provides added precision to the reconstruc-

tion, as the removal of higher level steric clashes serves as a constraint. On the other hand,

the present Statistical Method places the Cβ atoms with no regard to higher level side chain

structures, or potential steric clashes between side chains and peptide planes. Only the back-

bone Cα and O atoms time evolution is employed in the reconstruction. Nevertheless, the

results that we get using the Statistical Method are a clear improvement over those obtained

with Remo, and are fully comparable with those obtained by our enhanced Scwrl4. Thus,

at the present level of scrutiny, side chain dynamics and in particular that of Cβ atoms,

appears to be fully slaved to that of the backbone Cα and O atom dynamics. The scrutiny of

the higher level side chain atoms does not seem to bring about much improvement in recon-

structing the Cβ dynamics.

All the three methods that we have employed are, by their construction, designed to recon-

struct static low temperature crystallographic protein structures. They are not intended to

model the all-atom structure of a dynamical and biologically active protein at physiological

temperatures. Nevertheless, each of them succeeds in the reconstruction of the Cβ dynamics

in Anton simulations, with an impressive precision. We find this to be remarkable and very

surprising. It motivates the development of coarse grained approaches to model large time

scale protein dynamics, in terms of reduced coordinates that describe the dynamics of Cα, O

and Cβ atoms only.
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